Review Special Issues

Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

  • Received: 19 May 2015 Accepted: 13 July 2015 Published: 25 January 2015
  • Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

    Citation: Achal Rastogi, Xin Lin, Bérangère Lombard, Damarys Loew, Leïla Tirichine. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms[J]. AIMS Genetics, 2015, 2(3): 173-191. doi: 10.3934/genet.2015.3.173

    Related Papers:

    [1] Liping Yang, Hu Li . A hybrid algorithm based on parareal and Schwarz waveform relaxation. Electronic Research Archive, 2022, 30(11): 4086-4107. doi: 10.3934/era.2022207
    [2] Chunhua Chu, Yijun Chen, Qun Zhang, Ying Luo . Joint linear array structure and waveform design for MIMO radar under practical constraints. Electronic Research Archive, 2022, 30(9): 3249-3265. doi: 10.3934/era.2022165
    [3] Xuerong Hu, Yuxiang Han, Junyan Lu, Linxiang Wang . Modeling and experimental investigation of quasi-zero stiffness vibration isolator using shape memory alloy springs. Electronic Research Archive, 2025, 33(2): 768-790. doi: 10.3934/era.2025035
    [4] Qian He, Wenxin Du, Feng Shi, Jiaping Yu . A fast method for solving time-dependent nonlinear convection diffusion problems. Electronic Research Archive, 2022, 30(6): 2165-2182. doi: 10.3934/era.2022109
    [5] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [6] Yi Wei . The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation. Electronic Research Archive, 2023, 31(11): 6790-6802. doi: 10.3934/era.2023342
    [7] Adrian Nicolae Branga . Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations. Electronic Research Archive, 2022, 30(6): 1999-2017. doi: 10.3934/era.2022101
    [8] Junseok Kim . Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential. Electronic Research Archive, 2025, 33(1): 433-446. doi: 10.3934/era.2025021
    [9] Martin Bohner, Alexander Domoshnitsky, Oleg Kupervasser, Alex Sitkin . Floquet theory for first-order delay equations and an application to height stabilization of a drone's flight. Electronic Research Archive, 2025, 33(5): 2840-2861. doi: 10.3934/era.2025125
    [10] David Cheban, Zhenxin Liu . Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29(4): 2791-2817. doi: 10.3934/era.2021014
  • Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.


    Waveform relaxation (WR) is an iterative method for systems of ordinary differential equations (ODEs). It is introduced for the first time by Lelarasmee et al. [1] for the time domain analysis of large-scale nonlinear dynamical systems. A lot of studies have been done on WR methods and most of them focus on convergence (see [2,3,4,5,6,7,8,9]). Zero-stability is the basic property of numerical methods of ODEs[10]. However, to our best knowledge, so far there exists little work on zero-stability of WR methods.

    We first of all propose two examples to show the fact that tiny perturbation may lead to huge change of WR approximation solutions, at the same time, to confirm that it is necessary to study zero-stability of WR methods. For this, it is enough to consider a simple method, and suppose only the initial value has tiny perturbations.

    Example 1. Consider the WR method

    $ x(k+1)n+2(1+α)x(k+1)n+1+αx(k+1)n=(1α)h(x(k+1)n+x(k)n)
    $
    (1.1)

    of solving numerically the initial value problem

    $ \dot{x}(t) = -2x(t), t\in[0, T]; x(0) = x_0, $

    which is gotten by applying the two step method

    $ x_{n+2}-(1+\alpha)x_{n+1}+\alpha x_n = -2(1-\alpha)hx_n $

    that is consistent for any $ \alpha $ and zero-stable for $ -1 < \alpha < 1 $ to the iterative scheme

    $ \dot{x}^{(k+1)}(t) = -x^{(k+1)}(t)-x^{(k)}(t). $

    Suppose that

    $ Nisapositiveintegerandh=TN,
    $
    (1.2)
    $ x(0)n=x0,n=0,1,,N,x(k)0=x0,k=0,1,
    $
    (1.3)

    and

    $ x(k+1)1=x(k+1)0h(x(k+1)0+x(k)0),k=0,1,.
    $
    (1.4)

    We can get the approximate solution $ \{\{x^{(k)}_n, n = 0, 1, \cdots, N\}, k = 0, 1, \cdots\} $ by using Eqs (1.1)–(1.4). Suppose that tiny perturbations denoted by $ \delta $ lead to the initial values become

    $ ˜x(0)n=x0+δ,n=0,1,,N,˜x(k)0=x0+δ,k=0,1,
    $
    (1.5)

    and the resulting perturbed solution of Eq (1.1) is denoted by $ \{\tilde{x}^{(k)}_n\} $. Let $ \delta = 1 $ for simplicity and denote $ \tilde{x}^{(k)}_n-x^{(k)}_n $ with $ e^{(k)}_n $. Then we have

    $ e(k+1)n+2(1+α)e(k+1)n+1+αe(k+1)n=(1α)h(e(k+1)n+e(k)n)(n=0,1,,N2,k=0,1,),e(k+1)0=1,e(k+1)1=(12h)e(k+1)0(k=0,1,),e(0)n=1(n=0,1,,N).
    $
    (1.6)

    By virtue of Eq (1.6) the following numerical results are obtained.

    The data in Tables 1 and 2 show that errors of the approximate solution of Eq (1.1) brought by perturbations of initial values are controllable for $ \alpha = 0.5 $, but they are unbounded for $ \alpha = 2 $ when $ h $ tends to zero.

    Table 1.  Results obtained by (1.6) with $ \alpha = 0.5 $.
    $ N $ 10 100 250 500 750 1000
    $ e^{(5)}_N $ 0.10621 0.1319 0.13343 0.13388 0.13402 0.13409
    $ e^{(10)}_N $ 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506
    $ e^{(100)}_N $ 0.10621 0.13238 0.13422 0.13478 0.13497 0.13506

     | Show Table
    DownLoad: CSV
    Table 2.  Results obtained by (1.6) with $ \alpha = 2 $.
    $ N $ 10 100 250 500 1000
    $ e^{(5)}_N $ 268.74 6.2863e+028 3.7892e+073 3.4922e+148 5.7695e+298
    $ e^{(10)}_N $ 268.74 6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298
    $ e^{(100)}_N $ 268.74 6.2867e+028 3.7897e+073 3.4927e+148 5.7704e+298

     | Show Table
    DownLoad: CSV

    In this numerical examples, taking $ \delta = 1 $ instead of tiny perturbations seem to be unreasonable. The main reason for this is that we are usually interested in the ratio $ \frac{e^{(k)}_N}{\delta} $ instead of $ \delta $ itself. In fact we have also performed some other experiments using smaller $ \delta $, in which the similar ratios are obtained for different $ \delta $.

