Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Landfill Leachate Treatment Using Coupled, Sequential Coagulation-flocculation and Advanced Oxidation Processes

  • This study evaluated the efficiency of Fenton (Fe/H2O2) and photo-assisted Fenton (Fe2+/H2O2/UV) reactions combined with coagulation-flocculation (C-F) processes to remove the chemical oxygen demand (COD) in a landfill leachate from Mexico at a laboratory scale. The C-F experiments were carried out in jar test equipment using different FeSO4 concentrations (0.0, 0.6, 1.0, 3, and 6 mM) at pH = 3.0. The effluent from the C-F processes were then treated using the Fenton reaction. The experiments were carried out in a 500 mL glass reactor fillet with 250 mL of landfill leachate. Different molar ratio concentrations (Fe/H2O2) were tested (e.g., 1.6, 3.3, 30, 40 and 75), and the reaction was followed until COD analysis showed no significant further variation in concentration or until 90 min of reaction time were completed. The photo-assisted Fenton reaction was carried out using a UV lamp (365 nm, 5 mW) with the same Fe/H2O2 molar ratio values described above. The results suggested that the photo-assisted Fenton process is the most efficient oxidation method for removing organic matter and color in the leachate. The photo-assisted Fenton process removed 68% of the COD and 90% of the color at pH = 3 over 30 minutes of reaction time using a H2O2/Fe molar ratio equal to 75 only using a third of the reaction time of the previous process.

    Citation: José L. Álvarez Cruz, Karla E. Campos Díaz, Erick R. Bandala, Felipe López Sánchez. Landfill Leachate Treatment Using Coupled, Sequential Coagulation-flocculation and Advanced Oxidation Processes[J]. AIMS Geosciences, 2017, 3(4): 526-537. doi: 10.3934/geosci.2017.4.526

    Related Papers:

    [1] Cunlin Li, Wenyu Zhang, Hooi Min Yee, Baojun Yang . Optimal decision of a disaster relief network equilibrium model. AIMS Mathematics, 2024, 9(2): 2657-2671. doi: 10.3934/math.2024131
    [2] Nawras H. Sabbry, Alla Levina . Nonce generation techniques in Schnorr multi-signatures: Exploring EdDSA-inspired approaches. AIMS Mathematics, 2024, 9(8): 20304-20325. doi: 10.3934/math.2024988
    [3] Justin Tzou, Brian Wetton . Optimal covering points and curves. AIMS Mathematics, 2019, 4(6): 1796-1804. doi: 10.3934/math.2019.6.1796
    [4] Ibrahim Attiya, Mohammed A. A. Al-qaness, Mohamed Abd Elaziz, Ahmad O. Aseeri . Boosting task scheduling in IoT environments using an improved golden jackal optimization and artificial hummingbird algorithm. AIMS Mathematics, 2024, 9(1): 847-867. doi: 10.3934/math.2024043
    [5] Zhimin Liu . Data-driven two-stage sparse distributionally robust risk optimization model for location allocation problems under uncertain environment. AIMS Mathematics, 2023, 8(2): 2910-2939. doi: 10.3934/math.2023152
    [6] Kai Wang, Xiheng Wang, Xiaoping Wang . Curvature estimation for point cloud 2-manifolds based on the heat kernel. AIMS Mathematics, 2024, 9(11): 32491-32513. doi: 10.3934/math.20241557
    [7] Kobkoon Janngam, Suthep Suantai, Rattanakorn Wattanataweekul . A novel fixed-point based two-step inertial algorithm for convex minimization in deep learning data classification. AIMS Mathematics, 2025, 10(3): 6209-6232. doi: 10.3934/math.2025283
    [8] Li Shen, Jian Liu, Guo-Wei Wei . Evolutionary Khovanov homology. AIMS Mathematics, 2024, 9(9): 26139-26165. doi: 10.3934/math.20241277
    [9] Yunjae Nam, Dongsun Lee . Efficient one asset replacement scheme for an optimized portfolio. AIMS Mathematics, 2022, 7(9): 15881-15903. doi: 10.3934/math.2022869
    [10] Seonghyun Choi, Woojoo Lee . Developing a Grover's quantum algorithm emulator on standalone FPGAs: optimization and implementation. AIMS Mathematics, 2024, 9(11): 30939-30971. doi: 10.3934/math.20241493
  • This study evaluated the efficiency of Fenton (Fe/H2O2) and photo-assisted Fenton (Fe2+/H2O2/UV) reactions combined with coagulation-flocculation (C-F) processes to remove the chemical oxygen demand (COD) in a landfill leachate from Mexico at a laboratory scale. The C-F experiments were carried out in jar test equipment using different FeSO4 concentrations (0.0, 0.6, 1.0, 3, and 6 mM) at pH = 3.0. The effluent from the C-F processes were then treated using the Fenton reaction. The experiments were carried out in a 500 mL glass reactor fillet with 250 mL of landfill leachate. Different molar ratio concentrations (Fe/H2O2) were tested (e.g., 1.6, 3.3, 30, 40 and 75), and the reaction was followed until COD analysis showed no significant further variation in concentration or until 90 min of reaction time were completed. The photo-assisted Fenton reaction was carried out using a UV lamp (365 nm, 5 mW) with the same Fe/H2O2 molar ratio values described above. The results suggested that the photo-assisted Fenton process is the most efficient oxidation method for removing organic matter and color in the leachate. The photo-assisted Fenton process removed 68% of the COD and 90% of the color at pH = 3 over 30 minutes of reaction time using a H2O2/Fe molar ratio equal to 75 only using a third of the reaction time of the previous process.


    Fluid-structure interactions are interactions of some movable or deformable structure with an internal or surrounding fluid flow. The variety of fluid-structure occurrences are abundant and ranges from tent-roofs to micropumps, from parachutes via airbags to blood flow in arteries. It is the most important on both modelling, computational issues and applications, the most challenging multi-physics problems for engineers, mathematicians and physicists. The topic of fluid-structure has recently attracted more and more attention in the scientific community. Different methods have been developed and analyzed such as mathematical model [11,26], mathematical theory [4,13], the weak solution [20,26], spectrum asymptotics [25], Lagrange multiplier method [3] and other method [27]. The literature regarding finite element methods can be found in [8,9,15,23].

    In this paper we describe a semi-discrete finite element scheme for the nonlinear fluid-structure interaction problem, which interact between the Navier-Stokes fluids and linear elastic solids. There are lots of literatures on fluid-structure interactions for which the fluid is modeled by viscous fluid models [2,10,19,21]. However, the majority of them applies solid models of lower spatial dimensions or linear interaction problem. Especially, in this paper, we consider the interaction of a nonlinear viscous fluid with elastic body motion in bounder domain. We retain the condition: the interface Γ0 between the fluid structure with continuous velocities and stresses. To some extend, numerical analysis of the fluid-structure interaction problem is more difficult than that of the fluid-fluid interaction problem. Here, we assume that the solid displacements of the linear elastic problem are infinitesimal size is of practical interest. Therefore, the approach provided in fluid-fluid interaction problem can be adapted to the fluid-structure case.

    In the past several decades, their motivation, development and theoretical foundations have been presented in lots of literatures [3,5,15,27]. This method can be considered of the extend of the reference [8,9], in the sense that it intends to use the same Galerkin finite element method to analyze the nonlinear fluid-structure interaction problem. Here, we discuss the analysis of finite element method for fluid-structure interaction problem, which couples with the Navier-Stokes equations and linear elastic equations. The analysis of this model is not straightforward even if the data is sufficiently smooth. We must take special care of the nonlinear discrete terms arising from the finite element discretization for the fluid-structure interaction problem; these nonlinear trilinear terms no longer satisfy the anti-symmetry properties. Therefore, compared to the finite element analysis of the linear interaction problem, the most challenging aspect rests in the treatment of the nonlinear convection terms [12,14,16,17,18,22,24,28], which has a significant impact on the analysis. In this paper, we analyze the discrete methods in time of a solution for suitably small data, and uniqueness of a suitably small solution, without smooth solutions. Therefore, the approach presented here is fairly robust and adapts to the important case of interface with fractures or cracks. On the other hand, numerical experiments are also provided for the model presented to confirm the theoretical results.

    The rest of paper is organized as follows. In section 2, we introduce the fluid-structure model using the Navier-Stokes equation with the linear elastic equation. In section 3, the finite element method of the fluid-structure model is defined and its existence and uniqueness are provided. The convergence and estimate of the presented method are obtained in sections 4 and 5. Finally, we present several numerical examples to illustrate the features of the proposed methods in section 6.

    Let the Lipschitz bounded domain Ω=Ω1Ω2 consist of two subdomains Ω1 and Ω2 of Rd, d=2,3, coupled across an interface I0=Ω1Ω2. Γ1=Ω1I0, Γ2=Ω2I0. Moreover, n1 and n2 denote the outward unit normal vectors for Ω1 and Ω2, respectively. The coupled fluid-structure problem is stated as follows: In the fluid region, the governer problem is

    ρ1vt+pμ1(v+vT)+(v)v=ρ1f1,inΩ1,divv=0,inΩ1,v=0,onΓ1,v(0,x)=v0,inΩ1, (2.1)

    where the viscosity μ1>0, the density ρ1>0, the body force f1:[0,T]H1(Ω1), v0 is the initial value on t=0. v:Ω1×[0,T]Rd and p:Ω1×[0,T]R denote the velocity and pressure, respectively.

    In the solid region, the solid is assumed to be governed by the following linear elasticity

    ρ2uttμ2(u+uT)λ2(u)=ρ2f2,inΩ2,u=0,onΓ2,u(0,x)=u0,ut(0,x)=u1,inΩ2, (2.2)

    where μ2 and λ2 denote the Lame constants, ρ2 the constant solid density, u:Ω2×[0,T]Rd the displacement of the solid, f2:[0,T]H1(Ω2) the given loading force per unit mass, and u0 and u1 the given initial data.

    Here, we begin as in the case with a fixed interface: the motion of the solid is wholly due to infinitesimal displacements. Again, we assume that the fluid-solid interface is stationary. Although the displacement u is small, the velocity ut is not. Thus, we cannot impose the no-slip condition on the fluid velocity and must retain the interface condition v=ut, along a fixed boundary. Then, across the fixed interface I0 between the fluid and solid, the velocity and stress vector are continuous:

    ut=vonI0,μ2(u+uT)n2+λ2(u)n2=pn1μ1(v+vT)n1onI0. (2.3)

    For the mathematical setting of problem (2.1)-(2.2), the following Hilbert spaces are introduced [1]:

    Xi=[H10(Ωi)]d={v[H1(Ωi)]d:v|Γi=0},i=1,2,
    Q=L2(Ω1),
    Ψ={w[H10(Ω)]d:divw=0inΩ1}.

    The fluid-structure interaction problem can be rewritten in variational form as follows: Given

    fiC([0,T];L2(Ωi)),
    v0X1,divv0=0inΩ1,
    u0X2,u1X2,v0|Γ0=u1|Γ0,

    such that (v,p,u)L2([0,T];X1)×L2([0,T];Q)×L2([0,T];X2)

    ρ1[vt,w]Ω1+a1[v,w]+b[w,p]+ρ2[utt,w]Ω2+a2[u,w]+c[v,v,w]=ρ1[f1,w]Ω1+ρ2[f2,w]Ω2,wX[H10(Ω)]d, (2.4)
    b[v,q]=0,qQ, (2.5)
    v(0,x)=v0,u(0,x)=u0,ut(0,x)=u1, (2.6)
    t0v(s)|Γ0ds=u(t)|Γ0u0|Γ0a.e.t. (2.7)

    Next, the divergence-free weak formulation for (2.4)-(2.7) is defined as follows: Given

    fiC([0,T];L2(Ωi)),v0X1,divv0=0inΩ1,u0X2,u1X2,v0|Γ0=u1|Γ0, (2.8)

    seek a pair (v,u)L2([0,T];X1)×L2([0,T];X2),divv=0 such that

    ρ1[vt,w]Ω1+ρ2[utt,w]Ω2+a1[v,w]+a2[u,w]+c[v,v,w]=ρ1[f1,w]Ω1+ρ2[f2,w]Ω2,wΨ, (2.9)
    v(0,x)=v0,u(0,x)=u0,ut(0,x)=u1, (2.10)
    t0v(s)|Γ0ds=u(t)|Γ0u0|Γ0a.e.t, (2.11)

    where the continuous bilinear forms [,]Ωi, ai[,] and b[,] are defined on Xi×Xi and X1×Q, respectively, by

    [w1,w]Ωi=Ωiw1wdΩi,w1,wXi,
    a1[v,w]=μ12Ω1(v+vT):(w+wT)dΩ,v,wX1,
    a2[u,w]=μ22Ω2((u+uT):(w+wT)+λ2(divu)(divw))dΩ,u,wX2,
    b[v,q]=Ω1divvqdΩ,vX1,qQ.

    Then, the following inequalities hold

    a1[v,v]μ1v20,Ω1,vX1,a2[u,u]12||u||20,Ω2,uX2, (2.12)

    where

    ||v||0,Ω2(μv20,Ω2+divv0,Ω2)1/2

    is equivalent to the classical H1-norm. Moreover, the bilinear term b[,] satisfy the inf-sup condition for the whole system (2.4)-(2.7) and the Navier-Stokes equations:

    infqQsupwX1b[w,q]w0,Ωq0,Ω1β, (2.13)

    where the positive constant β is dependent of Ω1. Similarly, the trilinear term c[,,] is defined as follows [28]:

    c[v1,v2,w]=(v1v2,w),v1,v2,wX1.

    Also, the following inequality is valid:

    |c[u,v,w]|C0u0,Ω1v0,Ω1w0,Ω1,u1,v2,wX1. (2.14)

    Using the auxiliary problem and the results in [8,28], we yield the following existence and uniqueness of the divergence-free weak formulation for (2.9)-(2.11). For convenience, we set fi,ttfi,i=1,2 in the following.

    In order to deal with the nonlinear terms, we have the following lemma.

    Lemma 2.1. Assume that both v satisfy the following smallness condition

    v0,Ω1μ14C0, (2.15)

    for all t[0,T]. Then, we have the estimate

    |((v)v1,w)|μ14v10w0v1,wX1. (2.16)

    Lemma 2.2. Under the hypothesis of (2.8) and (2.15) below, the solution (v,u)L2([0,T];X1)×L2([0,T];X2) for (2.9)-(2.11) has the following error estimates:

    vL([0,T],L2(Ω1))<μ14C0,v2L([0,T],L2(Ω1))+ut2L([0,T],L2(Ω2))+v2L2([0,T];X1)κ0,vt2L([0,T],L2(Ω1))+utt2L([0,T],L2(Ω2))κ1, (2.17)

    where κi,i=0,1 are defined in (2.21) and (2.27), respectively.

    Proof. Let the positive constant γ>0 only depend on the Ω. Then, the following inequalities hold true

    v0,Ω1γv0,Ω1,v0,Ω1γv1,Ω1,γ>0. (2.18)

    Choosing w in (2.9) with

    w|Ωi={vif i=1,ut if i=2,

    and using the Young inequality, get

    ρ12ddtv20,Ω1+ρ22ddtut20,Ω2+12ddt||u||20,Ω2+μ1v20,Ω1C0v30,Ω1+ρ1f10,Ω1v0,Ω1+ρ2f20,Ω2ut0,Ω2C0×μ14C0v20,Ω1+μ14v20,Ω1+ρ22ut20,Ω1+ρ21γ2μ1f120,Ω1+ρ22f220,Ω2=μ12v20,Ω1+ρ22ut20,Ω2+ρ21γ2μ1f120,Ω1+ρ22f220,Ω2. (2.19)

    Noting that μ12v20,Ω1 can be obsorbed by the left hand of the above inequality and integrating the above inequality with respect to the time from 0 to s(0,T], we have

    ρ12v20,Ω1+ρ22ut20,Ω2+12||u||20,Ω2+μ12s0v20,Ω1dtρ12v020,Ω1+ρ22u120,Ω2+12||u0||20,Ω2+ρ22s0ut20,Ω2dt+T0(ρ21γ2μ1f120,Ω1+ρ22f220,Ω2)dt=κ0, (2.20)

    where

    κ0=ρ12v020,Ω1+ρ22u120,Ω2+12||u0||20,Ω2+ρ21γ2Tμ1f12L([0,T],L2(Ω1))+ρ2T2f22L([0,T],L2(Ω2)). (2.21)

    Using the Gronwall inequality, yields that

    v20,Ω1+ut20,Ω2+||u||20,Ω2+v2L2([0,T],X1)CeCTκ0Cκ0,s(0,T]. (2.22)

    Using (2.15), the Young inequality, and choosing appropriate parameter, yields

    a1[v,v]+a2[u,u]=ρ1[vt,v]ρ2[utt,u]c[v,v,v]+ρ1[f1,v]+ρ2(f2,u)ρ1vt0,Ω1v0,Ω1+ρ2utt0,Ω2u0,Ω2+C0v30,Ω1+ρ1f0,Ω1v0,Ω1+ρ2f20,Ω2u0,Ω22ρ21γ2μ1vt20,Ω1+μ18v20,Ω1+ρ22γ2utt20,Ω2+14u20,Ω2+μ14v20,Ω1+2ρ21γ2μ1f120,Ω1+μ18v20,Ω1+ρ22γ2f220,Ω2+14u20,Ω2

    which implies

    μ12v20,Ω1+12||u||20,Ω22ρ21γ2μ1vt20,Ω1+ρ22γ2utt20,Ω2+2ρ21γ2μ1f120,Ω1+ρ22γ2f220,Ω2. (2.23)

    In order to estimate the above inequality, we bound the two terms vt0 and utt0. First, we differentiate the first equations of (2.1) and (2.2) with respect to the time, multiplying (2.1) and (2.2) by the respective test functions vt and utt, respectively, and integrating them on the respective domains Ω1 and Ω2 to obtain the following:

    ddt(ρ12vt20,Ω1+ρ22utt20,Ω2)+12ddt||ut||20,Ω2+μ1vt20,Ω12C0v0,Ω1vt20,Ω1+ρ1ft10,Ω1vt0,Ω1+ρ2ft20,Ω2utt0,Ω2μ12vt20,Ω1+2ρ21γ2μ1ft120,Ω1+μ18vt20,Ω1+ρ22γ22ft220,Ω2+12||utt||20,Ω2. (2.24)

    Using (2.15), and integrating the above inequality from 0 to s(0,T], we can get

    ρ1vt20,Ω1+ρ2utt20,Ω2+||ut||20,Ω2+μ1s0vt20,Ω1dtC(ρ1vt(0)20,Ω1+ρ2utt(0)20,Ω2+||u1||20,Ω2)+Cs0(ft120,Ω1+ft220,Ω2)dt+s0||ut||20,Ω2dt. (2.25)

    Here, vt(0) and utt(0) can be bounded by the following procedure. Taking t=0 and setting

    w|Ωi={vt(0)if i=1,utt(0) if i=2,

    we have

    ρ1vt(0)20,Ω1+ρ2utt(0)20,Ω2+a1[v0,vt(0)]+b[vt(0),p0]+a2(u0,utt(0))+c[v0,v0,vt(0)]=ρ1[f1(0),vt(0)]+ρ2[f2(0),utt(0)],

    which together with (2.3) implies

    ρ1vt(0)20+ρ2utt(0)20+(μ2div(u0+uT0)λ2(divu0),utt(0))+(μ1div(u0+uT0)+p0+v0v0,vt(0))=ρ1[f1(0),vt(0)]+ρ2[f2(0),utt(0)].

    That is

    ρ1vt(0)20,Ω1+ρ2utt(0)20,Ω2C(ρ1f1(0)20,Ω1+ρ2f2(0)20,Ω2). (2.26)

    Then, setting

    κ1=C2i=1(ρifi(0)20,Ω1+fti2L2([0,T],L2(Ωi))). (2.27)

    combining (2.25) with (2.26), and applying the Gronwall inequality, we obtain

    vt20,Ω1+utt20,Ω2C(ρ1f1(0)20,Ω1+ρ2f2(0)20,Ω2)+s0(ft120,Ω1+ft220,Ω2)dt)<κ1, (2.28)

    Using the same approach as above for the solution of (2.9)-(2.11), we can obtain the following stability of the solution to (2.4)-(2.7).

    Lemma 2.3. Under the hypothesis of Lemma 2.1 and

    fi,tL2([0,T];L2(Ωi)),i=1,2,v0[H2(Ω1)]d,u1[H1(Ω2)]d,u0[H2(Ω2)]d, (2.29)

    the solution (v,p,u) to (2.4)-(2.7) satisfies

    vL([0,T];L2(Ω1))L2([0,T];X1),vtL([0,T];L2(Ω1))L2([0,T];X1),uL([0,T];X2),utL([0,T];X2),uttL([0,T];L2(Ω2)), (2.30)

    and

    vt2L([0,T];L2(Ω1))+utt2L([0,T];L2(Ω2)+vt2L2([0,T];X1)+ut2L([0,T];X2)+pL2([0,T];L2(Ω1))CeCT(f2H1([0,T];L2(Ω))+u022,Ω2+v022,Ω1+p01,Ω2+u121,Ω2). (2.31)

    Proof. Using the same approach as for the linear fluid-structure interaction problem [8,9] and Lemma 2.1, we can obtain (2.31).

    Given two shape-regular, quasi-uniform triangulationThi of Ωi,i=1,2, the finite element method is to solve (2.4)-(2.7) in a pair of finite dimensional spaces (Xh1,Qh,Xh2)(X1,Q,X2): The triangulations Thi do not cross the interface Γ0 and consist of triangular elements in two dimensions or tetrahedral elements in three dimensions [6,7].

    Moreover, we assume that the finite element spaces (Xh1,Qh,Xh2)(X1,Q,X2) satisfies the following approximation properties: For each w[H2(Ωi)]d and qH1(Ω)Q, there exist approximations whXhi and qhQh such that [28]

    wwh0,Ωi+h(wwh)0,ΩiChr+1wr+1,Ωi,qqh0,Ω1Chrqr,Ω1, (3.1)

    Here, r is the degree of piecewise polynomial of the finite elements. For each whXhi, we have the inverse inequality

    wh0,ΩiCh1wh0,Ωi,whXhi. (3.2)

    Moreover, the so-called inf-sup condition is valid: for each qhQh, there exists whXh,vh0, such that [9]

    infqhQhsupwhXhd(wh,qh)wh0,Ωqh0,Ω1β, (3.3)

    where β is a positive constant depending on Ω. In the special case, (3.3) is valid for a general choice Xh1 and Qh.

    The corresponding semi-discrete fluid-structure interaction problem can be rewritten in variational form as follows: seek (vh,ph,uh)C1([0,T];Xh1)×C([0,T];Qh)×C1([0,T];Xh2) such that [12,28]

    ρ1[vht,wh]Ω1+a1[vh,wh]+b[wh,ph]+ρ2[uhtt,wh]Ω2+a2[uh,wh]+c[uh,uh,wh]=ρ1[f1,wh]Ω1+ρ2[f2,wh]Ω2,whXh, (3.4)
    b[vh,qh]=0,qhQh, (3.5)
    vh(0,x)=v0h,uh(0,x)=u0h,uht(0,x)=u1h, (3.6)
    vh|Γ0=uht|Γ0,a.e.t. (3.7)

    If we define divergence-free finite element space

    Ψh={whXh1:b[wh,qh]=0,qhQh},

    then the corresponding weak formulation of semi-discrete finite element methods for (3.4)-(3.7) is defined as follows: seek a pair (vh,uh)C1([0,T];Ψh)×C1([0,T];Xh2) such that

    ρ1[vht,wh]Ω1+ρ2[uhtt,wh]Ω2+a1[vh,wh]+a2[uh,wh]+c[uh,uh,wh]=ρ1[f1,wh]Ω1+ρ2[f2,wh]Ω2,whΨh, (3.8)
    vh(0,x)=v0h,uh(0,x)=u0h,uht(0,x)=u1h, (3.9)
    vh|Γ0=uht|Γ0,a.e.t. (3.10)

    Here, the approximation of the initial condition (v0h,p0h,u1h)(Xh1,Qh,Xh2) of (v0,p0,u1) is defined as follows: for (wh,qh)Xh×Qh

    a1[v0h,wh]+[u1h,wh]+b[wh,p0h]=a1[v0,wh]+[u1,wh]Ω2+b[wh,p0], (3.11)
    b[v0h,qh]=0, (3.12)
    v0h|Γ0=u1h|Γ0, (3.13)

    such that

    (v0v0h)0,Ω1+p0p0h0,Ω1+u1u1h0,Ω2Chr(v0r+1,Ω1+p0r,Ω1+u1r+1,Ω2), (3.14)

    with v0Hr+1(Ω1),p0Hr(Ω1) and u1Hr+1(Ω2),r[0,k]. Moreover, we assume that u0h=Phuh is defined by

    a2[u0h,wh]=a2[u0,wh],whXh2. (3.15)

    Based on the results [8,12,28], we can obtain the following existence and uniqueness of the semi-discrete finite element approximation for the fluid-structure interaction.

    Lemma 3.1 Under the hypothesis of Lemmas 2.1-2.2, there exists a unique solution to (3.4)-(3.7) such that (vh,ph,uh)C1([0,T];Xh1)×C([0,T];Qh)×C([0,T];Xh2) and furthermore has the following bound

    vh2L([0,T];L2(Ω1))+uht2L([0,T];L2(Ω2))+vh2L2([0,T];X1)+uh2L([0,T];X2)CeCT(f2L2([0,T];L2(Ω))+u021,Ω2+v021,Ω1+p00,Ω1+u120,Ω2),

    and

    vht2L([0,T];L2(Ω1))+uhtt2L([0,T];L2(Ω2))+vht2L2([0,T];X1)+uht2L([0,T];X2)+phL2([0,T];L2(Ω1))CeCT(f2H1([0,T];L2(Ω))+u022,Ω2+v022,Ω2+p021,Ω2+u122,Ω2).

    Proof. Using the same approach as for Lemmas 2.1-2.2, we can obtain the proof of Lemma 3.1.

    In this section, we mainly consider the convergence of the semi-discrete finite element method for the nonlinear fluid-structure interaction problem. Then, we will provide the stability of the limit of the finite element approximation based on the results on the previous section.

    Theorem 4.1 Assume that the finite element meshes are nested and the data (v0,u0,u1,f1,f2) satisfies (2.8) and (2.29). Let (vh,ph,uh)Xh1×Qh×Xh2 be the solution to (3.4)-(3.7), then there exists a unique solution (v,p,u)X1×Q×X2 satisfying

    vL([0,T];L2(Ω1))L2([0,T];X1),vtL([0,T];L2(Ω1))L2([0,T];X1),pL2([0,T];L2(Ω1)),uL([0,T];X2),utL([0,T];X2),uttL([0,T];L2(Ω2)), (4.1)
    vhvinL([0,T];L2(Ω1)),vhv,inL2([0,T];X1),vhtvtinL([0,T];L2(Ω1)),vhtvtinL2([0,T];X1),uhuinL([0,T];X2),uhttuttinL([0,T];L2(Ω2)),uhtutinL([0,T];L2(Ω2)),uhtutinL([0,T];X2),phpweaklyinL2([0,T];L2(Ω1)). (4.2)

    Furthermore, (v,p,u) satisfies (2.4)-(2.7).

    Proof. Using the boundness of the finite element solution (vh,ph,uh), we may extract a subsequence (vhμ,phμ,uhμ) from it with the mesh scale decreasing to zero as μ, and satisfy (4.1)-(4.2). A proof of the error estimate can be found in [8,9]. For completeness and to show the results of the nonlinear fluid-structure interaction, we will sketch the proof here.

    As for the trilinear term, we have for vL([0,T];L2(Ω1))L2([0,T];X1) and wC1([0,T];Xhμ1)

    T0c[vhμ,vhμ,w]dt=T0dtΩ1i,jvihμvjhμxiwjdΩ. (4.3)

    For all μ>N, passing to the limit as μ, yields that

    T0dtΩ1i,jvihμvjhμxiwjdΩT0dtΩ1i,jvivjxiwjdΩ

    since

    |T0dtΩ1i,jvivjxiwjdΩT0dtΩ1i,jvihμvjhμxiwjdΩ||T0dtΩ1i,j(vivihμ)vjxiwjdΩ+T0dtΩ1i,jvihμ(vjhμxivjxi)wjdΩ|(vivihμ)L([0,T];L2(Ω1))vjL2([0,T];X1)wjL2([0,T];L2(Ω1))+vihμL([0,T];L2(Ω1))vjvjhμL2([0,T];X1)wjL2([0,T];L2(Ω1)).

    Recalling [8,9], we can obtain the following results. Since uhtut weak start convergence in L([0,T];L2(Ω2)) and L([0,T];L2(Ω2)) is dense in L2([0,T];L2(Ω2)), we can obtain the strong convergence for uhtut in L2([0,T];L2(Ω2)) with its norm. Similarly, we can also have the same result on the strong convergence for vhv in L2([0,T];L2(Ω1)) with its norm. Thus, all these implies v|Γ0=ut|Γ0. Applying the same approach as above, we can obtain (2.5) since μ=NL2([0,T];Qhμ) is dense in L2([0,T];L2(Ω1)).

    Using the estimates of semi-discrete finite element approximation in Lemma 3.1 and analysis above, we have for each fixed N with μ>N

    T0(ρ1[vhμt,w]Ω1+a1[vhμ,w]+b[w,phμ]+c[vhμ,vhμ,w]+ρ2[utthμ,w]Ω2+a2[uhμ,w])dt=T0(ρ1[f1,w]Ω1+ρ2[f2,w]Ω2)dt,wC1([0,T];Xhμ). (4.4)

    Thus, passing to the limit as μ, we conclude that

    T0(ρ1[vt,w]Ω1+a1[v,w]+b[w,p]+c[v,v,w]+ρ2[utt,w]Ω2+a2[u,w])dt=T0(ρ1[f1,w]Ω1+ρ2[f2,w]Ω2)dt,wC1([0,T],Xhμ) (4.5)

    and noting μ=NC1([0,T];Xhμ) is dense in L2([0,T];X), yields that

    T0(ρ1[vt,w]Ω1+a1[v,w]+b[w,p]+c[v,v,w]+ρ2[utt,w]Ω2+a2[u,w])dt=T0(ρ1[f1,w]Ω1+ρ2[f2,w]Ω2)dt,wX,a.e.t. (4.6)

    Moreover, we will consider the convergence of the finite element approximate on the initial value and interface boundary. First, setting w(T)=0 and noticing

    T0[vt,w]Ω1dt=T0ddt[v,w]Ω1dtT0[v,wt]Ω1dt=[v(T),w(T)]Ω1[v(0),w(0)]Ω1T0[v,wt]Ω1dt, (4.7)

    and

    T0[utt,w]Ω2dt=T0ddt[ut,w]Ω2dtT0[ut,wt]Ω2dt=[ut(T),w(T)]Ω2[ut(0),w(0)]Ω2T0[ut,wt]Ω2dt, (4.8)

    we obtain from (4.6) for wC1([0,T];X)

    T0(ρ1[v,wt]Ω1+a1[v,w]+b[w,p]+c[v,v,w]ρ2[ut,wt]Ω2+a2[u,w])dt=T0(ρ1[f1,w]Ω1+ρ2[f2,w]Ω2)dt+ρ1[v(0),w(0)]Ω1+ρ2[ut(0),w(0)]Ω2. (4.9)

    On the other hand, by the same reason of (4.4), and passing to the limit as μ, we infer for wC1([0,T];Xhμ)

    T0(ρ1[v,wt]Ω1+a1[v,w]+b[w,p]+c[v,v,w]ρ2[ut,wt]Ω2+a2[u,w])dt=T0(ρ1[f1,w]Ω1+ρ2[f2,w]Ω2)dt+ρ1[v0,w(0)]Ω1+ρ2[u1,w(0)]Ω2, (4.10)

    which together with (4.9) implies

    ρ1[v(0)v0,w(0)]Ω1+ρ2[ut(0)u1,w(0)]Ω2=0,w(0)Xhμ. (4.11)

    Thus, using the bedding theorem that μ=0Xhμ is dense in L2(Ω), we can infer that

    v(0)=v0inL2(Ω1),ut(0)=u1inL2(Ω2). (4.12)

    Using (4.1) and compact embedding theory, we can deduce the following strong convergence for a further subsequence hμ

    uhμ,tutinL2([0,T];L2(Ω2)),uhμuinL2([0,T];L2(Ω2)). (4.13)

    Then, noticing

    uhμ=u0hμ+t0uhμt(s)ds, (4.14)

    and u0hu00,Ω2=0 as h0, yields that

    u=u0+t0utds. (4.15)

    Therefore, we have

    u0=ut0ut(s)ds=u(0,x), (4.16)

    which is the second equation of (2.10).

    The goal of this section is to analyze the estimates of the discretization errors for the Galerkin finite element method for the nonlinear fluid-structure interaction problem. The estimates are based on the solution to (3.4)-(3.7). The approach is based on a priori estimates for the solution of Galerkin semi-discrete scheme in space [14,16,18,28], the full set of estimates is obtained by differentiateting the discrete version with the respect to time. Furthermore, the analysis in Theorem 5.1 below, which provide a good global assessment of the discretization error under reasonable assumptions.

    First, the projection operator Ph:L2(Ω)Ψh is introduced as follows:

    ρ1[Phv,w]+ρ2[Phu,w]=ρ1[v,w]+ρ2[u,w],wΨh, (5.1)

    which implies

    b[Phw,qh]=0,qhQh. (5.2)

    Under the hypotheses of angle condition on two domains Ω1 and Ω2, it holds for ϵ(0,1) and integer k>0 that [9]

    (vPhv0,Ω1+uPhu0,Ω2)+h((vPhv)0,Ω1+(vPhv)0,Ω2)Ch1+rϵ(vr+1,Ω1+ur+1,Ω2),vHr+1(Ω1),uHr+1(Ω2),i=1,2,r[0,k]. (5.3)

    Then, we have the following result of semi-discrete finite element approximations of the fluid-solid interaction problem.

    Theorem 5.1 Under the hypothesis of Theorem 4.1, let (v,p,u)X1×Q×X2 and (vh,ph,uh)Xh1×Qh×Xh2 be the solution of (2.4)-(2.7) and (3.4)-(3.7), respectively. Then, it holds

    vvh2L([0,T],L2(Ω1))+utuht2L([0,T],L2(Ω2))+(vvh)2L2([0,T],L2(Ω1))+(uuh)2L2([0,T],L2(Ω2))Ch2r(v02r+1,Ω1+p02r,Ω1+u12r+1,Ω2)+Ch2(rϵ)(v2L2([0,T],Hr+1(Ω1))+u2L2([0,T],Hr+1(Ω2))+p2L2([0,T],Hr(Ω1))+ut2L2([0,T],Hr+1(Ω2)))dt. (5.4)

    Proof. Subtracting (2.4) from (3.4), yields that

    ρ1[vtvht,wh]Ω1+a1[vvh,wh]+b[wh,pph]+c[v,v,wh]c[vh,vh,wh]ρ2[uttuhtt,wh]Ω2+a2[uuh,wh]=0,whXh,a.e.t. (5.5)

    In order to uniform the variational formulation, we define wh in two different domains. Setting wh=˜ξξh with

    \begin{eqnarray} {\bf{ \pmb{\mathsf{ ξ}}}}_h|_{{{\Omega}}_i} = \left\{ \begin{array}{ll} {\bf{v}}_h \; \quad{\rm{ if }}\;i = 1,\\[6pt] {\bf{u}}_{ht} \quad{\rm{\; if }}\;i = 2,{{\nonumber}} \end{array} \right. \end{eqnarray}

    and

    \begin{eqnarray} \tilde{\xi}|_{{{\Omega}}_i} = \left\{ \begin{array}{ll} P_h {\bf{v}} \; \; {\rm{ if }}\;i = 1,\\[6pt] P_h {\bf{u}}_{t} \; \; \; {\rm{\; if }}\;i = 2,{{\nonumber}} \end{array} \right. \end{eqnarray}

    using (5.1), then we can obtain the following result

    \begin{eqnarray} &&\rho_1[ {\bf{v}}_{t}- {\bf{v}}_{ht}, {\bf{w}}_h]_{{{\Omega}}_1}+\rho_2[ {\bf{u}}_{tt}- {\bf{u}}_{htt}, {\bf{w}}_h]_{{{\Omega}}_2}{{}}\\ & = &\rho_1[P_h {\bf{v}}_{t}- {\bf{v}}_{ht}, {\bf{w}}_h]_{{{\Omega}}_1}+\rho_2[P_h {\bf{u}}_{t}- {\bf{u}}_{ht}, {\bf{w}}_h]_{{{\Omega}}_2}{{}}\\ & = &\frac{\rho_1}2\frac{d}{dt}\|P_h {\bf{v}}- {\bf{v}}_h\|_{0,{{\Omega}}_1}^2+\frac{\rho_2}2\frac{d}{dt}\|P_h {\bf{u}}_t- {\bf{u}}_{ht}\|_{0,{{\Omega}}_2}^2. \end{eqnarray} (5.6)

    By (3.5) and (5.2),

    \begin{eqnarray} b[P_h {\bf{v}}- {\bf{v}}_h,p-p_h]& = &b[P_h {\bf{v}}- {\bf{v}}_h,p-q_h],\; \forall q_h\in Q^h. \end{eqnarray} (5.7)

    Similarly,

    \begin{eqnarray} &&a_1[P_h {\bf{v}}- {\bf{v}}_h,P_h {\bf{v}}- {\bf{v}}_h]+a_2[P_h {\bf{u}}- {\bf{u}}_h,P_h {\bf{u}}_t- {\bf{u}}_{ht}]{{}}\\ & = &\mu_1\|{\nabla}(P_h {\bf{v}}- {\bf{v}}_h)\|_{0,{{\Omega}}_1}^2+\frac12\frac{d}{dt}{\pmb{|}} P_h {\bf{u}}- {\bf{u}}_{h}{\pmb{|}}_{0,{{\Omega}}_2}^2. \end{eqnarray} (5.8)

    Using the estimates of the trilinear term c[\cdot, \cdot, \cdot] , leads to

    \begin{eqnarray} &&c[ {\bf{v}}, {\bf{v}}, {\bf{w}}_h]-c[ {\bf{v}}_h, {\bf{v}}_h, {\bf{w}}_h]{{}}\\ & = &c[ {\bf{v}}- {\bf{v}}_h, {\bf{v}}, {\bf{w}}_h]-c[ {\bf{v}}_h, {\bf{v}}- {\bf{v}}_h, {\bf{w}}_h]{{}}\\ &\leq&c[ {\bf{v}}-P_h {\bf{v}}, {\bf{v}}, {\bf{w}}_h]+c[P_h {\bf{v}}- {\bf{v}}_h, {\bf{v}}, {\bf{w}}_h]+c[ {\bf{v}}_h, {\bf{v}}-P_h {\bf{v}}, {\bf{w}}_h]{{}}\\ &&+c[ {\bf{v}}_h,P_h {\bf{v}}- {\bf{v}}_h, {\bf{w}}_h]{{}}\\ & = &I_1+I_2+I_3+I_4, \end{eqnarray} (5.9)

    Substituting {\bf{w}}_h = P_h {\bf{v}}- {\bf{v}}_h into the above inequalities and using (2.15), we have

    \begin{eqnarray} |I_1+I_3|&\leq& C_0\|{\nabla}( {\bf{v}}-P_h {\bf{v}})\|_{0,{{\Omega}}_1}(\|{\nabla} {\bf{v}}\|_{0,{{\Omega}}_1}+\|{\nabla} {\bf{v}}_h\|_{0,{{\Omega}}_1})\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}{{}}\\ &\leq&\frac{\mu_1}{2}\|{\nabla}( {\bf{v}}-P_h {\bf{v}})\|_{0,{{\Omega}}_1}\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}{{}}\\ &\leq&\frac{\mu_1}8\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2+\frac{\mu_1}{2}\|{\nabla}( {\bf{v}}-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2 \end{eqnarray} (5.10)

    and

    \begin{eqnarray} |I_2+I_4|&\leq& C_0(\|{\nabla} {\bf{v}}\|_{0,{{\Omega}}_1}+\|{\nabla} {\bf{v}}_h\|_{0,{{\Omega}}_1})\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2{{}}\\ &\leq& \frac{\mu_1}2\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2, \end{eqnarray} (5.11)

    which together with (5.9) yields that

    \begin{eqnarray} &&\left|c[ {\bf{v}}, {\bf{v}}, {\bf{w}}_h]-c[ {\bf{v}}, {\bf{v}}, {\bf{w}}_h]\right|{{}}\\ &\leq&\frac{5\mu_1}8\|{\nabla}( {\bf{v}}_h-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2+\frac{\mu_1}{2}\|{\nabla}( {\bf{v}}-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2. \end{eqnarray} (5.12)

    From the bounds of these inequality and the Young inequality, hence, after inserting (5.5) and noting that

    a_2[ {\bf{u}}-P_h {\bf{u}},P_h {\bf{u}}_t- {\bf{u}}_{ht}] = \frac{d}{dt}a_2[ {\bf{u}}-P_h {\bf{u}},P_h {\bf{u}}- {\bf{u}}_{h}]-a_2[ {\bf{u}}_t-P_h {\bf{u}}_t,P_h {\bf{u}}- {\bf{u}}_{h}]

    we have

    \begin{eqnarray} &&\frac{\rho_1}2\frac{d}{dt}\|P_h {\bf{v}}- {\bf{v}}_h\|_{0,{{\Omega}}}^2+\frac{\rho_2}2\frac{d}{dt}\|P_h {\bf{u}}_t- {\bf{u}}_{ht}\|_{0,{{\Omega}}}^2+\mu_1\|{\nabla}(P_h {\bf{v}}- {\bf{v}}_h)\|_{0,{{\Omega}}_1}^2+\frac12\frac{d}{dt}{\pmb{|}}(P_h {\bf{u}}- {\bf{u}}_{h}){\pmb{|}}_{0,{{\Omega}}_2}^2{{}}\\ & = &-a_1[ {\bf{v}}-P_h {\bf{v}},P_h {\bf{v}}- {\bf{v}}_h]-b[P_h {\bf{v}}- {\bf{v}}_h,p-q_h]-a_2[ {\bf{u}}-P_h {\bf{u}},P_h {\bf{u}}_t- {\bf{u}}_{ht}]{{}}\\ &&-c[ {\bf{v}}, {\bf{v}}, {\bf{w}}_h]+c[ {\bf{v}}_h, {\bf{v}}_h, {\bf{w}}_h]{{}}\\ & = &-a_1[ {\bf{v}}-P_h {\bf{v}},P_h {\bf{v}}- {\bf{v}}_h]-b[P_h {\bf{v}}- {\bf{v}}_h,p-q_h]-\frac{d}{dt}a_2[ {\bf{u}}-P_h {\bf{u}},P_h {\bf{u}}- {\bf{u}}_{h}]{{}}\\ &&\quad+a_2[ {\bf{u}}_t-P_h {\bf{u}}_t,P_h {\bf{u}}- {\bf{u}}_{h}]-c[ {\bf{v}}, {\bf{v}}, {\bf{w}}_h]+c[ {\bf{v}}_h, {\bf{v}}_h, {\bf{w}}_h]{{}}\\ &\leq&\frac{7\mu_1}8\|{\nabla}(P_h {\bf{v}}- {\bf{v}}_h)\|_{0,{{\Omega}}_1}^2+C(\|{\nabla}( {\bf{v}}-P_h {\bf{v}})\|_{0,{{\Omega}}_1}^2+\|p-q_h\|_{0,{{\Omega}}_1}^2+{\pmb{|}} {\bf{u}}_t-P_h {\bf{u}}_t{\pmb{|}}_{0,{{\Omega}}_2}^2){{}}\\ &&+\frac12{\pmb{|}}(P_h {\bf{u}}- {\bf{u}}_{h}){\pmb{|}}_{0,{{\Omega}}_2}^2-\frac{d}{dt}a_2[ {\bf{u}}-P_h {\bf{u}},P_h {\bf{u}}- {\bf{u}}_{h}], \end{eqnarray} (5.13)

    where the last positive constant C determined by the bounds of the data (\mu, {\bf{f}}, {\bf{v}}_0, {\bf{u}}_0, {\bf{u}}_1) . Recalling the estimate in (3.14), the definition of initial value u_{0h} in (3.15), integrating the above equation from 0 to s , and using the Gronwall inequality, we can achieve the following result:

    \begin{eqnarray} &&\|P_h {\bf{v}}- {\bf{v}}_h\|_{0,{{\Omega}}}^2+\|P_h {\bf{u}}_t- {\bf{u}}_{ht}\|_{0,{{\Omega}}}^2+\|{\nabla}(P_h {\bf{u}}- {\bf{u}}_{h})\|_{0,{{\Omega}}_2}^2){{}}\\ &&+\int_0^s(\|{\nabla}(P_h {\bf{v}}- {\bf{v}}_h)\|_{0,{{\Omega}}_1}^2dt{{}}\\ &\leq&Ch^{2r}(\| {\bf{v}}_0\|_{r+1,{{\Omega}}_1}^2+\|p_0\|_{r,{{\Omega}}_1}^2+\| {\bf{u}}_1\|_{r+1,{{\Omega}}_2}^2){{}}\\ &&+Ch^{2(r-{{\epsilon}})}\int_0^T(\| {\bf{v}}\|_{r+1,{{\Omega}}_1}^2+\|p\|_{r,{{\Omega}}_1}^2+\| {\bf{u}}\|_{r+1,{{\Omega}}_2}^2+\| {\bf{u}}_t\|_{r+1,{{\Omega}}_2}^2)dt,{{}} \end{eqnarray}

    which together with a triangle inequality, yields the desired result.

    In this section, we present numerical experiment to examine the convergence of the fluid-structure interaction system. The computational domain \Omega is designed as [0, 2\pi]\times[-1, 1] , where \Omega_{1} = [0, 2\pi]\times[0, 1] , \Omega_{2} = [0, 2\pi]\times[-1, 0] , I_{0} = [0, 2\pi]\times\{0\} and \Gamma_{1}, \Gamma_{2} defined as before, i.e. Figure 1.

    Figure 1.  A sketch of the fluid domain \Omega_{1} , structure domain \Omega_{2} and interface I_{0} .

    In order to satisfy the conditions on coupled interface I_{0} , we set \mu_{1} = \mu_{2} = \frac{1-2\nu}{4\sin(1)(1-\nu)} and \lambda_{2} = \frac{\nu}{2\sin(1)(1-\nu)} by Lame formulation, in which 0 < \nu < \frac{1}{2} is Poisson's ratio. Especially, let \nu = \frac{1}{4} , \rho_{1} = \rho_{2} = 1 and T = 1 in this example. Then the boundary data, initial data and the source terms are chosen such that the exact solution of the fluid-structure interaction system is given by

    \begin{equation*} \left\{ \begin{array}{ll} {\bf{v}} = \{-\cos(x)\sin(y-1)e^{t},\sin(x)(\cos(y-1)-1)e^{t}\},\\ p = \sin(x)\cos(y)e^{t},\\ {\bf{u}} = \{-\cos(x)\sin(y-1)e^{t},\sin(x)(\cos(y+1)-1)e^{t}\}. \end{array}\right. \end{equation*}

    For the discretization in space we have considered Taylor-Hood element for the Navier-Stokes equations and P_2 for the Elasticity system. It should be noted that the finite element partition in \Omega_{1} and \Omega_{2} must match at the interaction interface. For the discretization in time we combine the central difference scheme for the second-order derivative with the Implicit Euler scheme for the first-order derivative. First, without consider the nonlinear term, we can express the discrete system (3.4)-(3.5) as the following linear algebraic systems

    M_{2}\frac{d^{2}{\bf{w}}}{dt^{2}}+M_{1}\frac{d{\bf{w}}}{dt}+S_{1}{\bf{w}} = {\bf{F}},

    where the matrices M_{2} , M_{1} and S_{1} are deduced from the bilinear a_{1}[\cdot, \cdot], a_{2}[\cdot, \cdot], b[\cdot, \cdot], [\frac{d\cdot}{dt}, \cdot], [\frac{d^{2}\cdot}{dt^{2}}, \cdot] , {\bf{F}} is the variation of the source term and {\bf{w}} = \{v_{1}, v_{2}, p_{h}, u_{1}, u_{2}\} are the unknowns. In particular, the matrix M_{2} , M_{1} and S_{1} , respectively, have the following form

    M_{2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{21} & 0 \\ 0 & 0 & 0 & 0 & M_{21} \end{bmatrix},
    M_{1} = \begin{bmatrix} M_{11} & 0 & 0 & M_{12} & 0 \\ 0 & M_{11} & 0 & 0 & M_{12} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & M_{13} & 0 \\ 0 & 0 & 0 & 0 & M_{13} \end{bmatrix}

    and

    S_{1} = \begin{bmatrix} A_{1} & A_{2} & B_{1} & * & * \\ A_{2}^{T} & A_{3} & B_{2} & * & * \\ B_{1}^{T} & B_{2}^{T} & 0 & 0 & 0 \\ * & * & * & * & * \\ * & * & * & * & * \end{bmatrix} .

    Then as a result of treating trilinear by Oseen iteration, i.e. ({\bf{v}}_{h}^{n}\cdot\nabla){\bf{v}}_{h}^{n+1} , the time-discrete problem can be read as:

    (\frac{M_{2}}{\tau^{2}}+\frac{M_{1}}{\tau}+S_{1}+S_{2}){\bf{w}}^{n+1} = {\bf{F}}^{n+1}+(\frac{2M_{2}}{\tau^{2}}+\frac{M_{1}}{\tau}){\bf{w}}^{n} -\frac{M_{2}}{\tau^{2}}{\bf{w}}^{n-1},

    where S_{2} can be express as

    \begin{bmatrix} A_{4} & 0 & 0 & 0 & 0 \\ 0 & A_{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}.

    Obviously, the foregoing matrix systems can be derived from the following equation:

    \begin{eqnarray} &&\rho_{1}\Bigg[\frac{{\bf{v}}^{n+1}-{\bf{v}}^{n}}{{\Delta} t},{\bf{w}}_{1h}\Bigg]_{\Omega_{1}}+a_{1}[{\bf{v}}^{n+1}_{h},{\bf{w}}_{1h}] +b[{\bf{w}}_{1h},p^{n+1}_{h}]-b[{\bf{v}}^{n+1}_{h},q_{h}]+({\bf{v}}_{h}^{n}\cdot\nabla){\bf{v}}_{h}^{n+1}{{}}\\ &&\quad+\rho_{2}\Bigg[\frac{{\bf{u}}^{n+1}-2{\bf{u}}^{n}+{\bf{u}}^{n-1}}{{\Delta} t^{2}},{\bf{w}}_{2h}\Bigg]_{\Omega_{2}}+a_{2}[{\bf{u}}^{n+1}_{h},{\bf{w}}_{2h}]{{}}\\ &&\quad+\int_{I_{0}}({\bf{v}}^{n+1}_{h}-{\bf{u}}^{n+1}_{ht}){\bf{w}}_{1h}ds +\int_{I_{0}}[\mu_{2}(\nabla{\bf{u}}_{h}+\nabla{\bf{u}}_{h}^{T}){\bf{n}}_{2} +\lambda({{{\rm{div}}}}{\bf{u}}_{h}{\bf{n}}_{2})]^{n+1}{\bf{w}}_{1h}ds{{}}\\ &&\quad+\int_{I_{0}}({\bf{u}}^{n+1}_{ht}-{\bf{v}}^{n+1}_{h}){\bf{w}}_{2h}ds -\int_{I_{0}}[p{\bf{n}}_{1}-\mu_{1}(\nabla{\bf{v}}_{h}+\nabla{\bf{v}}_{h}^{T}){\bf{n}}_{1}]^{n+1} {\bf{w}}_{2h}ds{{}}\\ && = \rho_{1}[{\bf{f}}_{1}^{n+1},{\bf{w}}_{1h}]_{\Omega_{1}} +\rho_{2}[{\bf{f}}_{2}^{n+1},{\bf{w}}_{2h}]_{\Omega_{2}}, n = 0,1,\cdots N, \end{eqnarray} (6.1)

    where {\Delta} t = T/N is the uniform time step size. Moreover, when treating the initial conditions, we use the Implicit Euler scheme as the method of difference.

    We partition domain \Omega into a uniform matching triangulation. The refined meshes are obtained by dividing primary meshes into four similar cells by connecting the edge midpoints. By matching the time step size {\Delta} t with the mesh size O(8h^{3}) , Table 1 gives the numerical results through using the monolithic scheme. We see that the convergence rates for the velocity, pressure and displacement of the solid are just about O(h^{3}) , O(h^{2}) and O(h^{3}) , respectively, as the theoretical prediction.

    Table 1.  Error results for the triples P_2-P_1-P_2 at the end time.
    h \|{\bf{v}}^{n}-{\bf{v}}_{h}^{n}\|_{1} \|{p}^{n}-{p}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{1}
    {2}^{-3} 5.0313e-02 3.7129e-02 2.2842e-02 7.1309e-02
    {2}^{-4} 1.1786e-02 7.4693e-03 2.8885e-03 1.3052e-02
    {2}^{-5} 2.8876e-03 1.7159e-03 3.7417e-04 2.8635e-03
    {2}^{-6} 7.1868e-04 4.1590e-04 5.3240e-05 6.8775e-04
    Rate 2.0431 2.1601 2.9150 2.2320

     | Show Table
    DownLoad: CSV

    In order to verify the order of time convergence, thought there is no theoretical analysis in this paper, we test the case in which space step size h can be chosen as small as enough. We can observe that the expected order of convergence in \tau , i.e. O(\tau) in Table 2.

    Table 2.  Error results for different time step size \tau and h = 2^{-6} .
    \tau \|{\bf{v}}^{n}-{\bf{v}}_{h}^{n}\|_{1} \|{p}^{n}-{p}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{1}
    1/5 2.7888e-01 2.9410e-01 2.8505e-01 7.0934e-01
    1/10 1.3926e-01 1.5211e-01 1.4489e-01 3.6428e-01
    1/20 6.9729e-02 7.7373e-02 7.3046e-02 1.8516e-01
    1/40 3.4912e-02 3.9019e-02 3.6674e-02 9.3457e-02
    Rate 0.9993 0.9714 0.9861 0.9747

     | Show Table
    DownLoad: CSV

    Then in Table 3 and Table 4, we test the different decoupling order scheme for this interaction system. Table 3 shows the results by first solving Navier-Stokes equation, then solving Elasticity equation; Table 4 shows the results in reverse order. In both of them, we use the Nitsche's trick to treat the Dirichlet interface condition, i.e. the first equation of (2.3) . That is to say, we use \int_{I_{0}}({\bf{v}}^{n}_{h}-{\bf{u}}^{n-1}_{ht}){\bf{w}}_{1h}ds or \int_{I_{0}}({\bf{u}}^{n}_{ht}-{\bf{v}}^{n}_{h}){\bf{w}}_{2h}ds to weakly treat the Dirichlet interface condition.

    Table 3.  Error results for first solving Navier-Stokes equation.
    h \|{\bf{v}}^{n}-{\bf{v}}_{h}^{n}\|_{1} \|{p}^{n}-{p}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{1}
    {2}^{-3} 8.3133e-02 4.3960e-02 2.2426e-02 7.2486e-02
    {2}^{-4} 1.4350e-02 7.8258e-03 2.8314e-03 1.3255e-02
    {2}^{-5} 3.0401e-03 1.7028e-03 3.6418e-04 2.8794e-03
    {2}^{-6} 7.2433e-04 4.7933e-04 5.1454e-05 6.8676e-04
    Rate 2.2809 2.1730 2.9226 2.2406

     | Show Table
    DownLoad: CSV
    Table 4.  Error results for first solving Elasticity equation.
    h \|{\bf{v}}^{n}-{\bf{v}}_{h}^{n}\|_{1} \|{p}^{n}-{p}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{0} \|{\bf{u}}^{n}-{\bf{u}}_{h}^{n}\|_{1}
    {2}^{-3} 5.0113e-02 4.1194e-02 2.6434e-02 9.3836e-02
    {2}^{-4} 1.1725e-02 7.7002e-03 3.2815e-03 1.5731e-02
    {2}^{-5} 3.5428e-03 2.0901e-03 4.1104e-04 3.6282e-03
    {2}^{-6} 7.1862e-04 4.4337e-04 5.3622e-05 7.3375e-04
    Rate 2.0413 2.1793 2.9818 2.3329

     | Show Table
    DownLoad: CSV

    Concretely, we take the decoupling method used in Table 3 as an example, i.e. first solving Navier-Stokes equation then solving Elasticity equation, to explain the decoupling computational process. First, we give the following fully discrete scheme:

    \begin{equation*} \begin{aligned} \rho_{1}[{\bf{v}}^{n}_{ht},{\bf{w}}_{1h}]_{\Omega_{1}} +a_{1}[{\bf{v}}^{n}_{h}&,{\bf{w}}_{1h}] +b[{\bf{w}}_{1h},p^{n}_{h}]-b[{\bf{v}}^{n}_{h},q_{h}] +({\bf{v}}_{h}^{n-1}\cdot\nabla){\bf{v}}_{h}^{n}\\ +\int_{I_{0}}({\bf{v}}^{n}_{h}-{\bf{u}}^{n-1}_{ht}){\bf{w}}_{1h}ds & = \rho_{1}[{\bf{f}}_{1}^{n},{\bf{w}}_{1h}]_{\Omega_{1}} -\int_{I_{0}}[\mu_{2}(\nabla{\bf{u}}_{h}+\nabla{\bf{u}}_{h}^{T}){\bf{n}}_{2} +\lambda({{{\rm{div}}}}{\bf{u}}_{h}{\bf{n}}_{2})]^{n-1}{\bf{w}}_{1h}ds \end{aligned} \end{equation*}
    \begin{equation*} \begin{aligned} \rho_{2}[{\bf{u}}^{n}_{htt},{\bf{w}}_{2h}]_{\Omega_{2}}+a_{2}[{\bf{u}}^{n}_{h},{\bf{w}}_{2h}] +\int_{I_{0}}({\bf{u}}^{n}_{ht}-{\bf{v}}^{n}_{h}){\bf{w}}_{2h}ds = \rho_{2}[{\bf{f}}_{2}^{n},{\bf{w}}_{2h}]_{\Omega_{2}}\\ +\int_{I_{0}}[p{\bf{n}}_{1}-\mu_{1}(\nabla{\bf{v}}_{h}+\nabla{\bf{v}}_{h}^{T}){\bf{n}}_{1}]^{n} {\bf{w}}_{2h}ds, \end{aligned} \end{equation*}

    then the corresponding matrix representations of foregoing equations can be written by imitating the process before. What we need emphasize is that we substitute the coupled Neumann interface \int_{I_{0}}[p{\bf{n}}_{1}-\mu_{1}(\nabla{\bf{v}}_{h}+\nabla{\bf{v}}_{h}^{T}){\bf{n}}_{1}]^{n}{\bf{w}}_{1h}ds by the known value of n-1 , i.e, -\int_{I_{0}}[\mu_{2}(\nabla{\bf{u}}_{h}+\nabla{\bf{u}}_{h}^{T}){\bf{n}}_{2} +\lambda(\nabla\cdot{\bf{u}}_{h}{\bf{n}}_{2})]^{n-1}{\bf{w}}_{1h}ds in Navier-Stokes equation; then we substitute the coupled Neumann interface \int_{I_{0}}[\mu_{2}(\nabla{\bf{u}}_{h}+\nabla{\bf{u}}_{h}^{T}){\bf{n}}_{2} +\lambda(\nabla\cdot{\bf{u}}_{h}{\bf{n}}_{2})]^{n}{\bf{w}}_{2h}ds by the updated value of Navier-Stokes equation, i.e, \int_{I_{0}}[p{\bf{n}}_{1}-\mu_{1}(\nabla{\bf{v}}_{h}+\nabla{\bf{v}}_{h}^{T}){\bf{n}}_{1}]^{n}{\bf{w}}_{2h}ds in the Elasticity equation.

    In the end, we need to explain the second method in Table 4. When treating the coupled interface I_{0} in the Elasticity equation, we substitute \int_{I_{0}}[p{\bf{n}}_{1}-\mu_{1}(\nabla{\bf{v}}_{h}+\nabla{\bf{v}}_{h}^{T}){\bf{n}}_{1}]^{n-1}{\bf{w}}_{2h}ds for corresponding term; When treating the coupled interface I_{0} in the Navier-Stokes equation, we substitute \int_{I_{0}}[\mu_{2}(\nabla{\bf{u}}_{h}+\nabla{\bf{u}}_{h}^{T}){\bf{n}}_{2} +\lambda(\nabla\cdot{\bf{u}}_{h}{\bf{n}}_{2})]^{n}{\bf{w}}_{1h}ds for corresponding term.

    It can be seen that the convergence rates for the velocity, pressure of the fluid and displacement of the solid are the same as previous coupled method.

    This work is supported by NSF of China (Grant No. 11771259), special support program to develop innovative talents in the region of Shaanxi province.

    The authors would like to thank the editor and reviewers for the constructive comments and useful suggestions, which improved the manuscript.

    All authors contributed equally to the manuscript and read and approved the final manuscript.

    The authors declare that they have no competing interests.

    [1] INECC-SEMARNAT (2013) Diagnóstico básico para la gestión de los residuos en Mexico. Secretaría de Medio Ambiente y Recursos Naturales, Mexico D.F.
    [2] Guo JS, Abbas AA, Chen YP, et al. (2010) Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. J Hazard Mater 178: 699-705. doi: 10.1016/j.jhazmat.2010.01.144
    [3] Vedrenne M, Vasquez-Medrano R, Prato-Garcia D, et al. (2012) Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J Hazard Mater s205-206: 208-215.
    [4] Alkassasbeh JYM, Heng LY, Surif S (2009) Toxicity testing and the effect of landfill leachate in Malaysia on behavior of common carp (Cyprinus Carpiol., 1758; Pisces, Cyprinidae). Am J Environ Sci 5: 2009-2017.
    [5] Cassano D, Zapata A, Brunetti G, et al. (2011) Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal leachate: Minimization of operating costs and effluent toxicity. Chem Engin J 172: 250-257. doi: 10.1016/j.cej.2011.05.098
    [6] Abbas AA, Jingsong G, Ping LZ, et al. (2009) Review on landfill leachate treatments. Am J Appl Sci 6: 672-684.
    [7] Renou S, Givaudan JG, Poulain S, et al. (2008) Landfill leachate treatment: Review and opportunity. J Hazard Mater 150: 468-493. doi: 10.1016/j.jhazmat.2007.09.077
    [8] UE Agency (2007) Guidance for the Treatment of Landfill Leachate, Sector Guidance Note IPPC S5.03, in: I.P.P.a.C. (Ippc) (Ed.).
    [9] Gotraja A, Ragor-Koncan J, Cotman M (2011) Fenton oxidative treatment of municipal landfill leachate as an alternative to biological process. Desalin 275: 269-275. doi: 10.1016/j.desal.2011.03.017
    [10] Gupta A, Zhao R, Novak JT (2014) Application of Fenton reagents as polishing step for removal of UV quenching organic constituents in biologically treated landfill leachate. Chem 105: 82-86.
    [11] Rocha EMR, Vilar VJP, Fonseca A, et al. (2011). Landfill leachate treatment by solar-driven AOPs. Sol Energy 85: 46-56. doi: 10.1016/j.solener.2010.11.001
    [12] Silva TCV, Fonseca A, Sraiva I, et al. (2013). Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale. Water Rese 47: 3543-3457. doi: 10.1016/j.watres.2013.04.008
    [13] Silva TCV, Silva MEF, Cunha-Queda C, et al. (2013) Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants. Water Res 47: 6167-6186. doi: 10.1016/j.watres.2013.07.036
    [14] Singh SK, Tank WZ, Tachiev G (2013) Fenton treatment of landfill leachate under different COD loading factors. Waste Manage 33: 2116-2122. doi: 10.1016/j.wasman.2013.06.019
    [15] Vilar VJP, Rocha EMR, Mota FS, et al. (2011) Treatment of sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res 45: 2647-2658. doi: 10.1016/j.watres.2011.02.019
    [16] Vilar VJP, Silva FCV, Santos MAN, et al. (2012) Evaluation of solar photo-Fenton parameters on the pre-oxidation of leachates from a sanitary landfill. Sol Energy 86: 3301-3315. doi: 10.1016/j.solener.2012.08.014
    [17] Ramirez-Sosa D, Castillo-Borges ER, Mendez-Novelo R (2013) Determination of organic compounds in landfill leachates treated by Fenton-adsorption. Waste Manage 33: 390-395. doi: 10.1016/j.wasman.2012.07.019
    [18] Varank G, Demir A, Top S, et al. (2011) Migration behavior of landfill leachate contaminants through alternative composite liners. Sci Total Environ 409: 3183-3196. doi: 10.1016/j.scitotenv.2011.04.044
    [19] DNK (Den Norske Veritas) (2006) Ecatepec-Ecomethane landfill gas to energy project in Mexico. Validation Report No. 2006-1190.
    [20] ASTM E313 (2015) Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. ASTM West Conshohocken, Pennsylvania., Available from: www.astm.org.
    [21] American Public Health Association (1992) Standard Methods for the Examination of Water and Wastewater, (18th Edition), Washington D.C., MD, USA.
    [22] Wiszniowski J, Robert D, Sumarcz-Gorska J, et al. (2006) Landfill Leachate Treatment Methods: A Review. Environ Chem Lett 4: 51-61. doi: 10.1007/s10311-005-0016-z
    [23] United States Environmental Protection Agency (US EPA) (1995) Groundwater and Leachate Treatment Systems, Center for Environmental Research Information, National Risk Management Research Laboratory, Cincinnati.
    [24] Cozzarelli IM, Bohlke JK, Masoner J, et al. (2011). Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water 49: 663-687. doi: 10.1111/j.1745-6584.2010.00792.x
    [25] Karanfil T, Schlautman MA, Erdogan I (2002) Survey of DOC and UV measurement practices with implications for SUVA determination. J Am Water Works Ass 94: 68-80.
  • This article has been cited by:

    1. Darshan Maheshbhai Shah, M Vinayaka Murthy, Anand Kumar, 2020, A new approximation algorithm for virtual machine placement with resource constraints in multi cloud environment, 978-1-7281-9183-6, 1, 10.1109/ICAECC50550.2020.9339473
    2. Shiyong Li, Wenzhe Li, Wei Sun, Jia Liu, Nonconvex resource allocation for inelastic enterprise applications deployment into the cloud via particle swarm optimization, 2023, 44, 10641246, 3807, 10.3233/JIFS-201239
    3. Pundru Chandra Shaker Reddy, Yadala Sucharitha, An Energy-saving Data Transmission Approach based on Migrating Virtual Machine Technology to Cloud Computing, 2024, 17, 23520965, 573, 10.2174/2352096516666230713163440
    4. Chayan Bhatt, Sunita Singhal, 2023, Chapter 21, 978-981-99-3249-8, 275, 10.1007/978-981-99-3250-4_21
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4983) PDF downloads(870) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog