This article is motivated by the work of Tseng (SIAM J. Control Optim. 38, 431–446 (2020)). We study some forward-backward-forward-type methods for solving variational inclusion problems involving the sum of two operators in real Hilbert spaces. We establish strong convergence theorems for these methods, demonstrating convergence to the unique solution of the problem with an R-linear rate, without relying on a line search procedure or Tseng's regularity assumptions.
Citation: Duong Viet Thong. Linear convergence of forward-backward-forward type methods[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 405-421. doi: 10.3934/jimo.2026015
This article is motivated by the work of Tseng (SIAM J. Control Optim. 38, 431–446 (2020)). We study some forward-backward-forward-type methods for solving variational inclusion problems involving the sum of two operators in real Hilbert spaces. We establish strong convergence theorems for these methods, demonstrating convergence to the unique solution of the problem with an R-linear rate, without relying on a line search procedure or Tseng's regularity assumptions.
| [1] |
P. L. Combettes, W. Wajs, Signal recovery by proximal forward-backward splitting, SIAM Multiscale Model. Simul., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
|
| [2] |
I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57 (2004), 1413–1457. https://doi.org/10.1002/cpa.20042 doi: 10.1002/cpa.20042
|
| [3] |
H. Raguet, J. Fadili, G. Peyré, A generalized forward-backward splitting, SIAM J. Imaging Sci., 6 (2013), 1199–1226. https://doi.org/10.1137/120872802 doi: 10.1137/120872802
|
| [4] |
R. Abaidoo, E. K. Agyapong, Financial development and institutional quality among emerging economies, J. Econ. Dev., 24 (2022), 198–216. https://doi.org/10.1108/JED-08-2021-0135 doi: 10.1108/JED-08-2021-0135
|
| [5] |
H. Attouch, J. Peypouquet, R. Redont, Backward-forward algorithms for structured monotone inclusions in Hilbert spaces, J. Math. Anal. Appl., 457 (2018), 1095–1117. https://doi.org/10.1016/j.jmaa.2016.06.025 doi: 10.1016/j.jmaa.2016.06.025
|
| [6] |
H. H. Bauschke, P. L. Combettes, S. Reich, The asymptotic behavior of the composition of two resolvents, Nonlinear Anal., 60 (2005), 283–301. https://doi.org/10.1016/j.na.2004.07.054 doi: 10.1016/j.na.2004.07.054
|
| [7] |
R. Bruck, On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in hilbert space, J. Math. Anal. Appl., 61 (1977), 159–164. https://doi.org/10.1016/0022-247X(77)90152-4 doi: 10.1016/0022-247X(77)90152-4
|
| [8] |
Y. D. Dong, A. Fischer, A family of operator splitting methods revisited, Nonlinear Anal., 72 (2010), 4307–4315. https://doi.org/10.1016/j.na.2010.02.010 doi: 10.1016/j.na.2010.02.010
|
| [9] |
Y. Y. Huang, Y. D. Dong, New properties of forward-backward splitting and a practical proximal-descent algorithm, Appl. Math. Comput., 237 (2014), 60–68. https://doi.org/10.1016/j.amc.2014.03.062 doi: 10.1016/j.amc.2014.03.062
|
| [10] |
P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071
|
| [11] |
G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. https://doi.org/10.1016/0022-247X(79)90234-8 doi: 10.1016/0022-247X(79)90234-8
|
| [12] |
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control. Optim., 14 (1976), 877–898.https://doi.org/10.1137/0314056 doi: 10.1137/0314056
|
| [13] |
D. V. Thong, P. T. Vuong, R-linear convergence analysis of inertial extragradient algorithms for strongly pseudo-monotone variational inequalities, J. Comput. Appl. Math., 406 (2022), 114003. https://doi.org/10.1016/j.cam.2021.114003 doi: 10.1016/j.cam.2021.114003
|
| [14] |
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
|
| [15] |
H. G. Chen, R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 7 (1997), 421–444. https://doi.org/10.1137/S1052623495290179 doi: 10.1137/S1052623495290179
|
| [16] | A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, 2057, Springer, Berlin, 2012. |
| [17] | H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York, 2011. |
| [18] | K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. |
| [19] | W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000. |
| [20] | H. Brézis, Chapitre II. Operateurs maximaux monotones. North-Holland Math. Stud., 5 (1973), 19–51. https://doi.org/10.1016/S0304-0208(08)72383-1 |
| [21] | J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. |
| [22] |
H. Liu, J. Yang, Weak convergence of iterative methods for solving quasimonotone variational inequalities, Comput. Optim. Appl., 77 (2020), 491–508. https://doi.org/10.1007/s10589-020-00217-8 doi: 10.1007/s10589-020-00217-8
|