    Example 2. Consider the one-step WR method

    $ x(k+1)n+1=x(k+1)n+h(500(x(k+1)n)1.001+500(x(k)n)1.001),n=0,1,,2h,x(k+1)0=0; x(0)n=0,foralln,
    $
    (1.7)

    where $ 2/h $ is an integer. Suppose that the initial value $ 0 $ becomes $ \delta $ by the influence of perturbations and the solution $ x_n^{(k)} $ becomes $ \tilde{x}_n^{(k)} $ by the influence of $ \delta $, which satisfies

    $ ˜x(k+1)n+1=˜x(k+1)n+h(500(˜x(k+1)n)1.001+500(˜x(k)n)1.001),n=0,1,,2h,˜x(k+1)0=δ; ˜x(0)n=δ,foralln.
    $
    (1.8)

    Clearly the numerical solution generated by Eq (1.7) is the constant zero and Eq (1.8) can be regarded as the WR method of solving the following initial value problem

    $ ˙x(t)=1000(x(t))1.001,t[0,2];x(0)=δ.
    $
    (1.9)

    It is easy to derive that $ t_0 = \dfrac{1}{\delta^{0.001}} $ is the blow-up time of the solution of Eq (1.9) and $ t_0\in [0, 2] $ whenever $ \delta > 10^{-301} $. Consequently, $ \sup\limits_{0 < t < 2}x(t) = +\infty $ for any $ \delta > 10^{-301} $. If the "2" in Eqs (1.8) and (1.9) is replaced by $ t_0-\varepsilon $, where $ \varepsilon > 0 $ is small enough, then Eq (1.8) converges to Eq (1.9), that is,

    $ \lim\limits_{h\rightarrow 0, k\rightarrow \infty}\sup\limits_{0\leq n\leq \frac{t_0-\varepsilon}{h}}|\tilde{x}^{(k)}_n-x(nh)| = 0, $

    see [4]. Thus

    $ \lim\limits_{h\rightarrow 0, k\rightarrow \infty}\sup\limits_{0\leq n\leq \frac{2}{h}}|\tilde{x}^{(k)}_n| = +\infty, \;{ \rm{ for\;any } }\;\delta > 10^{-301}, $

    that is, the change of the solution of Eq (1.8) brought by the tiny change of initial values is unbounded as $ h $ tends to zero.

    The above two examples show that tiny perturbations can lead to huge change of WR approximation solutions, although the methods used in the examples are too simple to be practically useful.

    A numerical method is said to be zero-stable if the change of its solution brought by the tiny perturbations is controllable when $ h $ tends to zero (see [10]). In this paper we will explore what conditions guarantee the zero-stability of WR methods.

    Consider the initial problem

    $ \dot{x}(t) = f(t, x(t)), t\in[0, T]; x(0) = x_0 (x(t)\in\mathbb{R}^d). $

    Taking the splitting function $ F(t, x, x) = f(t, x) $ we can construct the iterative scheme

    $ ˙x(k+1)(t)=F(t,x(k+1)(t),x(k)(t)),t[0,T],k=0,1,;x(0)(t)x0,x(k+1)(0)=x0.
    $
    (2.1)

    Using one-step methods with variable step-size to discrete Eq (2.1) one arrives at

    $ x(k+1)n+1=x(k+1)n+hnΦ(tn,hn,x(k+1)n+1,x(k+1)n,x(k)n+1,x(k)n);x(k+1)0=x0,
    $
    (2.2)

    where $ n = 0, 1, \cdots, N-1, k = 0, 1, \cdots $, $ \sum\limits_{n = 0}^{N-1}h_n = T $ and $ x^{(0)}_n = x_0 $ for all $ n $. Applying a class of multi-step methods with fixed step-size to Eq (2.1) we get

    $ x(k+1)n+1=x(k+1)n+hΨ(tn,h,x(k+1)n+1,x(k+1)n,,x(k+1)np,x(k)n+1,x(k)n,,x(k)np),
    $
    (2.3)

    where $ n = p, p+1, \cdots, N-1, k = 0, 1, \cdots $, $ h = T/N $, the initial values except $ x^{(0)}_n(n = 0, 1, \cdots, N) $ and $ x^{(k)}_0(k = 0, 1, \cdots) $ are generated by a suitable one-step method. Here we take the initial values as

    $ x(k)n=c(k)n,n=0,1,,p,k=0,1,(c(k)n=x0,ifnk=0).
    $
    (2.4)

    A classical example of Eq (2.3) is Admas-type linear multi-step methods:

    $ x^{(k+1)}_{n+1} = x^{(k+1)}_n+h\sum\limits_{j = 0}^{p+1} \beta_j F(t_{n+1-j}, x^{(k+1)}_{n+1-j}, x^{(k)}_{n+1-j}), n = p, p+1, \cdots, N-1, $

    where $ \beta_j, j = 0, 1, \cdots, p+1 $ are constants. The linear multi-step methods use generally the fixed step-size and therefore we only consider the Eq (2.3) with the fixed step-size.

    Let $ _ix^{(k)} $ denote the component of $ x^{(k)} $ satisfying

    $ x^{(k)} = \left(\left(_1x^{(k)}\right)^{\rm{T}}, \left(_2x^{(k)}\right)^{\rm{T}}, \cdots, \left(_mx^{(k)}\right)^{\rm{T}}\right)^{\rm{T}}, $

    where $ _ix^{(k)}\in \mathbb{R}^{d_i} $, $ x^{(k)}\in \mathbb{R}^{d} $ and $ d_1+d_2+\cdots+d_m = d $. The Eq (2.1) can be rewritten as

    $ _i\dot{x}^{(k+1)} = F_i(t, \sideset{_1}{}{\mathop{x}^{(k+1)}}, \sideset{_2}{}{\mathop{x}^{(k+1)}}, \cdots, \sideset{_m}{}{\mathop{x}^{(k+1)}}, \sideset{_1}{}{\mathop{x}^{(k)}}, \sideset{_2}{}{\mathop{x}^{(k)}}, \cdots, \sideset{_m}{}{\mathop{x}^{(k)}}), $

    with $ i = 1, 2, \cdots, m $, that is, the large Eq (2.1) is divided into $ m $ subsystems. When taking

    $ F_i(t, \cdots) = f_i(t, \sideset{_1}{}{\mathop{x}^{(k)}}, \cdots, \sideset{_{i-1}}{}{\mathop{x}^{(k)}}, \sideset{_i}{}{\mathop{x}^{(k+1)}}, \sideset{_{i+1}}{}{\mathop{x}^{(k)}}, \cdots, \sideset{_m}{}{\mathop{x}^{(k)}}), i = 1, 2, \cdots, m $

    one arrives at Guass-Jacobi WR method used frequently in actual computation, which consists of $ m $ independent subsystems and is hence parallel in nature(see [2,6,9]). In Eq (2.2) the unique mesh $ 0 = t_0 < t_1 < \cdots < t_{N} = T $ is applied to all subsystems. However the subsystems of Gauss-Jocobi WR methods are independent and may have distinct behaviors, and consequently it is better to use different meshes for the subsystems with different behaviors. Applying the mesh

    $ 0 = \sideset{_i}{_0}{\mathop{t}} < \sideset{_i}{_1}{\mathop{t}} < \cdots < \sideset{_i}{_{N_i}}{\mathop{t}} = T, \sideset{_i}{_j}{\mathop{h}} = \sideset{_i}{_{j+1}}{\mathop{t}}-\sideset{_i}{_{j}}{\mathop{t}}, j = 0, 1, \cdots, N_i-1 $

    to $ i $th subsystem yields the following multi-rate WR method

    $ xix(k+1)n+1=xix(k+1)n+hihnΦi(titn,hihn,y1y(k)(titn+1),,yi1y(k)(titn+1),xix(k+1)n+1,yi+1y(k)(titn+1),,ymy(k)(titn+1),y1y(k)(titn),,yi1y(k)(titn),xix(k+1)n,yi+1y(k)(titn),,ymy(k)(titn)),n=0,1,,Ni1,
    $
    (2.5)

    where $ i = 1, 2, \cdots, m, k = 0, 1, \cdots $. Here the initial values $ \sideset{_i}{^{(k+1)}_0}{\mathop{x}} = \sideset{_i}{^{(0)}_n}{\mathop{x}} = \sideset{_i}{_0}{\mathop{x}} $ for all $ k $ and $ n $, $ \left(\sideset{_1}{_0}{\mathop{x}}^{\rm{T}}, \sideset{_2}{_0}{\mathop{x}}^{\rm{T}}, \cdots, \sideset{_m}{_0}{\mathop{x}}^{\rm{T}} \right)^{\rm{T}} = x_0 $ and $ \sideset{_j}{^{(k)}}{\mathop{y}}(t) $ is the interpolation function satisfying $ \sideset{_j}{^{(k)}}{\mathop{y}}(\sideset{_j}{_n}{\mathop{t}}) = \sideset{_j}{^{(k)}_n}{\mathop{x}} $ for $ n = 0, 1, \cdots, N_j $.

    Because of the presence of errors in actual computing, it is necessary to consider the following perturbed systems of Eqs (2.2), (2.3) and (2.5) generated by the perturbations $ \{\delta^{(k)}_n, n = 0, 1, \cdots, N, k = 0, 1, \cdots\} $

    $ ˜x(k+1)n+1=˜x(k+1)n+hnΦ(tn,hn,˜x(k+1)n+1,˜x(k+1)n,˜x(k)n+1,˜x(k)n)+hnδ(k+1)n+1,n=0,1,,N1;˜x(k+1)0=x0+δ(k+1)0,˜x(0)n=x0+δ(0)n(n=0,1,,N),
    $
    (2.6)
    $ ˜x(k+1)n+1=˜x(k+1)n+hΨ(tn,h,˜x(k+1)n+1,˜x(k+1)n,,˜x(k+1)np,˜x(k)n+1,˜x(k)n,,˜x(k)np)+hδ(k+1)n+1,n=p,p+1,,N1;˜x(k+1)n=c(k+1)n+δ(k+1)n,n=0,1,,p,˜x(0)n=x0+δ(0)n(n=0,1,,N),
    $
    (2.7)

    and

    $ ˜xi˜x(k+1)n+1=˜xi˜x(k+1)n+hihnΦi(titn,hihn,˜y1˜y(k)(titn+1),,˜yi1˜y(k)(titn+1),˜xi˜x(k+1)n+1,˜yi+1˜y(k)(titn+1),,˜ym˜y(k)(titn+1),˜y1˜y(k)(titn),,˜yi1˜y(k)(titn),˜xi˜x(k+1)n,˜yi+1˜y(k)(titn),,˜ym˜y(k)(titn))+hihnδiδ(k+1)n+1,n=0,1,,Ni1;˜xi˜x(k+1)0=xix0+δiδ(k+1)0,˜xi˜x(0)n=xix0+δiδ(0)n(n=0,1,,Ni),
    $
    (2.8)

    where $ i = 1, 2, \cdots, m $ and $ \sideset{_j}{^{(k)}}{\mathop{\tilde{y}}}(t) $ is the interpolation function satisfying $ \sideset{_j}{^{(k)}}{\mathop{\tilde{y}}}(\sideset{_j}{_n}{\mathop{t}}) = \sideset{_j}{^{(k)}_n}{\mathop{\tilde{x}}} $ for $ n = 0, 1, \cdots, N_j, j = 0, 1, \cdots, m $.

    Definition 2.1. (Page 32 of [10]) Let $ \{\delta^{(k)}_n, n = 0, 1, \cdots, N, k = 0, 1, \cdots\} $ be any perturbation of Eq (2.2) or Eq (2.3) and Eq (2.4), and let $ \{\tilde{x}^{(k)}_n, n = 0, 1, \cdots, N, k = 0, 1, \cdots\} $ be the solution of the resulting perturbed system Eq (2.6) or Eq (2.7). Then if there exist constants $ C $ and $ h_0 $ such that, for all $ h\in(0, h_0] $($ h = \max\limits_n h_n $ for Eq (2.2))

    $ \max\limits_{0k,0nN
    }\|\tilde{x}^{(k)}_n-x^{(k)}_n\|\leq C \varepsilon, $

    whenever

    $ \max\limits_{0k,0nN
    }\|\delta^{(k)}_n\|\leq \varepsilon, $

    we say that the Eq (2.2) or Eqs (2.3) and Eq (2.4) is zero-stable.

    Here and hereafter $ \|\cdot\| $ denotes any norm defined in $ \mathbb{R}^d $.

    Definition 2.2. Let $ \{_i\delta^{(k)}_n, i = 1, 2, \cdots, m, n = 0, 1, \cdots, N, k = 0, 1, \cdots\} $ be any perturbation of Eq (2.5), and let $ \{_i\tilde{x}^{(k)}_n, i = 1, 2, \cdots, m, n = 0, 1, \cdots, N, k = 0, 1, \cdots\} $ be the solution of the resulting perturbed Eq (2.8). Then if there exist constants $ h_0 $ and $ C_k $ depended on $ k $ such that

    $ \max\limits_{1im0lk
    } \max\limits_{0\leq n\leq N_i}\|_i\tilde{x}^{(l)}_n-\sideset{_i}{^{(l)}_n}{\mathop{x}}\|\leq C_k \varepsilon $

    for all $ h = \max\limits_{1im

    } \max\limits_{0\leq n\leq N_i}\sideset{_i}{_n}{\mathop{h}}\in(0, h_0] $, whenever

    $ \max\limits_{1im0lk
    }\max\limits_{0\leq n\leq N_i}\|_i\delta^{(l)}_n\| \leq \varepsilon, $

    we say that the Eq (2.5) is weakly zero-stable.

    The following several lemmas are useful for studying zero-stability of the WR methods mentioned above.

    Lemma 2.3. Let $ a, b $ and $ T $ be nonnegative constants, and $ N $ be a positive integer. Suppose that the sets $ \{h_n > 0, n = 0, 1, \cdots, N-1\} $ and $ \{u_n > 0, n = 0, 1, \cdots, N\} $ satisfy

    $ un+1(1+ahn)un+bhn,n=0,1,,N1.
    $
    (2.9)

    Then

    $ \max\limits_{0\leq n\leq N} u_n\leq \mathrm{e} ^{aT}u_0+\dfrac{b}{a}(\mathrm{e}^{aT}-1) $

    provided that $ \sum\limits_{n = 0}^{N-1}h_n = T $.

    Proof. By using Eq (2.9) repeatedly we have

    $ un+1(1+ahn)(1+ahn1)(1+ah0)u0+(1+ahn)(1+ahn1)(1+ah1)bh0+(1+ahn)(1+ahn1)(1+ah2)bh1++(1+ahn)bhn1+bhn,
    $

    where $ n = 0, 1, \cdots, N-1 $. Let $ t_0 = 0, t_{n+1} = t_n+h_n, n = 0, 1, \cdots, N-1 $, then $ t_N = T $. Noting that $ 1+x < {\mathrm{e}}^x $ for $ x > 0 $ we can derive easily from above inequality

    $ un+1ea(tn+1t0)u0+ea(tn+1t1)b(t1t0)+ea(tn+1t2)b(t2t1)++ea(tn+1tn)b(tntn1)+ea(tn+1tn+1)b(tn+1tn)ea(Tt0)u0+eaTb(eat1(t1t0)++eatn(tntn1)++eatN(tNtN1))
    $

    for $ n = 0, 1, \cdots, N-1 $. This together with monotonicity of the function $ {\mathrm{e}}^{-at} $ imply

    $ un+1ea(Tt0)u0+eaTbTt0eatdt=eaTu0+ba(eaT1)
    $

    for all $ n = 0, 1, \cdots, N-1 $.

    Lemma 2.4. Let $ a, b, c, d $ and $ T $ be nonnegative constants, $ N $ be a positive integer and $ h_n, n = 0, 1, \cdots, N-1, $ be positive real numbers.

    Suppose that the sequence of positive numbers $ \{e_{n}^{(k)} > 0, n = 0, 1, \cdots N, k = 0, 1, \cdots\} $ satisfies

    $ e(k+1)n+1(1+ahn)e(k+1)n+bhne(k)n+chne(k)n+1+dhn,n=0,1,N1.
    $
    (2.10)

    Then for any $ 0 < h = \max\limits_{0\leq n\leq N-1} h_n < \dfrac{1}{2c} $

    $ max0k,0nNe(k)ne2(a+b+c)Tmax{max0ke(k)0,max0nNe(0)n}+da+b+c(e2(a+b+c)T1)
    $
    (2.11)

    provided that $ \sum\limits_{n = 0}^{N-1}h_n = T $.

    Proof. By Eq (2.10) we have

    $ max0ke(k+1)n+1(1+ahn)max0ke(k+1)n+bhnmax0ke(k)n+chnmax0ke(k)n+1+dhn
    $
    (2.12)

    for $ n = 0, 1, \cdots, N-1 $. Let $ \varepsilon = \max\limits_{0\leq n\leq N}e^{(0)}_n $ and $ u_n = \max\left\{\max\limits_{0\leq k}e^{(k)}_n, \varepsilon\right\}, n = 0, 1, \cdots, N $. Clearly $ \max\left\{\max\limits_{0\leq k}e^{(k+1)}_n, \varepsilon\right\} = u_n $. Hence we can get by Eq (2.12)

    $ un+1(1+ahn)un+bhnun+chnun+1+dhn1+ahn+bhn1chnun+dhn1chn,n=0,1,,N1.
    $

    Suppose that $ 0 < h < \dfrac{1}{2c} $. Consequently, $ \dfrac{1}{1-ch_n} < 2 $ and the above inequality thus yield

    $ u_{n+1}\leq (1+2(a+b+c)h_n)u_n+2dh_n, n = 0, 1, \cdots, N-1. $

    This together with Lemma 2.3 yield

    $ \max\limits_{0\leq n\leq N}u_n\leq \mathrm{e}^{2(a+b+c)T}u_0+\dfrac{d}{a+b+c}(\mathrm{e}^{2(a+b+c)T}-1). $

    Thus Eq (2.11) holds true. The proof is complete.

    Lemma 2.5. Let $ a_j, b_j(j = 0, 1, \cdots, p), c, d $ and $ T $ be nonnegative constants. Let $ N $ be a positive integer and $ h = T/N $.Suppose that the sequence of positive numbers $ \{e_{n}^{(k)} > 0, n = 0, 1, \cdots N, k = 0, 1, \cdots\} $ satisfies

    $ e(k+1)n+1e(k+1)n+hpj=0(aje(k+1)nj+bje(k)nj)+che(k)n+1+dh,n=p,p+1,,N1.
    $
    (2.13)

    Then for any $ 0 < h < \dfrac{1}{2c} $

    $ \max\limits_{0k,p+1nN
    }e^{(k)}_n\leq \mathrm{e}^{2(A+c)T}\varepsilon+\dfrac{d}{A+c}\left(\mathrm{e}^{2(A+c)T}-1\right), $

    where $ \varepsilon = \max\left\{ \max\limits_{0\leq n\leq N}e^{(0)}_n, \max\limits_{0k,0np

    }e^{(k)}_n\right\} $, $ A = \sum\limits_{j = 0}^p (a_j+b_j) $.

    Proof. Note that $ e^{(k)}_{n}\leq \varepsilon $ for all $ n\leq p $ and all $ k\geq 0 $. By using Eq (2.13) repeatedly we have

    $ e(k+1)p+1(1+ch++(ch)k)(1+Ah)ε+(ch)k+1ε+(1+ch++(ch)k)dh,k=0,1,.
    $
    (2.14)

    Let $ 0 < h < \dfrac{1}{2c} $. With the notation $ \alpha_h = \dfrac{1+Ah}{1-ch} $ and $ \beta_h = \dfrac{dh}{1-ch} $ we can derive from Eq (2.14)

    $ e^{(k)}_{p+1}\leq \alpha_h\varepsilon+\beta_h, k = 0, 1, \cdots. $

    Noting that $ \varepsilon\leq \alpha_h\varepsilon+\beta_h $ and therefore $ e^{(k)}_{n}\leq \alpha_h\varepsilon+\beta_h $ for all $ n\leq p+1 $ and all $ k\geq 0 $ we thus have by repeating the above process

    $ e^{(k)}_{p+2}\leq \alpha_h(\alpha_h\varepsilon+\beta_h)+\beta_h = (\alpha_h)^2\varepsilon+\beta_h(1+\alpha_h), k = 0, 1, \cdots. $

    Consequently, we get

    $ e^{(k)}_{p+m}\leq (\alpha_h)^m\varepsilon+\beta_h(1+\alpha_h+(\alpha_h)^2+\cdots+(\alpha_h)^{m-1}), k = 0, 1, \cdots $

    hold true for $ m = 1, 2, \cdots, N-p $. Note that $ \alpha_h\geq 1 $. Thus

    $ e^{(k)}_n \leq (\alpha_h)^N\varepsilon+\beta_h(1+\alpha_h+(\alpha_h)^2+\cdots+(\alpha_h)^{N-1}) $

    for $ k = 0, 1, \cdots $, $ n = 0, 1, \cdots, N $. This together with $ 0 < ch < 1/2 $ yield

    $ e(k)n(αh)Nε+(αh)N1αh1βh(1+2(A+c)h)T/hε+dA+c((1+2(A+c)h)T/h1)e2(A+c)Tε+dA+c(e2(A+c)T1)
    $

    for $ k = 0, 1, \cdots, n = 0, 1, \cdots, N $. The proof is complete.

    Theorem 3.1. Suppose that there exist constants $ L_1 $, $ L_2 $, $ L_3 $ and $ L_4 $ such that

    $ Φ(t,h,x1,x2,x3,x4)Φ(t,h,y1,y2,y3,y4)4i=1Lixiyi
    $
    (3.1)

    for any real numbers $ t, h\in \mathbb{R}, x_i, y_i\in \mathbb{R}^{d}, i = 1, 2, 3, 4 $. Then the WR Eq (2.2) is zero-stable.

    Proof. Let $ \varepsilon^{(k)}_n = \|\tilde{x}^{(k)}_n-x^{(k)}_n\| $ and for any $ \varepsilon > 0 $ the perturbations in Eq (2.6) $ \{\delta^{(k)}_n, k = 0, 1, \cdots, n = 0, 1, \cdots, N\} $ satisfies $ \max\limits_{0k,0nN

    }\|\delta^{(k)}_n\| < \varepsilon $. Then by virtue of Eqs (2.2) and (2.6) and the condition (3.1) we have

    $ ε(k+1)n+1ε(k+1)n+hn(L1ε(k+1)n+1+L2ε(k+1)n+L3ε(k)n+1+L4ε(k)n)+hnε
    $
    (3.2)

    for $ n = 0, 1, \cdots, N-1, k = 0, 1, \cdots $ and

    $ ε(k+1)0ε,k=0,1,,ε(0)nε,n=0,1,,N.
    $
    (3.3)

    Let $ h_n < \dfrac{1}{2L_1} $. Then $ \dfrac{1}{1-h_nL_1} < 2 $. We therefore derive from Eq (3.2)

    $ ε(k+1)n+1(1+2hn(L1+L2))ε(k+1)n+2hnL3ε(k)n+1+2hnL4ε(k)n+2hnε
    $
    (3.4)

    for $ n = 0, 1, \cdots, N-1, k = 0, 1, \cdots $. Consequently, by Eqa (3.3), (3.4) and Lemma 2.4 we have

    $ \varepsilon^{(k)}_{n}\leq \mathrm{e}^{4(L_1+L_2+L_3+L_4)T}\varepsilon+\dfrac{\varepsilon}{L_1+L_2+L_3+L_4}\left(\mathrm{e}^{4(L_1+L_2+L_3+L_4)T}-1\right) $

    for any $ k = 0, 1, \cdots, n = 0, 1, \cdots, N $ if $ 0 < h < \min\left\{\dfrac{1}{2L_1}, \dfrac{1}{4L_3}\right\} $. The proof is therefore complete.

    Theorem 3.2. Suppose that there exist constants $ L_i, i = 1, 2, \cdots, 2p+4 $ such that

    $ Ψ(t,h,x1,x2,,x2p+4)Ψ(t,h,y1,y2,,y2p+4)2p+4i=1Lixiyi
    $
    (3.5)

    for any real numbers $ t, h\in \mathbb{R}, x_i, y_i\in \mathbb{R}^d, i = 1, 2, \cdots, 2p+4 $. Then the WR Eq (2.3) and Eq (2.4) is zero-stable.

    Proof. Let $ \varepsilon^{(k)}_n $ denote $ \|\tilde{x}^{(k)}_n-x^{(k)}_n\| $ and the perturbations $ \{\delta^{(k)}_n, k = 0, 1, \cdots, n = 0, 1, \cdots, N\} $ in Eq (2.7) satisfy $ \max\limits_{0k,0nN

    }\|\delta^{(k)}_n\| < \varepsilon $, where $ \varepsilon $ is any positive number. Then by virtue of Eqs (2.3), (2.4), (2.7) and the condition (3.5) we have

    $ ε(k+1)n+1ε(k+1)n+h(L1ε(k+1)n+1+L2ε(k+1)n++Lp+2ε(k+1)np+Lp+3ε(k)n+1+Lp+4ε(k)n++L2p+4ε(k)np)+hε,n=p,p+1,,N1,ε(k+1)nε,n=0,1,,p,ε(0)nε,n=0,1,,N,
    $
    (3.6)

    where $ k = 0, 1, \cdots $. Let $ h < \dfrac{1}{2L_1} $. Consequently, $ \dfrac{1}{1-hL_1} < 2 $. We therefore derive from Eq (3.6)

    $ ε(k+1)n+1(1+2h(L1+L2))ε(k+1)n+2h(L3ε(k+1)n1++Lp+2ε(k+1)np+Lp+3ε(k)n+1+Lp+4ε(k)n++L2p+4ε(k)np)+2hε,n=p,p+1,,N1,ε(k+1)nε,n=0,1,,p,ε(0)nε,n=0,1,,N
    $
    (3.7)

    for $ n = 0, 1, \cdots, N-1, k = 0, 1, \cdots $. By Eq (3.7) and Lemma 2.5 we have

    $ \varepsilon^{(k)}_{n}\leq \mathrm{e}^{4(L_1+L_2+\cdots+L_{2p+4})T}\varepsilon+\dfrac{\varepsilon}{L_1+L_2+\cdots+L_{2p+4}}\left(\mathrm{e}^{4(L_1+L_2+\cdots+L_{2p+4})T}-1\right) $

    for any $ k = 0, 1, \cdots, n = 0, 1, \cdots, N $ if $ 0 < h < \min\left\{\dfrac{1}{2L_1}, \dfrac{1}{4L_{p+3}}\right\} $. The proof is complete.

    Theorem 3.3. For Eqs (2.5) and (2.8) let $ \Phi = (\Phi_1^{\mathrm{T}}, \Phi_2^{\mathrm{T}}, \cdots, \Phi_m^{\mathrm{T}})^{\mathrm{T}} $ satisfy the Lipschitz condition:there exist constants $ L_1 $ and $ L_2 $ such that

    $ Φ(t,h,x1,x2)Φ(t,h,y1,y2)2i=1Lixiyi,foranyx1,x2,y1,y2Rd,
    $
    (3.8)

    and the interpolation functions $ \sideset{_j}{^{(k)}}{\mathop{\tilde{y}}}(t) $ and $ \sideset{_j}{^{(k)}}{\mathop{y}}(t) $ satisfy that

    $ sup0tT˜yj˜y(k)(t)yjy(k)(t)Cmax0nNj˜xj˜x(k)nxjx(k)n,j=1,2,,m,
    $
    (3.9)

    where $ C $ is the positive constant. Then the multi-rate Eq (2.5) is weakly zero-stable.

    Proof. Define $ \|x\|_a = \max\limits_{1\leq i\leq m}\|_ix\| $, $ \|x\|_b = \sum\limits_{i = 1}^m\|_ix\| $ for $ x = (\sideset{_1}{^{\rm{T}}}{\mathop{x}}, \sideset{_2}{^{\rm{T}}}{\mathop{x}}, \cdots, \sideset{_m}{^{\rm{T}}}{\mathop{x}})^{\rm{T}}\in \mathbb{R}^d $, where $ _ix\in \mathbb{R}^{d_i}, i = 1, 2, \cdots, m, d_1+d_2+\cdots+d_m = d $. It is easy to prove that $ \|\cdot\|_a $ and $ \|\cdot\|_b $ are the norm. Consequently, there exist constants $ C_1 $ and $ C_2 $ such that

    $ C1xaxC2xbforanyxRd.
    $
    (3.10)

    Eqs (3.8) and (3.10) thus yield

    $ C1Φ(t,h,x1,x2)Φ(t,h,y1,y2)aΦ(t,h,x1,x2)Φ(t,h,y1,y2)2j=1Ljxjyj2j=1LjC2xjyjb=2j=1LjC2mi=1ixjyiyj
    $

    for any $ x_1, x_2, y_1, y_2\in \mathbb{R}^d $ and therefore

    $ Φi(t,h,x1,x2)Φi(t,h,y1,y2)2j=1LjC2C1mi=1ixjyiyj.
    $
    (3.11)

    With the notation $ _ie^{(k)}_n = \|_i\tilde{x}^{(k)}_n-\sideset{_i}{^{(k)}_n}{\mathop{x}}\| $ we can derive from Eqs (2.5), (2.8), (3.9) and (3.11)

    $ ie(k+1)n+1eie(k+1)n+ihnL1C2CC1(max0jNe1e(k)j++max0jNiei1e(k)j+eie(k+1)n+1+max0jNiei+1e(k)j++max0jNieme(k)j)+hihnL2C2CC1(max0jNie1e(k)j++max0jNiei1e(k)j+eie(k+1)n+max0jNiei+1e(k)j++max0jNieme(k)j)+hihnδiδ(k+1)n+1.
    $
    (3.12)

    Let $ h = \max\limits_{1im

    }\max\limits_{0\leq n\leq N_i} \sideset{_i}{_n}{\mathop{h}} < \dfrac{C_1}{2L_1C_2C} $. Consequently, $ _ih_n\dfrac{L_1C_2C}{C_1} < \dfrac12 < 1-\sideset{_i}{_n}{\mathop{h}}\dfrac{L_1C_2C}{C_1} $ which together with Eq (3.12) imply that

    $ ie(k+1)n+1(1+ahihn)eie(k+1)n+(aml=1limax0jNiele(k)j+2δiδ(k+1)n+1)hihn(1+ahihn)eie(k+1)n+(ami=1max0jNieie(k)j+2max1immax0jNiδiδ(k+1)j)hihn
    $
    (3.13)

    with $ a = \dfrac{2(L_1+L_2)C_2C}{C_1} $. By using Eq (3.13) with $ k = 0 $ and Lemma 2.3 we get

    $ ie(1)neaTeie(1)0+1a(eaT1)(ami=1max0jNieie(0)j+2max1immax0jNiδiδ(1)j).
    $

    Thus

    $ max1immax0nNieie(1)na1max(max1imeie(1)0,mi=1max0jNieie(0)j,max1immax0jNiδiδ(1)j)
    $

    with $ a_1 = {\mathrm{e}}^{aT}+\dfrac{1}{a}({\mathrm{e}}^{aT}-1)(a+2) $. Similarly, using the above inequality, Eq (3.13) with $ k = 1 $ and Lemma 2.3 we have

    $ max1immax0nNieie(2)na2max(max1im1l2eie(l)0,mi=1max0jNieie(0)j,max1im1l2max0jNiδiδ(l)j)
    $

    with $ a_2 = {\mathrm{e}}^{aT}+({\mathrm{e}}^{aT}-1)(ma_1+\dfrac{2}{a}) $. Repeating the above process yields that for any $ k $ there exists the constant $ a_k $ such that

    $ max1im0lkmax0nNi˜xi˜x(l)nxix(l)nakmax(max1im0lkδiδ(l)0,mi=1max0nNiδiδ(0)n,max1im0lkmax0nNiδiδ(l)n)
    $

    for any mesh $ \{_it_n, n = 0, 1, \cdots, N, i = 1, 2, \cdots, m\} $. The proof is therefore complete.

    Remark 1. In the above discussions we assume that the perturbation at one step is $ \delta_n^{(k)} h $, which depends on step-size $ h $. This assumption is necessary for the proof of the theorems mentioned above. However it seems to be more reasonable to regard $ \delta_n^{(k)} $, a small number, as the perturbation, if the step-size is very small. In this case the tiny perturbation at each step may bring out the huge change of the numerical solution. We will explore these in next section by some computer experiments.

    Remark 2. Note that the convergence property of the WR methods is not be used in the proof of Theorem 3.1-3.3. Hence, a divergent WR method may be zero-stable. In other words, zero-stability does not imply convergence.

    In this section some numerical experiments are performed to verify the theorems obtained in Section 3.

    Consider the equation

    $ x=Ax=(T1I0IT2I0IT3)x,t[0,1],x(0)=x0,
    $
    (4.1)

    where $ x\in \mathbb{R}^{15} $, $ T_i = \left(2i112i112i

    \right)\in \mathbb{R}^{5\times 5} $ and $ I $ is the identity matrix. The special case of such system has been examined by Burrage [11], which is obtained by discretizing the heat equation in two variables.

    Let $ A_1 = \left(T1T2T3

    \right) $ and $ A_2 = A-A_1 $. First, choose the following WR methods of solving the Eq (4.1):

    (i) Euler method with variable step-size

    $ x(k+1)n+1=x(k+1)n+hn(A1x(k+1)n+A2x(k)n),n=0,1,,N1,k=0,1,,x(k+1)0=x0forallk,x(0)n=x0foralln.
    $

    (ii) Two step methods with fixed step-size

    $ x(k+1)n+1=x(k+1)n+h2[3(A1x(k+1)n+A2x(k)n)(A1x(k+1)n1+A2x(k)n1)],n=1,2,,N1,k=0,1,,x(k+1)0=x0forallk,x(0)n=x0foralln,
    $

    where $ x^{(k+1)}_1 $ is obtained by a suitable one-step method. Here let

    $ x^{(k+1)}_1 = x_0+hAx_0+\dfrac{h^2}{2}A^2x_0. $

    (iii) Multi-rate Jacobi methods based on Euler method

    $ \left. ix(k+1)n+1=xix(k+1)n+hihn(Tixix(k+1)n+1+xi1x(k)n+1+xi+1x(k)n+1),n=0,1,,Ni1,xix(k+1)0=xix(0)n=xix0,x0x(k)n=x4x(k)n=(0,0,0,0,0)Tforallkandn
    \right\} i = 1, 2, 3. $

    Second, assume the initial values and the approximation solution at each calculation step have tiny perturbations as in Eqs (2.6)–(2.8) and let $ \delta^{(k)}_n\equiv \Delta = \delta\cdot (1, 1, \cdots, 1)^{\rm{T}}\in \mathbb{R}^{15} $, $ _i\delta^{(k)}_n\equiv \Delta_p = \delta\cdot (1, 1, 1, 1, 1)^{\rm{T}}\in \mathbb{R}^5 $, $ \tilde{x}^{(k)}_n $ denote the resulting perturbed solution and $ u^{(k)}_n $ denote $ \tilde{x}^{(k)}_n-x^{(k)}_n $, which yields

    $ u(k+1)n+1=u(k+1)n+hn(A1u(k+1)n+A2u(k)n)+hnΔ,n=0,1,,N1,k=0,1,,u(k+1)0=Δforallk,u(0)n=Δforalln,
    $
    (4.2)
    $ u(k+1)n+1=u(k+1)n+h2[3(A1u(k+1)n+A2u(k)n)(A1u(k+1)n1+A2u(k)n1)]+h2Δ,n=1,2,,N1,k=0,1,,u(k+1)0=Δ,u(k+1)1=(I+hA+h22A2)Δ,forallk,u(0)n=Δforalln,
    $
    (4.3)

    and

    $ \begin{array}{l} \left. \begin{array}{r} _iu^{(k+1)}_{n+1} = \sideset{_i}{_{n}^{(k+1)}}{\mathop{u}}+ \sideset{_i}{_{n}}{\mathop{h}}\left(T_i\cdot \sideset{_i}{_{n+1}^{(k+1)}}{\mathop{u}} +\sideset{_{i-1}}{_{n+1}^{(k)}}{\mathop{u}}+\sideset{_{i+1}}{_{n+1}^{(k)}}{\mathop{u}}+\Delta_p\right), \\  n = 0, 1, \cdots, N_i-1, \\ \sideset{_i}{_{0}^{(k+1)}}{\mathop{u}} = \sideset{_i}{_{n}^{(0)}}{\mathop{u}} = \Delta_p, \sideset{_0}{_{n}^{(k)}}{\mathop{u}} = \sideset{_4}{_{n}^{(k)}}{\mathop{u}} = (0, 0, 0, 0, 0)^{\rm{T}}, \forall k, \forall n \end{array}
    \right\} i = 1, 2, 3. \end{array} $
    (4.4)

    Lastly, reach a reasonable conclusion by analysing data generated by Eqs (4.2)–(4.4).

    We choose $ A $, $ A_1 $, $ A_2 $ and $ \delta^{(k)}_n $ as above to guarantee that $ u^{(k)}_n $ increase with $ k $ and $ n $ that is the worst case of error propagation.

    In our experiments the step-sizes $ h_n $ in Eq (4.2) and $ _ih_n $ in Eq (4.4) are taken as

    $ h_n = \min\left\{10h, \max\left\{0.1h, |\xi_n|h\right\}\right\} $

    and

    $ _ih_n = \min\{10^ih, \max\{10^{i-2}h, 10^{i-1}|\xi_n|h\}\}, $

    where $ h > 0 $, $ \{\xi_0, \xi_1, \cdots\} $ is a sequence of independent and identically distributed random variables satisfying $ \xi_i\sim N(0, 1) $.

    The data in Tables 3, 5 and 7 show clearly the errors resulted by the perturbations $ h_n\Delta(h\Delta/2) $ in Eq (4.2) (Eq (4.3) are controllable as $ k $ and $ n $ tend to infinity which support the theorems developed in Section 3). However the data in Table 4 and 6 show that the errors increase with $ k $ and $ 1/h $ when the perturbations $ h_n\Delta (h\Delta/2) $ are replaced by the constant perturbation $ \Delta(\Delta/2) $.

    Table 3.  The computing results of Eq (4.2) with $ \delta = 0.0001 $ ($ \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n $).
    $ h $ 0.1 0.001
    $ k $ 5 10 10 15
    $ \varepsilon $ 3.1483e-04 3.1483e-04 3.1605e-04 3.1605e-04
    $ h $ 0.00001
    $ k $ 10 15
    $ \varepsilon $ 3.1606e-04 3.1606e-04          

     | Show Table
    DownLoad: CSV
    Table 4.  The computing results of Eq (4.2) with $ \delta = 0.0001 $ ($ \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n $) for the case of replacing perturbation $ h_n \Delta $ with the constant perturbation $ \Delta $.
    $ h $ 0.1      0.001      0.00001
    $ k $ 5 10 10 15 10 15
    $ \varepsilon $ 0.0018 0.0018 0.1824 0.1824 17.6723 17.6723
    $ h $ 0.000001
    $ k $ 10 15
    $ \varepsilon $ 176.8079 176.8079

     | Show Table
    DownLoad: CSV
    Table 5.  The computing results of Eq (4.3) with $ \delta = 0.0001 $ ($ \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n $).
    $ h $ 0.1      0.001     
    $ k $ 10 15 10 15
    $ \varepsilon $ 3.1568e-04 3.1568e-04 3.1606e-04 3.1606e-04
    $ h $ 0.00001
    $ k $ 10 15
    $ \varepsilon $ 3.1606e-04 3.1606e-04

     | Show Table
    DownLoad: CSV
    Table 6.  The computing results of Eq (4.3) with $ \delta = 0.0001 $ ($ \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n $) for the case of replacing perturbation $ h \Delta/2 $ with $ \Delta/2 $.
    $ h $ 0.1      0.001      0.00001
    $ k $ 10 15 10 15 10 15
    $ \varepsilon $ 0.1782 0.1782 0.1435 0.1435 14.1724 14.1724
    $ h $ 0.000001
    $ k $ 10 15
    $ \varepsilon $ 141.7252 141.7252

     | Show Table
    DownLoad: CSV
    Table 7.  The computing results of Eq (4.4) with $ \delta = 0.0001 $ ($ \varepsilon = \max\limits_{0\leq l\leq k}\max\limits_{0\leq n\leq N}u^{(l)}_n $).
    $ h $ 0.1      0.001
    $ k $ 5 10 10 15
    $ \varepsilon $ 3.1085e-04 3.1085e-04 3.1567e-04 3.1567e-04
    $ h $ 0.00001
    $ k $ 10 15
    $ \varepsilon $ 3.1606e-04 3.1606e-04

     | Show Table
    DownLoad: CSV

    It is well known that a linear multi-step method with fixed step-size is convergent if, and only if, it is both consistent and zero-stable. In this paper we only present the sufficient conditions of zero-stability for some special methods. We will explore the relationship between convergence and zero-stability for WR methods based on general linear multi-step methods in the future. Moreover, we shall apply our methods to the numerical study of some inverse problems [12,13,14].

    Research is supported by the Natural Science Foundation of Fujian Province, China (grant number 2021J011031).

    The author declares that he has no conflicts of interest regarding the publication of this paper.

    [1] Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66 Suppl 1: S7-11.
    [2] Dolinoy DC (2007) Epigenetic gene regulation: early environmental exposures. Pharmacogenomics 8: 5-10. doi: 10.2217/14622416.8.1.5
    [3] Tariq M, Nussbaumer U, Chen Y, et al. (2009) Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci U S A 106: 1157-1162. doi: 10.1073/pnas.0809669106
    [4] Seong KH, Li D, Shimizu H, et al. (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145: 1049-1061. doi: 10.1016/j.cell.2011.05.029
    [5] Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20: 1675-1688. doi: 10.1111/j.1365-294X.2011.05026.x
    [6] Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10: 856-868.
    [7] Walker G, Dorrell RG, Schlacht A, et al. (2011) Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology 138: 1638-1663. doi: 10.1017/S0031182010001708
    [8] Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19: R81-88. doi: 10.1016/j.cub.2008.11.067
    [9] Moustafa A, Beszteri B, Maier UG, et al. (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324: 1724-1726. doi: 10.1126/science.1172983
    [10] Bowler C, Allen AE, Badger JH, et al. (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456: 239-244. doi: 10.1038/nature07410
    [11] Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76: 667-684. doi: 10.1128/MMBR.00007-12
    [12] Falkowski PG, Barber RT, Smetacek VV (1998) Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 281: 200-207.
    [13] Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46: 263-273.
    [14] Armbrust EV, Berges JA, Bowler C, et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79-86. doi: 10.1126/science.1101156
    [15] Lommer M, Specht M, Roy AS, et al. (2012) Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol 13: R66. doi: 10.1186/gb-2012-13-7-r66
    [16] Tanaka T, Maeda Y, Veluchamy A, et al. (2015) Oil Accumulation by the Oleaginous Diatom Fistulifera solaris as Revealed by the Genome and Transcriptome. Plant Cell 27: 162-176. doi: 10.1105/tpc.114.135194
    [17] Bowler C, De Martino A, Falciatore A (2010) Diatom cell division in an environmental context. Curr Opin Plant Biol 13: 623-630. doi: 10.1016/j.pbi.2010.09.014
    [18] Allen AE, Dupont CL, Obornik M, et al. (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203-207. doi: 10.1038/nature10074
    [19] Tirichine L, Bowler C (2011) Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J 66: 45-57. doi: 10.1111/j.1365-313X.2011.04540.x
    [20] Maumus F, Allen AE, Mhiri C, et al. (2009) Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics 10: 624. doi: 10.1186/1471-2164-10-624
    [21] Lin X, Tirichine L, Bowler C (2012) Protocol: Chromatin immunoprecipitation (ChIP) methodology to investigate histone modifications in two model diatom species. Plant Methods 8: 48. doi: 10.1186/1746-4811-8-48
    [22] Tirichine L, Lin X, Thomas Y, et al. (2014) Histone extraction protocol from the two model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Mar Genomics 13: 21-25. doi: 10.1016/j.margen.2013.11.006
    [23] Veluchamy A, Lin X, Maumus F, et al. (2013) Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun 4: 2091.
    [24] Veluchamy A, Rastogi A, Lin X, et al. (2015) An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biol 16: 102. doi: 10.1186/s13059-015-0671-8
    [25] Rogato A, Richard H, Sarazin A, et al. (2014) The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics 15: 698. doi: 10.1186/1471-2164-15-698
    [26] Huang A, He L, Wang G (2011) Identification and characterization of microRNAs from Phaeodactylum tricornutum by high-throughput sequencing and bioinformatics analysis. BMC Genomics 12: 337. doi: 10.1186/1471-2164-12-337
    [27] Cock JM, Sterck L, Rouze P, et al. (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465: 617-621. doi: 10.1038/nature09016
    [28] Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465-476.
    [29] Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11: 204-220. doi: 10.1038/nrg2719
    [30] Feng S, Cokus SJ, Zhang X, et al. (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107: 8689-8694. doi: 10.1073/pnas.1002720107
    [31] Zemach A, McDaniel IE, Silva P, et al. (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328: 916-919. doi: 10.1126/science.1186366
    [32] Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74: 481-514. doi: 10.1146/annurev.biochem.74.010904.153721
    [33] Huff JT, Zilberman D (2014) Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156: 1286-1297. doi: 10.1016/j.cell.2014.01.029
    [34] Zhang X, Yazaki J, Sundaresan A, et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189-1201. doi: 10.1016/j.cell.2006.08.003
    [35] Molaro A, Hodges E, Fang F, et al. (2011) Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146: 1029-1041. doi: 10.1016/j.cell.2011.08.016
    [36] Zeng J, Konopka G, Hunt BG, et al. (2012) Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 91: 455-465. doi: 10.1016/j.ajhg.2012.07.024
    [37] Honeybee Genome Sequencing C (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443: 931-949. doi: 10.1038/nature05260
    [38] Satou Y, Mineta K, Ogasawara M, et al. (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol 9: R152. doi: 10.1186/gb-2008-9-10-r152
    [39] Goll MG, Kirpekar F, Maggert KA, et al. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311: 395-398. doi: 10.1126/science.1120976
    [40] Ponger L, Li WH (2005) Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol Biol Evol 22: 1119-1128. doi: 10.1093/molbev/msi098
    [41] Maumus F, Rabinowicz P, Bowler C, et al. (2011) Stemming Epigenetics in Marine Stramenopiles. Current Genomics 12: 357-370. doi: 10.2174/138920211796429727
    [42] Bowler C, Vardi A, Allen AE (2010) Oceanographic and biogeochemical insights from diatom genomes. Ann Rev Mar Sci 2: 333-365. doi: 10.1146/annurev-marine-120308-081051
    [43] Zimmermann C, Guhl E, Graessmann A (1997) Mouse DNA methyltransferase (MTase) deletion mutants that retain the catalytic domain display neither de novo nor maintenance methylation activity in vivo. Biol Chem 378: 393-405.
    [44] Fatemi M, Hermann A, Pradhan S, et al. (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309: 1189-1199. doi: 10.1006/jmbi.2001.4709
    [45] Penterman J, Zilberman D, Huh JH, et al. (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci U S A 104: 6752-6757. doi: 10.1073/pnas.0701861104
    [46] Cokus SJ, Feng S, Zhang X, et al. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215-219. doi: 10.1038/nature06745
    [47] Hunt BG, Brisson JA, Yi SV, et al. Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol 2: 719-728.
    [48] Foret S, Kucharski R, Pittelkow Y, et al. (2009) Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genomics 10: 472. doi: 10.1186/1471-2164-10-472
    [49] Xiang H, Zhu J, Chen Q, et al. (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28: 516-520. doi: 10.1038/nbt.1626
    [50] Hellman A, Chess A (2007) Gene body-specific methylation on the active X chromosome. Science 315: 1141-1143. doi: 10.1126/science.1136352
    [51] Brenet F, Moh M, Funk P, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6: e14524.
    [52] Maunakea AK, Nagarajan RP, Bilenky M, et al. (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466: 253-257. doi: 10.1038/nature09165
    [53] Takuno S, Gaut BS (2012) Body-Methylated Genes in Arabidopsis thaliana Are Functionally Important and Evolve Slowly. Mol Biol Evol 29: 219-227. doi: 10.1093/molbev/msr188
    [54] Zilberman D, Gehring M, Tran RK, et al. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61-69. doi: 10.1038/ng1929
    [55] Lorincz MC, Dickerson DR, Schmitt M, et al. (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11: 1068-1075. doi: 10.1038/nsmb840
    [56] Luco RF, Pan Q, Tominaga K, et al. (2010) Regulation of alternative splicing by histone modifications. Science 327: 996-1000. doi: 10.1126/science.1184208
    [57] Lyko F, Foret S, Kucharski R, et al. (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8: e1000506. doi: 10.1371/journal.pbio.1000506
    [58] Ammar R, Torti D, Tsui K, et al. (2012) Chromatin is an ancient innovation conserved between Archaea and Eukarya. Elife 1: e00078.
    [59] Nalabothula N, Xi L, Bhattacharyya S, et al. (2013) Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs. BMC Genomics 14: 391. doi: 10.1186/1471-2164-14-391
    [60] Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34: 2653-2662. doi: 10.1093/nar/gkl338
    [61] Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11: 1037-1043. doi: 10.1038/nsmb851
    [62] Lermontova I, Schubert V, Fuchs J, et al. (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18: 2443-2451. doi: 10.1105/tpc.106.043174
    [63] Hashimoto H, Sonoda E, Takami Y, et al. (2007) Histone H1 variant, H1R is involved in DNA damage response. DNA Repair (Amst) 6: 1584-1595. doi: 10.1016/j.dnarep.2007.05.003
    [64] Maheswari U, Jabbari K, Petit JL, et al. (2010) Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biol 11: R85. doi: 10.1186/gb-2010-11-8-r85
    [65] Bheda P, Swatkoski S, Fiedler KL, et al. (2012) Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci U S A 109: E916-925. doi: 10.1073/pnas.1121471109
    [66] Zhang K, Sridhar VV, Zhu J, et al. (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2: e1210. doi: 10.1371/journal.pone.0001210
    [67] Tan M, Luo H, Lee S, et al. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146: 1016-1028. doi: 10.1016/j.cell.2011.08.008
    [68] Sana J, Faltejskova P, Svoboda M, et al. (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10: 103. doi: 10.1186/1479-5876-10-103
    [69] Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154: 26-46. doi: 10.1016/j.cell.2013.06.020
    [70] Okazaki Y, Furuno M, Kasukawa T, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420: 563-573. doi: 10.1038/nature01266
    [71] Cabili MN, Trapnell C, Goff L, et al. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25: 1915-1927. doi: 10.1101/gad.17446611
    [72] Liu J, Jung C, Xu J, et al. (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24: 4333-4345. doi: 10.1105/tpc.112.102855
    [73] Pauli A, Valen E, Lin MF, et al. (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22: 577-591. doi: 10.1101/gr.133009.111
    [74] Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157: 77-94. doi: 10.1016/j.cell.2014.03.008
    [75] Molnar A, Schwach F, Studholme DJ, et al. (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447: 1126-1129. doi: 10.1038/nature05903
    [76] Zhao T, Li G, Mi S, et al. (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21: 1190-1203. doi: 10.1101/gad.1543507
    [77] Lopez-Gomollon S, Beckers M, Rathjen T, et al. (2014) Global discovery and characterization of small non-coding RNAs in marine microalgae. BMC Genomics 15: 697. doi: 10.1186/1471-2164-15-697
    [78] Norden-Krichmar TM, Allen AE, Gaasterland T, et al. (2011) Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 6: e22870. doi: 10.1371/journal.pone.0022870
    [79] Supek F, Bosnjak M, Skunca N, et al. (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6: e21800. doi: 10.1371/journal.pone.0021800
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9211) PDF downloads(1631) Cited by(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog