In this study, we investigated ice content effects on basal force fluctuations in rock-ice avalanches using discrete element method (DEM) rotating drum simulations. Calibrated DEM parameters reproduced experimental benchmarks, enabling numerical tests across ice contents (0–100%). Our results demonstrated ice-driven phase segregation: Low-density ice particles migrate to flow fronts, while gravel accumulates in tails. Increasing ice content linearly reduced the mean basal force, extreme force, and force standard deviation, attributed to ice's friction reduction and lubrication effects. Statistical analysis revealed that basal force fluctuations followed the Generalized Pareto Distributions, with heavier tails under low ice content indicating heightened stochasticity. Normal and shear stress fluctuations exhibited power-law correlations with solid inertial stress, confirming that collisional interactions dominated force variability. Ice-mediated lubrication diminished interparticle locking, promoting collision-driven momentum transfer and altering rheological behavior. These findings elucidate mechanisms linking ice content to segregation and basal forces, offering theoretical insights for modeling rock-ice avalanche hazards.
Citation: Zhibo Dong, Zhiping Sun. Ice content dependence of fluctuating basal forces in rock–ice avalanche: From numerical rotating drum tests[J]. AIMS Geosciences, 2025, 11(4): 907-922. doi: 10.3934/geosci.2025039
In this study, we investigated ice content effects on basal force fluctuations in rock-ice avalanches using discrete element method (DEM) rotating drum simulations. Calibrated DEM parameters reproduced experimental benchmarks, enabling numerical tests across ice contents (0–100%). Our results demonstrated ice-driven phase segregation: Low-density ice particles migrate to flow fronts, while gravel accumulates in tails. Increasing ice content linearly reduced the mean basal force, extreme force, and force standard deviation, attributed to ice's friction reduction and lubrication effects. Statistical analysis revealed that basal force fluctuations followed the Generalized Pareto Distributions, with heavier tails under low ice content indicating heightened stochasticity. Normal and shear stress fluctuations exhibited power-law correlations with solid inertial stress, confirming that collisional interactions dominated force variability. Ice-mediated lubrication diminished interparticle locking, promoting collision-driven momentum transfer and altering rheological behavior. These findings elucidate mechanisms linking ice content to segregation and basal forces, offering theoretical insights for modeling rock-ice avalanche hazards.
| [1] |
Ren Y, Yang Q, Cheng Q, et al. (2021) Solid-liquid interaction caused by minor wetting in gravel-ice mixtures: A key factor for the mobility of rock-ice avalanches. Eng Geol 286: 106072. https://doi.org/10.1016/j.enggeo.2021.106072 doi: 10.1016/j.enggeo.2021.106072
|
| [2] |
Wang C, Cui Y, Song D, et al. (2022) Effect of ice content on the interaction between rock–ice avalanche and rigid barrier: Physical and numerical modelling. Comput Geotech 150: 104924. https://doi.org/10.1016/j.compgeo.2022.104924 doi: 10.1016/j.compgeo.2022.104924
|
| [3] |
Fan X, Yunus AP, Yang YH, et al. (2022) Imminent threat of rock-ice avalanches in High Mountain Asia. Sci Total Environ 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380 doi: 10.1016/j.scitotenv.2022.155380
|
| [4] |
Schneider D, Bartelt P, Caplan-Auerbach J, et al. (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth Surf 115: F04026. https://doi.org/10.1029/2010JF001734 doi: 10.1029/2010JF001734
|
| [5] |
Hu K, Zhang X, You Y, et al. (2019) Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides 16: 993–1001. https://doi.org/10.1007/s10346-019-01168-w doi: 10.1007/s10346-019-01168-w
|
| [6] |
Huggel C, Zgraggen-Oswald S, Haeberli W, et al. (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5: 173–187. https://doi.org/10.5194/nhess-5-173-2005 doi: 10.5194/nhess-5-173-2005
|
| [7] |
Fujita K, Inoue H, Izumi T, et al. (2017) Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal. Nat Hazards Earth Syst Sci 17: 749–764. https://doi.org/10.5194/nhess-17-749-2017 doi: 10.5194/nhess-17-749-2017
|
| [8] |
Gardezi H, Xing A, Bilal M, et al. (2022) Preliminary investigation and dynamic analysis of a multiphase ice-rock avalanche on July 5, 2021, in the upper Naltar valley, Gilgit, Pakistan. Landslides 19: 451–463. https://doi.org/10.1007/s10346-021-01840-0 doi: 10.1007/s10346-021-01840-0
|
| [9] |
Cagnoli B, Romano GP (2012) Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: A relationship from laboratory experiments. J Geophys Res Solid Earth 117: B10202. https://doi.org/10.1029/2012JB009374 doi: 10.1029/2012JB009374
|
| [10] |
Wang YF, Cheng QG, Zhu Q (2015) Surface microscopic examination of quartz grains from rock avalanche basal facies. Can Geotech J 52: 167–181. https://doi.org/10.1139/cgj-2013-0284 doi: 10.1139/cgj-2013-0284
|
| [11] |
Allstadt KE, Farin M, Iverson RM, et al. (2020) Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions. J Geophys Res Earth Surf 125: e2020JF005590. https://doi.org/10.1029/2020JF005590 doi: 10.1029/2020JF005590
|
| [12] |
Collins GS, Melosh HJ (2003) Acoustic fluidization and the extraordinary mobility of sturzstroms. J Geophys Res Solid Earth 108: 2473. https://doi.org/10.1029/2003JB002465 doi: 10.1029/2003JB002465
|
| [13] |
Iverson RM (1997) The physics of debris flows. Rev Geophys 35: 245–296. https://doi.org/10.1029/97RG00426 doi: 10.1029/97RG00426
|
| [14] |
Li K, Wang Y, Cheng Q, et al. (2022) Insight Into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. J Geophys Res Solid Earth 127: e2021JB022905. https://doi.org/10.1029/2021JB022905 doi: 10.1029/2021JB022905
|
| [15] |
McArdell BW, Bartelt P, Kowalski J (2007) Field observations of basal forces and fluid pore pressure in a debris flow. Geophys Res Lett 34: L07406. https://doi.org/10.1029/2006GL029183 doi: 10.1029/2006GL029183
|
| [16] |
Schneider D, Kaitna R, Dietrich WE, et al. (2011) Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches. Cold Reg Sci Technol 69: 70–90. https://doi.org/10.1016/j.coldregions.2011.07.001 doi: 10.1016/j.coldregions.2011.07.001
|
| [17] |
Dong Z, Su L (2023) Flow regimes and basal normal stresses in rock-ice avalanches by experimental rotating drum tests. Cold Reg Sci Technol 218: 104081. https://doi.org/10.1016/j.coldregions.2023.104081 doi: 10.1016/j.coldregions.2023.104081
|
| [18] |
Dong Z, Su L, Hu B, et al. (2024) Friction behaviors and flow resistances of rock-ice avalanches. Cold Reg Sci Technol 220: 104130. https://doi.org/10.1016/j.coldregions.2024.104130 doi: 10.1016/j.coldregions.2024.104130
|
| [19] |
Fan X, Feng Z, Ni T, et al. (2025) The Friction Behavior of Rock-Ice Avalanches in Relation to Rock-Ice Segregation: Insights From Flume Physical Experiments. J Geophys Res Earth Surf 130: e2024JF007904. https://doi.org/10.1029/2024JF007904 doi: 10.1029/2024JF007904
|
| [20] |
Feng Z, Fan X, Ni T, et al. (2023) How Ice Particles Increase Mobility of Rock‐Ice Avalanches: Insights From Chute Flows Simulation of Granular Rock‐Ice Mixtures by Discrete Element Method. J Geophys Res Earth Surf 128: e2023JF007115. https://doi.org/10.1029/2023JF007115 doi: 10.1029/2023JF007115
|
| [21] |
Zhou GGD, Cui KFE, Jing L, et al. (2024) Segregation‐Induced Flow Transitions in Rock‐Ice Mixtures: Implications for Rock‐Ice Avalanche Dynamics. J Geophys Res Earth Surf 129: e2024JF007831. https://doi.org/10.1029/2024JF007831 doi: 10.1029/2024JF007831
|
| [22] |
Sun Z, Li S, Dong J, et al. (2025) Particle-density segregation of rock-ice avalanche. AIP Adv 15: 01521. https://doi.org/10.1063/5.0249871 doi: 10.1063/5.0249871
|
| [23] |
Zhu Y, Jiang Y, Liu Y, et al. (2024) Material characteristic-controlled particle segregation in rock-ice avalanche. Comput Geotech 171: 106367. https://doi.org/10.1016/j.compgeo.2024.106367 doi: 10.1016/j.compgeo.2024.106367
|
| [24] |
Chou SH, Hu HJ, Hsiau SS (2016) Investigation of friction effect on granular dynamic behavior in a rotating drum. Adv Powder Technol 27: 1912–1921. https://doi.org/10.1016/j.apt.2016.06.022 doi: 10.1016/j.apt.2016.06.022
|
| [25] |
Hsu L, Dietrich WE, Sklar LS (2014) Mean and fluctuating basal forces generated by granular flows: Laboratory observations in a large vertically rotating drum. J Geophys Res Earth Surf 119: 1283–1309. https://doi.org/10.1002/2013JF003078 doi: 10.1002/2013JF003078
|
| [26] |
McCoy SW, Tucker GE, Kean JW, et al. (2013) Field measurement of basal forces generated by erosive debris flows. J Geophys Res Earth Surf 118: 589–602. https://doi.org/10.1002/jgrf.20041 doi: 10.1002/jgrf.20041
|
| [27] |
Yohannes B, Hsu L, Dietrich WE, et al. (2012) Boundary stresses due to impacts from dry granular flows. J Geophys Res Earth Surf 117: F02027. https://doi.org/10.1029/2011JF002150 doi: 10.1029/2011JF002150
|
| [28] |
Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc R Soc Lond A 225: 49–63. https://doi.org/10.1098/rspa.1954.0186 doi: 10.1098/rspa.1954.0186
|
| [29] |
Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. J Geophys Res Solid Earth 106: 537–552. https://doi.org/10.1029/2000JB900329 doi: 10.1029/2000JB900329
|
| [30] |
Xiao S, Su L, Jiang Y, et al. (2019) Estimating the maximum impact force of dry granular flow based on pileup characteristics. J Mt Sci 16: 2435–2452. https://doi.org/10.1007/s11629-019-5428-5 doi: 10.1007/s11629-019-5428-5
|
| [31] |
Jiang Y, Fan X, Li T, et al. (2018) Influence of particle-size segregation on the impact of dry granular flow. Powder Technol 340: 39–51. https://doi.org/10.1016/j.powtec.2018.09.014 doi: 10.1016/j.powtec.2018.09.014
|