Research article

Soil carbon sequestration across a chronosequence of tallgrass prairie restorations in the Ozark Highlands region of northwest Arkansas

  • Received: 29 October 2018 Accepted: 09 January 2018 Published: 18 January 2019
  • Prairie restoration studies and research conducted in native prairie systems have been mostly centered in the Great Plains region of the United States and little research has been pursued in Arkansas to further understand the soil carbon (C) sequestration potential over time of remnant prairie sites and prairie restorations. The objective of this study was to evaluate the effects of restoration age and soil moisture regime on near-surface soil C and other soil property changes over time in a chronosequence of humid-temperate tallgrass prairie restorations (i.e., 15, 16, 17, and 38 yr) in the Ozark Highlands region of northwest Arkansas. A nearby undisturbed, native prairie was also studied for comparison as a baseline. Soil samples were collected from the top 10 cm in 2005 and 2017 and the change over time was assessed for soil bulk density, pH, electrical conductivity, soil organic matter (SOM), total C (TC), total nitrogen (TN), and the fraction of TC and TN in SOM. Soil property magnitudes from the 2017 sampling only were also compared among sites to evaluate the current state of the restorations. Soil properties within the restorations generally behaved as expected, with beneficial decreases in soil BD and increases in SOM, TC, TN, and TC and TN fractions of SOM occurring over time as restoration age increased and tended towards that in the native prairie. The direct measurement of change in total C content over time differed (P = 0.03) between soil moisture regimes among ecosystems, where the greatest soil C sequestration rate of 0.6 Mg C ha−1 yr−1 was recorded in the native prairie in the aquic soil moisture regime, while soil C sequestration rates ranged from −0.21 to 0.12 Mg C ha−1 yr−1 across the four prairie restorations. Results indicate that the prairie restorations evaluated in this study are still evolving and have not yet reached the rate of C sequestration observed in the native, undisturbed prairie ecosystem and that direct measurement of soil C storage changes over time should be used whenever possible.

    Citation: Marya McKee, Kristofor R. Brye, Lisa Wood. Soil carbon sequestration across a chronosequence of tallgrass prairie restorations in the Ozark Highlands region of northwest Arkansas[J]. AIMS Geosciences, 2019, 5(1): 1-24. doi: 10.3934/geosci.2019.1.1

    Related Papers:

    [1] Jamie L. Flexon, Lisa Stolzenberg, Stewart J. D'Alessio . The impact of cannabis legislation on benzodiazepine and opioid use and misuse. AIMS Medical Science, 2024, 11(1): 1-24. doi: 10.3934/medsci.2024001
    [2] Hicham Rahmi, Ben Yamine Mallouki, Fatiha Chigr, Mohamed Najimi . The effects of smoking Haschich on blood parameters in young people from the Beni Mellal region Morocco. AIMS Medical Science, 2021, 8(4): 276-290. doi: 10.3934/medsci.2021023
    [3] Gili Eshel, Baruch Harash, Maayan Ben Sasson, Amir Minerbi, Simon Vulfsons . Validation of the Hebrew version of the questionnaire “know pain 50”. AIMS Medical Science, 2022, 9(1): 51-64. doi: 10.3934/medsci.2022006
    [4] Carlos Forner-Álvarez, Ferran Cuenca-Martínez, Rafael Moreno-Gómez-Toledano, Celia Vidal-Quevedo, Mónica Grande-Alonso . Multimodal physiotherapy treatment based on a biobehavioral approach in a patient with chronic low back pain: A case report. AIMS Medical Science, 2024, 11(2): 77-89. doi: 10.3934/medsci.2024007
    [5] Carlos Forner-Álvarez, Ferran Cuenca-Martínez, Alba Sebastián-Martín, Celia Vidal-Quevedo, Mónica Grande-Alonso . Combined face-to-face and telerehabilitation physiotherapy management in a patient with chronic pain related to piriformis syndrome: A case report. AIMS Medical Science, 2024, 11(2): 113-123. doi: 10.3934/medsci.2024010
    [6] Diogo Henrique Constantino Coledam, Philippe Fanelli Ferraiol, Gustavo Aires de Arruda, Arli Ramos de Oliveira . Correlates of the use of health services among elementary school teachers: A cross-sectional exploratory study. AIMS Medical Science, 2023, 10(4): 273-290. doi: 10.3934/medsci.2023021
    [7] Benjamin P Jones, Srdjan Saso, Timothy Bracewell-Milnes, Jen Barcroft, Jane Borley, Teodor Goroszeniuk, Kostas Lathouras, Joseph Yazbek, J Richard Smith . Laparoscopic uterosacral nerve block: A fertility preserving option in chronic pelvic pain. AIMS Medical Science, 2019, 6(4): 260-267. doi: 10.3934/medsci.2019.4.260
    [8] Kaye Ervin, Julie Pallant, Daniel R. Terry, Lisa Bourke, David Pierce, Kristen Glenister . A Descriptive Study of Health, Lifestyle and Sociodemographic Characteristics and their Relationship to Known Dementia Risk Factors in Rural Victorian Communities. AIMS Medical Science, 2015, 2(3): 246-260. doi: 10.3934/medsci.2015.3.246
    [9] Joann E. Bolton, Elke Lacayo, Svetlana Kurklinsky, Christopher D. Sletten . Improvement in montreal cognitive assessment score following three-week pain rehabilitation program. AIMS Medical Science, 2019, 6(3): 201-209. doi: 10.3934/medsci.2019.3.201
    [10] Mansour Shakiba, Mohammad Hashemi, Zahra Rahbari, Salah Mahdar, Hiva Danesh, Fatemeh Bizhani, Gholamreza Bahari . Lack of Association between Human µ-Opioid Receptor (OPRM1) Gene Polymorphisms and Heroin Addiction in A Sample of Southeast Iranian Population. AIMS Medical Science, 2017, 4(2): 233-240. doi: 10.3934/medsci.2017.2.233
  • Prairie restoration studies and research conducted in native prairie systems have been mostly centered in the Great Plains region of the United States and little research has been pursued in Arkansas to further understand the soil carbon (C) sequestration potential over time of remnant prairie sites and prairie restorations. The objective of this study was to evaluate the effects of restoration age and soil moisture regime on near-surface soil C and other soil property changes over time in a chronosequence of humid-temperate tallgrass prairie restorations (i.e., 15, 16, 17, and 38 yr) in the Ozark Highlands region of northwest Arkansas. A nearby undisturbed, native prairie was also studied for comparison as a baseline. Soil samples were collected from the top 10 cm in 2005 and 2017 and the change over time was assessed for soil bulk density, pH, electrical conductivity, soil organic matter (SOM), total C (TC), total nitrogen (TN), and the fraction of TC and TN in SOM. Soil property magnitudes from the 2017 sampling only were also compared among sites to evaluate the current state of the restorations. Soil properties within the restorations generally behaved as expected, with beneficial decreases in soil BD and increases in SOM, TC, TN, and TC and TN fractions of SOM occurring over time as restoration age increased and tended towards that in the native prairie. The direct measurement of change in total C content over time differed (P = 0.03) between soil moisture regimes among ecosystems, where the greatest soil C sequestration rate of 0.6 Mg C ha−1 yr−1 was recorded in the native prairie in the aquic soil moisture regime, while soil C sequestration rates ranged from −0.21 to 0.12 Mg C ha−1 yr−1 across the four prairie restorations. Results indicate that the prairie restorations evaluated in this study are still evolving and have not yet reached the rate of C sequestration observed in the native, undisturbed prairie ecosystem and that direct measurement of soil C storage changes over time should be used whenever possible.


    In 2005, Rodríguez [1] used the Lyapunov-Schmidt method and Brower fixed-point theorem to discuss the following discrete Sturm-Liouville boundary value problem

    {Δ[p(t1)Δy(t1)]+q(t)y(t)+λy(t)=f(y(t)), t[a+1,b+1]Z,a11y(a)+a12Δy(a)=0, a21y(b+1)+a22Δy(b+1)=0,

    where λ is the eigenvalue of the corresponding linear problem and the nonlinearity f is bounded.

    Furthermore, in 2007, Ma [2] studied the following discrete boundary value problem

    {Δ[p(t1)Δy(t1)]+q(t)y(t)+λy(t)=f(t,y(t))+h(t), t[a+1,b+1]Z,a11y(a)+a12Δy(a)=0, a21y(b+1)+a22Δy(b+1)=0,

    where f is subject to the sublinear growth condition

    |f(t,s)|A|s|α+B,sR

    for some 0α<1 and A,B(0,). Additional results to the existence of solutions to the related continuous and discrete problems on the nonresonance and the resonance can be found in [3,4,5,6,7,8,9,10,11,12,13] and the references therein. For example, Li and Shu [14] considered the existence of solutions to the continuous Sturm-Liouville problem with random impulses and boundary value problems using the Dhage's fixed-point theorem and considered the existence of upper and lower solutions to a second-order random impulsive differential equation in [15] using the monotonic iterative method.

    Inspired by the above literature, we use the solution set connectivity theory of compact vector field [16] to consider the existence of solutions to discrete resonance problems

    {Δ[p(t1)Δy(t1)]+q(t)y(t)=λkr(t)y(t)+f(t,y(t))+γψk(t)+¯g(t),   t[1,T]Z,(a0λk+b0)y(0)=(c0λk+d0)Δy(0),(a1λk+b1)y(T+1)=(c1λk+d1)y(T+1), (1.1)

    where p:[0,T]Z(0,), q:[1,T]ZR, ¯g:[1,T]ZR, r(t)>0, t[1,T]Z, (λk,ψk) is the eigenpair of the corresponding linear problem

    {Δ[p(t1)Δy(t1)]+q(t)y(t)=λr(t)y(t), t[1,T]Z,(a0λ+b0)y(0)=(c0λ+d0)Δy(0),(a1λ+b1)y(T+1)=(c1λ+d1)y(T+1). (1.2)

    It is worth noting that the difference between the problem (1.1) and the above questions is the eigenvalue that not only appears in the equation but also in the boundary conditions, which causes us considerable difficulties. Furthermore, it should be noted that these problems also apply to a number of physical problems, including those involving heat conduction, vibrating strings, and so on. For instance, Fulton and Pruess [17] discussed a kind of heat conduction problem, which has the eigenparameter-dependent boundary conditions. However, to discuss this kind of problem, we should know the spectrum of the problem (1.2). Fortunately, in 2016, Gao and Ma [18] obtained the eigenvalue theory of problem (1.2) under the conditions listed as follows:

    (A1) δ0:=a0d0b0c0<0,c00, d1b10,

    (A2) δ1:=a1d1b1c1>0,c10, b0+d00,

    which laid a theoretical foundation for this paper.

    Under the conditions (A1) and (A2), we assume the following conditions hold:

    (H1) (Sublinear growth condition) f:[1,T]Z×RR is continuous and there exist α[0,1) and A,B(0,), such that

    |f(t,y)|A|y|α+B,

    (H2) (Symbol condition) There exists ω>0, such that

    yf(t,y)>0,t[1,T]Zfor|y|>ω, (1.3)

    or

    yf(t,y)<0,t[1,T]Zfor|y|>ω, (1.4)

    (H3) ¯g:[1,T]ZR satisfies

    Ts=1¯g(s)ψk(s)=0, (1.5)

    (H4) f:[1,T]Z×RR is continuous and

    lim|y|f(t,y)=0

    uniformly for t[1,T]Z.

    The organization of this paper is as follows. In the second section, we construct a completely new inner product space. In the new inner product space, we discuss the basic self-adjointness of the corresponding linear operator and the properties of the eigenpair of (1.2). Finally, under the above properties, the Lyapunov-Schmidit method is used to decompose the inner product space and transform our problem to an equivalent system, that is to say, finding the solutions of (1.1) is equivalent to finding the solutions of this system. Under the sublinear condition and sign conditions on nonlinear terms, an existence result of solutions to the problem (1.1) is obtained using Schauder's fixed-point theorem and the connectivity theories of the solution set of compact vector fields. Based on the first result, the existence of two solutions to the problem (1.1) is also obtained in this section.

    Definition 2.1. ([19]) A linear operator P from the linear space X to itself is called the projection operator, if P2=P.

    Lemma 2.2. ([16]) Let C be a bounded closed convex set in Banach space E, T:[α,β]×CC(α<β) be a continuous compact mapping, then the set

    Sα,β={(ρ,x)[α,β]×C|T(ρ,x)=x}

    contains a connected branch connecting {α}×C and {β}×C.

    Lemma 2.3. ([20])(Schauder) Let D be a bounded convex closed set in E, A:DD is completely continuous, then A has a fixed point in D.

    First, we construct the inner product space needed in this paper.

    Let

    Y:={u|u:[1,T]ZR},

    then Y is a Hilbert space under the following inner product

    y,zY=Tt=1y(t)z(t)

    and its norm is yY:=y,yY.

    Furthermore, consider the space H:=YR2. Define the inner product as follows:

    [y,α,β],[z,ζ,ρ]=y,zY+p(0)|δ0|αζ+p(T)|δ1|βρ,

    which norm is defined as

    y=[y,α,β],[y,α,β]12,

    where is transposition to a matrix.

    Let

    y0,0=b0y(0)d0Δy(0), y0,1=a0y(0)c0Δy(0)

    and

    yT+1,0=b1y(T+1)d1y(T+1), yT+1,1=a1y(T+1)c1y(T+1).

    For y=[y,α,β], define an operator L:DH as follows:

    Ly=[Δ[p(t1)Δy(t1)]+q(t)y(t)y0,0yT+1,0]:=[Lyy0,0yT+1,0],

    where D={[y,α,β]:yY, y0,1=α, yT+1,1=β}. Define S:DH as follows:

    Sy=S[yαβ]=[ryαβ].

    Then, the problem (1.2) is equivalent to the eigenvalue problem as follows:

    Ly=λSy, (2.1)

    that is, if (λk,y) is the eigenpair of the problem (1.2), then (λk,y) is the eigenpair of the opertor L. Conversely, if (λk,y) is the eigenpair of the operator L, then (λk,y) is the eigenpair of the problem (1.2).

    Eventually, we define A:DH as follows:

    Ay=F(t,y)+[γψk+¯g,0,0],

    where F(t,y)=F(t,[y,α,β])=[f(t,y),0,0]. Obviously, the solution of the problem (1.1) is equivalent to the fixed point of the following operator

    Ly=λkSy+Ay. (2.2)

    It can be seen that there is a homomorphism mapping (λk,y)(λk,y) between the problem (1.1) and the operator Eq (2.2).

    Next, we are committed to obtaining the orthogonality of the eigenfunction.

    Lemma 2.4. Assume that (λ,y) and (μ,z) are eigenpairs of L, then

    y,LzLy,z=(μλ)y,Sz.

    Proof Let y=[y,α,β]D, z=[z,ζ,ρ]D, then

    y,Lz=[y,α,β],[Lz,z0,0,zT+1,0]=y,LzY+p(0)|δ0|α(z0,0)+p(T)|δ1|β(zT+1,0)=μy,rzY+p(0)|δ0|α(μζ)+p(T)|δ1|β(μρ)=μy,Sz. (2.3)

    Similarly, we have

    Ly,z=[Ly,y0,0,yT+1,0],[z,ζ,ρ]=Ly,zY+p(0)|δ0|(y0,0)ζ+p(T)|δ1|(yT+1,0)ρ=λry,zY+p(0)|δ0|λαζ+p(T)|δ1|λβρ=λy,Sz. (2.4)

    It can be seen from (2.3) and (2.4)

    y,LzLy,z=(μλ)y,Sz.

    Lemma 2.5. The operator L is the self-adjoint operator in H.

    Proof For y=[y,α,β]D,z=[z,ζ,ρ]D, we just need to prove that y,Lz=Ly,z. By the definition of inner product in H. we obtain

    y,Lz=y,LzY+p(0)|δ0|α(z0,0)+p(T)|δ1|β(zT+1,0),

    and

    Ly,z=Ly,zY+p(0)|δ0|(y0,0)ζ+p(T)|δ1|(yT+1,0)ρ.

    Therefore,

    y,LzLy,z=y,LzYLy,zY+p(0)|δ0|[α(z0,0)(y0,0)ζ]+p(T)|δ1|[β(zT+1,0)(yT+1,0)ρ],

    where

    y,LzY=Tt=1y(t)(Δ[p(t1)Δz(t1)]+q(t)z(t))=Tt=1y(t)p(t1)Δz(t1)Tt=1y(t)p(t)Δz(t)+Tt=1q(t)y(t)z(t)=T1t=0y(t+1)p(t)Δz(t)Tt=1y(t)p(t)Δz(t)+Tt=1q(t)y(t)z(t)=T1t=0p(t)Δy(t)Δz(t)+p(0)y(0)Δz(0)p(T)y(T)Δz(T)+Tt=1q(t)y(t)z(t)

    and

    Ly,zY=T1t=0p(t)Δy(t)Δz(t)+p(0)Δy(0)z(0)p(T)Δy(T)z(T)+Tt=1q(t)y(t)z(t).

    Moreover, from

    α(z0,0)(y0,0)ζ=[a0y(0)c0Δy(0)][d0Δz(0)b0z(0)][d0Δy(0)b0y(0)][a0z(0)c0Δz(0)]=(a0d0b0c0)[y(0)Δz(0)Δy(0)z(0)]

    and

    β(zT+1,0)(yT+1,0)ρ=[a1y(T+1)c1y(T+1)][b1z(T+1)+d1z(T+1)][b1y(T+1)+d1y(T+1)][a1z(T+1)c1z(T+1)]=(a1d1b1c1)[y(T+1)z(T+1)y(T+1)z(T+1)],

    we have

    y,LzLy,z=p(0)|y(0)Δy(0)z(0)Δz(0)|p(T)|y(T)Δy(T)z(T)Δz(T)|p(0)|y(0)Δy(0)z(0)Δz(0)|+p(T)|y(T+1)y(T+1)z(T+1)z(T+1)|=0.

    In order to obtain the orthogonality of the eigenfunction, we define a weighted inner product related to the weighted function r(t) in H. First, we define the inner product in Y as y,zr=Tt=1r(t)y(t)z(t).

    Similarly, the inner product associated with the weight function r(t) in the space H is defined as follows:

    [y,α,β],[z,ζ,ρ]r=y,zr+p(0)|δ0|αζ+p(T)|δ1|βρ.

    Lemma 2.6. (Orthogonality theorem) Assume that (A1) and (A2) hold. If (λ,y) and (μ,z) are two different eigenpairs corresponding to L, then y and z are orthogonal under the weight inner product related to the weight function r(t).

    Proof Assume that (λ,y) and (μ,z) is the eigenpair of L, then it can be obtained from Lemmas 2.4 and 2.5

    0=(μλ)y,Sz=(μλ)y,zr.

    Therefore, if λμ, then y,zr=0, which implies that y and z are orthogonal to the inner product defined by the weighted function r(t).

    Lemma 2.7. ([18]) Suppose that (A1) and (A2) hold. Then (1.2) has at least T or at most T+2 simple eigenvalues.

    In this paper, we consider that λk is a simple eigenvalue, that is, the eigenspace corresponding to each eigenvalue is one-dimensional. Let ψk=[ψk,α,β]D be the eigenfunction corresponding to λk, and assume that it satisfies

    ψk,ψk=1. (2.5)

    Denote by L:=LλkS, then the operator (2.2) is transformed into

    Ly=Ay. (2.6)

    Define P:DD by

    (Px)(t)=ψk(t)ψk(t),x(t).

    Lemma 2.8. P is a projection operator and Im(P)=Ker(L).

    Proof Obviously, P is a linear operator, next, we need to prove P2=P.

    (P2x)(t)=P(Px)(t)=ψk(t)ψk(t),Px(t)=ψk(t)ψk(t),ψk(t)ψk(t),x(t)=ψk(t)ψk(t),x(t)ψk(t),ψk(t)=ψk(t)ψk(t),x(t)=(Px)(t).

    It can be obtained from the Definition 2.1, P is a projection operator. In addition, Im(P)=span{ψk}=Ker(L).

    Define H:HH by

    H([yαβ])=[yαβ][yαβ],ψkψk.

    Lemma 2.9. H is a projection operator and Im(H)=Im(L).

    Proof Obviously, H is a linear operator, next, we need to prove that H2=H.

    H2([yαβ])=H(H[yαβ])=H[yαβ]H[yαβ],ψkψk=[yαβ][yαβ],ψkψk[yαβ][yαβ],ψkψk,ψkψk=[yαβ]2[yαβ],ψkψk+[yαβ],ψkψk,ψkψk=[yαβ]2[yαβ],ψkψk+[yαβ],ψkψk,ψkψk=H([yαβ]).

    It can be obtained from Definition 2.1 that H is a projection operator. On the one hand, for any [y,α,β]H, we have

    H[yαβ],ψk=[yαβ][yαβ],ψkψk,ψk=[yαβ],ψk[yαβ],ψkψk,ψk=0,

    thus, Im(H)Im(L). On the other hand, for any yIm(L), we have

    y,ψk=0.

    In summary, Im(H)=Im(L).

    Denote that I is a identical operator, then

    D=Im(P)Im(IP),H=Im(H)Im(IH).

    The restriction of the operator L on L|Im(IP) is a bijection from Im(IP) to Im(H). Define M:Im(H)Im(IP) by

    M:=(L|Im(IP))1.

    It can be seen from KerL=span{ψk} that there is a unique decomposition for any y=[y,α,β]D

    y=ρψk+x,

    where ρR,x=[x,α,β]Im(IP).

    Lemma 2.10. The operator Eq (2.6) is equivalent to the following system

    x=MHA(ρψk+x), (2.7)
    Tt=1ψk(t)f(t,ρψk(t)+x(t))=γ(p(0)|δ0|α2+p(T)|δ1|β21):=θ, (2.8)

    where α=a0ψk(0)c0Δψk(0),β=a1ψk(T+1)c1ψk(T+1).

    Proof (ⅰ) For any y=ρψk+x, we have

    Ly=Ay  H(L(ρψk+x)A(ρψk+x))=0LxHA(ρψk+x)=0x=MHA(ρψk+x). 

    (ⅱ) Since Ly,ψk=0, we have Ay,ψk=0. Therefore,

    f(t,y)+γψk+¯g,ψkY=Tt=1f(t,ρψk(t)+x(t))ψk(t)+Tt=1γψk(t)ψk(t)+Tt=1¯g(t)ψk(t)=0.

    Combining (H3) with (2.5), we have

    Tt=1ψk(t)f(t,ρψk(t)+x(t))=γ(p(0)|δ0|α2+p(T)|δ1|β21)=θ,

    where α=a0ψk(0)c0Δψk(0),β=a1ψk(T+1)c1ψk(T+1).

    Let

    A+={t{1,2,,T} s.t. ψk(t)>0},
    A={t{1,2,,T} s.t. ψk(t)<0}.

    Obviously,

    A+A, min{|ψk(t)||tA+A}>0.

    Lemma 3.1. Supposed that (H1) holds, then there exist constants M0 and M1, such that

    xM1(|ρ|ψkY)α,

    where (ρ,x) is the solution of (2.7) and satisfies |ρ|M0.

    Proof Since

    A(ρψk+x)=F(t,ρψk+x)+[γψk+¯g,0,0]=[f(t,ρψk+x)+γψk+¯g,0,0],

    we have

    xMIm(H)Im(IP)HHIm(H)[¯gY+γψkY+A(|ρ|ψkY+xY)α+B]=MIm(H)Im(IP)HHIm(H)[¯gY+A(|ρ|ψkY)α(1+xY|ρ|ψkY)α+Bθ]MIm(H)Im(IP)HHIm(H)[¯gY+A(|ρ|ψkY)α(1+αxY|ρ|ψkY)+Bθ]=MIm(H)Im(IP)HHIm(H)[¯gY+A(|ρ|ψkY)α(1+α(|ρ|ψkY)1αxY(|ρ|ψkY)α)+Bθ]. 

    Denote that

    D0=MIm(H)Im(IP)HHIm(H)(¯gY+Bθ),D1=AMIm(H)Im(IP)HHIm(H).

    Furthermore, we have

    x(|ρ|ψkY)αD0(|ρ|ψkY)α+D1+αD1(|ρ|ψkY)1αxY(|ρ|ψkY)αD0(|ρ|ψkY)α+D1+αD1(|ρ|ψkY)1αx(|ρ|ψkY)α.

    So, if we let

    αD1(|ρ|ψkY)1α12,

    we have

    |ρ|(2αD1)11αψkY:=M0.

    Thus,

    x(|ρ|ψkY)α2D0(M0ψkY)α+2D1:=M1.

    This implies that

    xM1(|ρ|ψkY)α.

    Lemma 3.2. Suppose that (H1) holds, then there exist constants M0 and Γ, such that

    xΓ(|ρ|min{|ψk(t)||tA+A})α,

    where (ρ,x) is the solution of (2.7) and satisfies |ρ|M0.

    According to Lemma 3.2, choose constant ρ0, such that

    ρ0>max{M0,Γ(|ρ0|min{|ψk(t)||tA+A})α}. (3.1)

    Let

    K:={xIm(IP)|x=MHA(ρψk+x),|ρ|ρ0}.

    Then, for sufficiently large ρρ0, there is

    ρψk(t)+x(t)ω, tA+,xK, (3.2)
    ρψk(t)+x(t)ω, tA,xK, (3.3)

    and for sufficiently small ρρ0, there is

    ρψk(t)+x(t)ω, tA+,xK, (3.4)
    ρψk(t)+x(t)ω, tA,xK. (3.5)

    Theorem 3.3. Suppose that (A1), (A2) and (H1)(H3) hold, then there exists a non-empty bounded set Ω¯gR, such that the problem (1.1) has a solution if and only if θΩ¯g. Furthermore, Ω¯g contains θ=0 and has a non-empty interior.

    Proof We prove only the case of (1.3) in (H2), and the case of (1.4) can be similarly proved.

    From (1.3) and (3.2)–(3.5), it is not difficult to see that

    f(t,ρψk(t)+x(t))>0,   tA+, xK,
    f(t,ρψk(t)+x(t))<0,   tA, xK,

    for sufficiently large ρρ0 and for sufficiently small ρρ0,

    f(t,ρψk(t)+x(t))<0,   tA+, xK,
    f(t,ρψk(t)+x(t))>0,   tA, xK.

    Therefore, if ρρ0 is sufficiently large,

    ψk(t)f(t,ρψk(t)+x(t))>0, tA+A, xK, (3.6)

    if ρρ0 is sufficiently small,

    ψk(t)f(t,ρψk(t)+x(t))<0, tA+A, xK. (3.7)

    Let

    C:={xIm(IP)|xρ0}.

    Define Tρ:Im(IP)Im(IP) by

    Tρ:=MHA(ρψk+x).

    Obviously, Tρ is completely continuous. By (3.1), for xC and ρ[ρ0,ρ0],

    TρxΓ(|ρ|min{|ψk(t)||tA+A})αΓ(|ρ0|min{|ψk(t)||tA+A})αρ0,

    i.e.,

    Tρ(C)C.

    According to Schauder's fixed point theorem, Tρ has a fixed point on C, such that Tρx=x. It can be seen from Lemma 2.10 that the problem (1.1) is equivalent to the following system

    Ψ(s,x)=θ,   (s,x)S¯g,

    where

    S¯g:={(ρ,x)R×Im(IP)|x=MHA(ρψk+x)},
    Ψ(ρ,x):=Ts=1ψk(s)f(s,ρψk(s)+x(s)).

    At this time, the Ω¯g in Theorem 3.3 can be given by Ω¯g=Ψ(S¯g). There exists a solution to the problem (1.1) for θΩ¯g.

    From (3.6), (3.7) and A+A, we can deduce that for any xK

    Ts=1ψk(s)f(s,ρ0ψk(s)+x(s))<0, Ts=1ψk(s)f(s,ρ0ψk(s)+x(s))>0.

    Thus,

    Ψ(ρ0,x)<0<Ψ(ρ0,x), xK. (3.8)

    According to Lemma 2.2, S¯gRׯBρ0 contains a connected branch ξρ0,ρ0 connecting {ρ0}×C and {ρ0}×C. Combined with (3.8), Ω¯g contains θ=0 and has a non-empty interior.

    Theorem 3.4. Suppose that (A1), (A2), (H2)(H4) hold. Ω¯g as shown in Theorem 3.3, then there exists a nonempty set Ω¯gΩ¯g{0}, such that problem (1.1) has at least two solutions for θΩ¯g.

    Proof We prove only the case of (1.3), and the case of (1.4) can be similarly proved. Since the condition (H4) implies that (H1), using Theorem 3.3, we know that there exists ρ0>0, such that

    Ψ(ρ0,x)>0, xK.

    Let

    δ:=min{Ψ(ρ0,x)|xK},

    then δ>0.

    Next, we prove that problem (1.1) has at least two solutions for any θ(0,δ).

    Let

    S¯g:={(ρ,x)R×Im(IP)|x=MHA(ρψk+x)},
    ¯K:={xIm(IP)|(ρ,x)S¯g}.

    By (H4), there exists a constant A0 such that

    xA0, xK.

    Similar to the derivation of Theorem 3.3, there exists ρ>ρ0 such that the following results hold:

    (ⅰ) For ρρ, there is

    ψk(t)f(t,ρψk(t)+x(t))>0, tA+A, x¯K, (3.9)

    (ⅱ) For ρρ, there is

    ψk(t)f(t,ρψk(t)+x(t))<0, tA+A, x¯K. (3.10)

    Let

    C:={xIm(IP)|xA0}.

    According to (H4), (3.9) and (3.10), we have

    lim|ρ|Ts=1ψk(s)f(s,ρψk(s)+x(s))=0

    uniformly for x¯K, i.e.

    lim|ρ|Ψ(ρ,x)=0,  x¯K.

    Therefore, there exists a constant l:l>ρ>ρ0>0 such that S¯g contains a connected branch between {l}×C and {l}×C, and

    max{|Ψ(ρ,x)||ρ=±l, (ρ,x)ξl,l}max{|Ψ(ρ,x)||(ρ,x){l,l}ׯK}θ3.

    It can be seen from the connectivity of ξl,l that there exist (ρ1,x1) and (ρ2,x2) in ξl,l(S¯g), such that

    Ψ(ρ1,x1)=θ,    Ψ(ρ2,x2)=θ,

    where ρ1(l,ρ0),ρ2(ρ0,l). It can be proved that ρ1ψk+x1 and ρ2ψk+x2 are two different solutions of problem (1.1).

    In this section, we give a concrete example of the application of our major results of Theorems 3.3 and 3.4. We choose T=3,a0,d0,b1,c1=0 and a1,d1,b0,c0=1, which implies that the interval becomes [1,3]Z and the conditions (A1),(A2) hold.

    First, we consider the eigenpairs of the corresponding linear problem

    {Δ2y(t1)=λy(t),   t[1,3]Z,y(0)=λΔy(0),   λy(4)=y(4). (4.1)

    Define the equivalent matrix of (4.1) as follows,

    Aλ=(λ2+λ1+λ101λ2101λ2+11λ)

    Consequently, Aλy=0 is equivalent to (4.1). Let |Aλ|=0, we have

    λ1=1.4657,λ2=0.1149,λ3=0.8274,λ4=2.0911,λ5=3.4324,

    which are the eigenvalues of (4.1). Next, we choose λ=λ1=1.4657, then we obtain the corresponding eigenfunction

    ψ1(t)={1,t=1,3.4657,t=2,3.465721,t=3.

    Example 4.1. Consider the following problem

    {Δ2y(t1)=1.4657y(t)+f(t,y(t))+ψ1(t)+¯g(t),   t[1,3]Z,y(0)=1.4657Δy(0),   1.4657y(4)=y(4), (4.2)

    where

    f(t,s)={ts3,s[1,1],t5s,s(,1)(1,+),

    and

    ¯g(t)={0,t=1,3.465721,t=2,3.4657,t=3.

    Then, for f(t,y(t)), we have |f(t,y(t))|3|y(t)|13. If we choose ω=1, yf(t,y)>0 for |y(t)|>1. For ¯g(t), we have 3s=1¯g(s)ψ1(s)=0.

    Therefore, the problem (4.2) satisfies the conditions (A1),(A2), (H1)(H3), which implies that the problem (4.2) has at least one solution by Theorem 3.3.

    Example 4.2. Consider the following problem

    {Δ2y(t1)=1.4657y(t)+f(t,y(t))+ψ1(t)+¯g(t),   t[1,3]Z,y(0)=1.4657Δy(0),   1.4657y(4)=y(4), (4.3)

    where

    f(t,s)=tse|s|,   t[1,3]Z

    and

    ¯g(t)={0,t=1,13.46572,t=2,3.4657,t=3.

    Then, for f(t,y(t)), we always have yf(t,y)>0 for all y(t)>0 or y(t)<0, f is continuous and satisfies

    lim|y|f(t,y)=0.

    For ¯g(t), we have 3s=1¯g(s)ψ1(s)=0.

    Therefore, the problem (4.3) satisfies the conditions (A1),(A2), (H2)(H4), which implies that the problem (4.3) has at least two solutions by Theorem 3.4.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Supported by National Natural Science Foundation of China [Grant No. 11961060] and Natural Science Foundation of Qinghai Province(No.2024-ZJ-931).

    The authors declare that there are no conflicts of interest.



    [1] Samson F, Knopf K (1994) Prairie conservation in North America. Bioscience 44: 418–421. doi: 10.2307/1312365
    [2] National Park Service (NPS) (2017) Tallgrass Prairie Conservation. National Preserve Kansas. Available from: http://www.nps.gov/tapr/index.htm.
    [3] Brye KR, Riley TL (2009) Soil and plant property differences across a chronosequence of humid-temperate tallgrass prairie restorations. Soil Sci 174: 346–357. doi: 10.1097/SS.0b013e3181a93daa
    [4] Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123: 1–22. doi: 10.1016/j.geoderma.2004.01.032
    [5] Brye KR, West CP (2005) Grassland management effects on soil surface properties in the Ozark Highlands. Soil Sci 170: 63–73. doi: 10.1097/00010694-200501000-00008
    [6] United States Department of Agriculture, Soil Conservation Service (USDA-SCS) (1981) Land resource regions and major land resource areas of the United States. Agriculture Handbook 296. Washington, D.C.
    [7] Missouri Department of Conservation (MDC) (2017) Osage Prairie Conservation Area. Available from: https://nature.mdc.mo.gov/discover-nature/places/osage-prairie.
    [8] Brady NC, Weil RR (2008) The Nature and Properties of Soils. 14th ed. Pearson Education Inc., Upper Saddle River, NJ.
    [9] Kucharik CJ, Roth JA, Nabielski RT (2003) Statistical assessment of a paired site approach for verification of C and N sequestration on Wisconsin Conservation Reserve Program (CRP) land. J Soil Water Conserv 58: 58–67.
    [10] Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P, and S in grassland soils: a model. Biogeochem 5: 109–131. doi: 10.1007/BF02180320
    [11] Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans Royal Soc Lond 329: 361–368. doi: 10.1098/rstb.1990.0177
    [12] Brye KR, Kucharik CJ (2003) Carbon and nitrogen sequestration in two prairies topochronosequences on contrasting soils in southern Wisconsin. Am Midl Nat 149: 90–103. doi: 10.1674/0003-0031(2003)149[0090:CANSIT]2.0.CO;2
    [13] Kucharik CJ (2007) Impact of prairie age and soil order on carbon and nitrogen sequestration. Soil Sci Soc Am J 71: 430–441. doi: 10.2136/sssaj2006.0074
    [14] Brye KR, Gbur EE (2011) Near-surface soil property changes over time as affected by grassland management in the Ozark Highlands. Soil Sci 176: 129–135. doi: 10.1097/SS.0b013e31820ca9a8
    [15] Brye KR, Riley TL, Gbur EE (2008) Prairie restoration effects on soil properties in the Ozark Highlands. J Integ Biosci 4: 87–104.
    [16] Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: process and potential. Global Change Biol 6: 317–327. doi: 10.1046/j.1365-2486.2000.00308.x
    [17] Burke IC, Laurenroth WK, Coffin DP (1995) Soil organic matter recovery in semiarid grasslands: Implications for the Conservation Reserve Program. Ecol Monogr 5: 793–801.
    [18] Follet RF, Samson-Liebig SE, Kimble JM, et al. (2001) Carbon sequestration under the CRP in the historic grassland soils of the United States. In: R. Lal (ed.). Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57. SSSA, Madison, WI, 27–49.
    [19] United States Department of Agriculture, Natural Resources Conservation Service (USDA-NRCS) (2010) Keys to soil taxonomy. 11th ed. Washington, D.C.
    [20] Dale E (1983) Plant Communities and Rare or Endangered Plant Species of Pea Ridge National Military Park, Benton County, Arkansas. Final Report Submitted Under Purchase Order No. 26397. United States Department of Interior, Washington, DC.
    [21] Arkansas Natural Heritage Commission (ANHC) (2009) System of Natural Areas. Natural Areas. Available from: http://www.naturalheritage.com/NaturalAreas/natural-areas-1.
    [22] National Centers for Environmental Information (NCEI) (2010) Data Tools: 1981–2010 Normals. 1981–2010 Normals | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals.
    [23] Brye KR (2006) Soil physiochemical changes following 12 years of annual burning in a humid-subtropical tallgrass prairie: A hypothesis. Acta Oecol 30: 407–413. doi: 10.1016/j.actao.2006.06.001
    [24] Brye KR, Gbur EE (2010) Regional differences in soil carbon and nitrogen storage as affected by land use and soil moisture regime. Soil Sci 175: 339–348. doi: 10.1097/SS.0b013e3181e83db2
    [25] Brye KR, Moreno L (2006) Vegetation removal effects on soil quality in a native tallgrass prairie fragment in east-central Arkansas. Nat Areas J 26: 94–100. doi: 10.3375/0885-8608(2006)26[94:VREOSQ]2.0.CO;2
    [26] National Resource Conservation Service (NRCS) (2017) Web Soil Survey. Available from: http://websoilsurvey.nrcs.usda.gov/.
    [27] Brye KR, Gower ST, Norman JM, et al. (2002) Carbon budgets for a prairie and agroecosystems: effects of land use and interannual variability. Ecol Appl 12: 962–979. doi: 10.1890/1051-0761(2002)012[0962:CBFAPA]2.0.CO;2
    [28] Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439. doi: 10.1111/j.1469-8137.2004.01201.x
    [29] Kucharik CJ, Brye KR, Norman JM, et al. (2001) Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: potential for SOC sequestration during the next 50 years. Ecosystems 4: 237–139. doi: 10.1007/s10021-001-0007-2
    [30] Christiansen PA, Thompson ML (2000) Changes in soil organic matter following establishment of prairie species. In: Conference poster abstracts, Carbon: exploring the benefits to farmers and society. Des Moines, IA, 29–31.
    [31] Kucharik CJ, Fayram NJ, Cahill KN (2006) A paired study of prairie carbon stocks, fluxes, and phenology: Comparing the world's oldest prairie restoration with an adjacent remnant. Global Change Biol 12: 122–139. doi: 10.1111/j.1365-2486.2005.01053.x
    [32] Potter KN, Torbert HA, Johnson HB, et al. (1999) Carbon storage after long term grass establishment on degraded soils. Soil Sci 164: 718–725. doi: 10.1097/00010694-199910000-00002
    [33] Sherman LA, Brye KR (2009) Sequential burning effects on the soil chemistry of a grassland restoration in the Mid-Atlantic coastal plain of the United States. Ecol Restor 27: 428–438. doi: 10.3368/er.27.4.428
    [34] Derner JD, Shuman GE (2007) Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. J Soil Water Conserv 62: 77–65.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4367) PDF downloads(767) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog