In this paper, we have proposed a new class of binary preference relations by utilizing the weighted Tchebycheff scalarization method, and established several related properties in the objective space. Furthermore, we gave the definitions of the (weakly, strictly) efficient solution and (weakly, strictly) nondominated point for multi-objective optimization problems with respect to the proposed preference relations, and investigated the relationship between these solutions (nondominated points) and Pareto solutions (nondominated points). Moreover, we established the theoretical associations between the three types of solutions proposed in this paper and the optimal solutions of the weighted Tchebycheff scalarization model. Finally, two numerical examples were employed to further illustrate the significance of the proposed preference relations. The results indicated that, for certain specific multi-objective optimization problems, the number of weakly (strictly) nondominated points with respect to the relations presented by us is fewer than that with respect to the natural orders and the weighted aggregation preference relations. Meanwhile, the computational time, worst-case computational complexity, and sensitivity analysis for the weight vector were discussed in the second numerical example.
Citation: Hongjie Tan, Kequan Zhao, Yuanmei Xia. A class of weighted Tchebycheff preference relations and multi-objective optimization[J]. Journal of Industrial and Management Optimization, 2026, 22(1): 1-23. doi: 10.3934/jimo.2026001
In this paper, we have proposed a new class of binary preference relations by utilizing the weighted Tchebycheff scalarization method, and established several related properties in the objective space. Furthermore, we gave the definitions of the (weakly, strictly) efficient solution and (weakly, strictly) nondominated point for multi-objective optimization problems with respect to the proposed preference relations, and investigated the relationship between these solutions (nondominated points) and Pareto solutions (nondominated points). Moreover, we established the theoretical associations between the three types of solutions proposed in this paper and the optimal solutions of the weighted Tchebycheff scalarization model. Finally, two numerical examples were employed to further illustrate the significance of the proposed preference relations. The results indicated that, for certain specific multi-objective optimization problems, the number of weakly (strictly) nondominated points with respect to the relations presented by us is fewer than that with respect to the natural orders and the weighted aggregation preference relations. Meanwhile, the computational time, worst-case computational complexity, and sensitivity analysis for the weight vector were discussed in the second numerical example.
| [1] |
E. Zio, P. Baraldi, N. Pedroni, Optimal power system generation scheduling by multi-objective genetic algorithms with preferences, Reliab. Eng. Syst. Saf., 94 (2009), 432–444. https://doi.org/10.1016/j.ress.2008.04.004 doi: 10.1016/j.ress.2008.04.004
|
| [2] |
M. Shaygan, A. Alimohammadi, A. Mansourian, Z. S. Govara, S. M. Kalami, Spatial multi-objective optimization approach for land use allocation using NSGA-II, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7 (2013), 906–916. https://doi.org/10.1109/JSTARS.2013.2280697 doi: 10.1109/JSTARS.2013.2280697
|
| [3] |
S. Breedveld, D. Craft, R. Van Haveren, B. Heijmen, Multi-criteria optimization and decision-making in radiotherapy, Eur. J. Oper. Res., 277 (2019), 1–19. https://doi.org/10.1016/j.ejor.2018.08.019 doi: 10.1016/j.ejor.2018.08.019
|
| [4] | J. B. Mou, Intersection traffic control based on multi-objective optimization, IEEE Access, 8 (2020), 61615–61620. |
| [5] |
H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimization for fast sampling singularly perturbed systems, IEEE Trans. Autom. Control, 69 (2024), 4689–4694. https://doi.org/10.1109/TAC.2024.3352703 doi: 10.1109/TAC.2024.3352703
|
| [6] |
J. Wang, Y. L. Huang, X. P. Xie, H. C. Yan, H. Shen, Optimal control for fuzzy Markov jump singularly perturbed systems: A hybrid zero-sum game iteration approach, IEEE Trans. Fuzzy Syst., 32 (2024), 6388–6398. https://doi.org/10.1109/TFUZZ.2024.3449322 doi: 10.1109/TFUZZ.2024.3449322
|
| [7] |
A. M. Mármol, J. Puerto, F. R. Fernández, The use of partial information on weights in multicriteria decision problems, J. Multi-Criteria Decis. Anal., 7 (1998), 322–329. https://doi.org/10.1002/(SICI)1099-1360(199811)7:6<322::AID-MCDA203>3.0.CO;2-4 doi: 10.1002/(SICI)1099-1360(199811)7:6<322::AID-MCDA203>3.0.CO;2-4
|
| [8] |
A. D. Athanassopoulos, V. V. Podinovski, Dominance and potential optimality in multiple criteria decision analysis with imprecise information, J. Oper. Res. Soc., 48 (1997), 142–150. https://doi.org/10.1057/palgrave.jors.2600345 doi: 10.1057/palgrave.jors.2600345
|
| [9] |
A. Dehnokhalaji, P. J. Korhonen, M. Köksalan, N. Nasrabadi, J. Wallenius, Convex cone-based partial order for multiple criteria alternatives, Decis. Support Syst., 51 (2011), 256–261. https://doi.org/10.1016/j.dss.2010.11.019 doi: 10.1016/j.dss.2010.11.019
|
| [10] |
H. Wang, M. Olhofer, Y. Jin, A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges, Complex Intell. Syst., 3 (2017), 233–245. https://doi.org/10.1007/s40747-017-0053-9 doi: 10.1007/s40747-017-0053-9
|
| [11] |
R. Szlapczynski, J. Szlapczynska, W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimization, Swarm Evol. Comput., 63 (2021), 100866. https://doi.org/10.1016/j.swevo.2021.100866 doi: 10.1016/j.swevo.2021.100866
|
| [12] | Y. M. Xia, D. D. Xia, K. Q. Zhao, Generalized Tchebycheff norm scalarization in multi-objective optimization, Oper. Res. Trans., 29 (2025), 175–183. |
| [13] |
X. B. Li, S. J. Li, Z. M. Fang, A minimax theorem for vector-valued functions in lexicographic order, Nonlinear Anal., 73 (2010), 1101–1108. https://doi.org/10.1016/j.na.2010.04.047 doi: 10.1016/j.na.2010.04.047
|
| [14] | M. Ehrgott, Multicriteria Optimization, 2 Eds., Berlin: Springer, 2005. |
| [15] |
Y. M. Zhang, B. Atasoy, R. R. Negenborn, Preference-based multi-objective optimization for synchromodal transport using adaptive large neighborhood search, Transp. Res. Rec., 2676 (2022), 71–87. https://doi.org/10.1177/03611981211049148 doi: 10.1177/03611981211049148
|
| [16] |
Q. Z. Wang, Y. H. Li, Z. L. Hou, J. Zou, J. H. Zheng, A novel multi-population evolutionary algorithm based on hybrid collaboration for constrained multi-objective optimization, Swarm Evol. Comput., 87 (2024), 101581. https://doi.org/10.1016/j.swevo.2024.101581 doi: 10.1016/j.swevo.2024.101581
|
| [17] |
L. Lai, L. Fiaschi, M. Cococcioni, K. Deb, Pure and mixed lexicographic-paretian many-objective optimization: state of the art, Nat. Comput., 22 (2023), 227–242. https://doi.org/10.1007/s11047-022-09911-4 doi: 10.1007/s11047-022-09911-4
|
| [18] |
C. W. Kirkwood, R. K. Sarin, Ranking with partial information: A method and an application, Oper. Res., 33 (1985), 38–48. https://doi.org/10.1287/opre.33.1.38 doi: 10.1287/opre.33.1.38
|
| [19] |
J. Dutta, C. Y. Kaya, A new scalarization and numerical method for constructing the weak Pareto front of multi-objective optimization problems, Optimization, 60 (2011), 1091–1104. https://doi.org/10.1080/02331934.2011.587006 doi: 10.1080/02331934.2011.587006
|
| [20] |
T. Holzmann, J. C. Smith, Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations, Eur. J. Oper. Res., 271 (2018), 436–449. https://doi.org/10.1016/j.ejor.2018.05.036 doi: 10.1016/j.ejor.2018.05.036
|
| [21] | D. Foroutannia, F. Ahmadi, On the structure of the equitably nondominated set of multi-objective optimization problems, Int. J. Nonlinear Anal. Appl., 15 (2024), 289–298. |
| [22] |
L. H. Lee, E. P. Chew, S. Teng, D. Goldsman, Finding the non-dominated Pareto set for multi-objective simulation models, IIE Trans., 42 (2010), 656–674. https://doi.org/10.1080/07408171003705367 doi: 10.1080/07408171003705367
|
| [23] |
I. Doğan, B. Lokman, M. Köksalan, Representing the nondominated set in multi-objective mixed-integer programs, Eur. J. Oper. Res., 296 (2022), 804–818. https://doi.org/10.1016/j.ejor.2021.04.005 doi: 10.1016/j.ejor.2021.04.005
|
| [24] |
S. Gass, T. Saaty, The computational algorithm for the parametric objective function, Nav. Res. Logist. Q., 2 (1955), 39–45. https://doi.org/10.1002/nav.3800020106 doi: 10.1002/nav.3800020106
|
| [25] | V. J. Bowman, On the relationship of the Tchebycheff norm and the effcient frontier of multiple-criteria objectives, Proceedings of the Springer Conference on Multiple Criteria Decision Making, Jouy-en-Josas, France, 1976, 76–86. |
| [26] | R. Kasimbeyli, Z. K. Ozturk, N. Kasimbeyli, G. D. Yalcin, B. I. Erdem, Comparison of some scalarization methods in multiobjective optimization, Bull. Malays. Math. Sci. Soc., 42 (2019), 1875–1905. |
| [27] |
Y. M. Xia, X. M. Yang, K. Q. Zhao, A combined scalarization method for multi-objective optimization problems, J. Ind. Manag. Optim., 17 (2021), 2669–2683. https://doi.org/10.3934/jimo.2020088 doi: 10.3934/jimo.2020088
|
| [28] |
K. Q. Zhao, X. M. Yang, Y. M. Xia, Complete scalarization of multi-objective optimization problems, Sci. Sin. Math., 51 (2021), 411–424. https://doi.org/10.1360/SCM-2019-0004 doi: 10.1360/SCM-2019-0004
|
| [29] |
Y. M. Xia, K. Q. Zhao, Y. Gao, Generalized Pascoletti-Serafini scalarization for multi-objective optimization, Sci. Sin. Math., 54 (2024), 231–244. https://doi.org/10.1360/SSM-2023-0047 doi: 10.1360/SSM-2023-0047
|
| [30] |
Z. C. Wang, H. F. Zhao, Q. Lu, T. H. Wu, Improved non-dominated sorting genetic algorithm III for efficient of multi-objective cascade reservoirs scheduling under different hydrological conditions, J. Hydrol., 656 (2025), 132998. https://doi.org/10.1016/j.jhydrol.2025.132998 doi: 10.1016/j.jhydrol.2025.132998
|
| [31] |
S. Kaddani, D. Vanderpooten, J. M. Vanpeperstraete, H. Aissi, Weighted sum model with partial preference information: Application to multi-objective optimization, Eur. J. Oper. Res., 260 (2017), 665–679. https://doi.org/10.1016/j.ejor.2017.01.003 doi: 10.1016/j.ejor.2017.01.003
|
| [32] | L. Z. Yue, C. Lu, Z. J. Zhang, Partial ordered set representation of comprehensive evaluation model, Oper. Res. Manag. Sci., 31 (2022), 101–106. |
| [33] | K. Q. Zhao, M. H. Liu, Y. M. Xia, Partial order properties and optimality of a special class of vector sets, J. Chongqing Norm. Univ. (Nat. Sci. Ed.), 41 (2024), 35–41. |
| [34] |
R. Billinton, S. Kumar, N. Chowdhury, K. Chu, K. Debnath, L. Goel, et al., A reliability test system for educational purposes-basic data, IEEE Trans. Power Syst., 4 (1989), 1238–1244. https://doi.org/10.1109/59.32623 doi: 10.1109/59.32623
|
| [35] | Z. Y. Liu, P. T. Tang, K. Hou, L. W. Zhu, J. B. Zhao, H. J. Jia, et al., A Lagrange-multiplier-based reliability assessment for power systems considering topology and injection uncertainties. IEEE Trans. Power Syst., 39 (2024), 1178–1189. https://doi.org/10.1109/TPWRS.2023.3258319 |
jimo-22-01-001-s001.pdf |
![]() |