We consider the existence of solutions for some Schrödinger systems on locally finite graphs. Using variationial method and Nehari manifold method, the existence and multiplicity of nontrivial solutions are proved. More explicitly, we first give a functional setting of problem and prove the compactness of Sobolev embedding. Then for the Schrödinger system with quadratical nonlinear terms, the existence of nontrivial solutions is proved by using the Nehari manifold method. For the Schrödinger system with cubic type nonlinearity, we first prove the existence of ground state solution and then prove the multiplicity of solutions by combining the Nehari manifold method as well as the Lusternik-Schnirelmann theory.
Citation: Yan-Hong Chen, Hua Zhang. Existence of solutions to Schrödinger systems on locally finite graphs[J]. Electronic Research Archive, 2025, 33(12): 7463-7490. doi: 10.3934/era.2025329
We consider the existence of solutions for some Schrödinger systems on locally finite graphs. Using variationial method and Nehari manifold method, the existence and multiplicity of nontrivial solutions are proved. More explicitly, we first give a functional setting of problem and prove the compactness of Sobolev embedding. Then for the Schrödinger system with quadratical nonlinear terms, the existence of nontrivial solutions is proved by using the Nehari manifold method. For the Schrödinger system with cubic type nonlinearity, we first prove the existence of ground state solution and then prove the multiplicity of solutions by combining the Nehari manifold method as well as the Lusternik-Schnirelmann theory.
| [1] |
A. Grigor'yan, Y. Lin, Y. Yang, Kazdan–Warner equation on graph, Calc. Var. Partial Differ. Equ., 55 (2016), 1–13. https://doi.org/10.1007/s00526-016-1042-3 doi: 10.1007/s00526-016-1042-3
|
| [2] |
A. Grigor'yan, Y. Lin, Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 261 (2016), 4924–4943. https://doi.org/10.1016/j.jde.2016.07.011 doi: 10.1016/j.jde.2016.07.011
|
| [3] |
A. Grigor'yan, Y. Lin, Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math., 60 (2017), 1311–1324. https://doi.org/10.1007/s11425-016-0422-y doi: 10.1007/s11425-016-0422-y
|
| [4] |
Y. Lin, Y. Yang, Calculus of variations on locally finite graphs, Rev. Mat. Complutense, 35 (2022), 791–813. https://doi.org/10.1007/s13163-021-00405-y doi: 10.1007/s13163-021-00405-y
|
| [5] |
Y. Chang, X. Zhang, Existence of global solutions to some nonlinear equations on locally finite graphs, J. Korean Math. Soc., 58 (2021), 703–722. https://doi.org/10.4134/JKMS.j200221 doi: 10.4134/JKMS.j200221
|
| [6] |
Y. Liu, Multiple solutions of a perturbed Yamabe-type equation on graph, J. Korean Math. Soc., 59 (2022), 911–926. https://doi.org/10.4134/JKMS.j210745 doi: 10.4134/JKMS.j210745
|
| [7] |
Y. Liu, Existence of three solutions to a class of nonlinear equations on graphs, Acta Math. Sin., 39 (2023), 1129–1137. https://doi.org/10.1007/s10114-023-2142-6 doi: 10.1007/s10114-023-2142-6
|
| [8] |
X. Han, M. Shao, p-laplacian equations on locally finite graphs, Acta Math. Sin., 37 (2021), 1645–1678. https://doi.org/10.1007/s10114-021-9523-5 doi: 10.1007/s10114-021-9523-5
|
| [9] |
M. Shao, Existence and multiplicity of solutions to p-laplacian equations on graphs, Rev. Mat. Complutense, 37 (2024), 185–203. https://doi.org/10.1007/s13163-022-00452-z doi: 10.1007/s13163-022-00452-z
|
| [10] |
P. Yang, X. Zhang, Existence and multiplicity of nontrivial solutions for a $(p, q)$-laplacian system on locally finite graphs, Taiwan. J. Math., 28 (2024), 551–588. https://doi.org/10.11650/tjm/240201 doi: 10.11650/tjm/240201
|
| [11] |
M. Imbesi, G. M. Bisci, D. Repovš, Elliptic problems on weighted locally finite graphs, Topol. Methods Nonlinear Anal., 61 (2023), 501–526. https://doi.org/10.12775/TMNA.2022.059 doi: 10.12775/TMNA.2022.059
|
| [12] |
S. Man, G. Zhang, Some global existence results on locally finite graphs, J. Aust. Math. Soc., 117 (2024), 375–391. https://doi.org/10.1017/S1446788723000149 doi: 10.1017/S1446788723000149
|
| [13] |
T. Nguyen, T. Dao, A. Duong, Kato's inequality for $ m $-laplace operator on locally finite graphs and applications, Evol. Equ. Control Theory, 14 (2025), 701–709. https://doi.org/10.3934/eect.2025002 doi: 10.3934/eect.2025002
|
| [14] |
Z. Qiu, Y. Liu, Existence of solutions to the nonlinear Schrödinger equation on locally finite graphs, Arch. Math., 120 (2023), 403–416. https://doi.org/10.1007/s00013-023-01830-9 doi: 10.1007/s00013-023-01830-9
|
| [15] |
N. Zhang, L. Zhao, Convergence of ground state solutions for nonlinear Schrödinger equations on graphs, Sci. China Math., 61 (2018), 1481–1494. https://doi.org/10.1007/s11425-017-9254-7 doi: 10.1007/s11425-017-9254-7
|
| [16] |
X. Chang, R. Wang, D. Yan, Ground states for logarithmic Schrödinger equations on locally finite graphs, J. Geom. Anal., 33 (2023), 211. https://doi.org/10.1007/s12220-023-01267-0 doi: 10.1007/s12220-023-01267-0
|
| [17] |
X. Chang, V. Rădulescu, R. Wang, D. Yan, Convergence of least energy sign-changing solutions for logarithmic Schrödinger equations on locally finite graphs, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 2023. https://doi.org/10.1016/j.cnsns.2023.107418 doi: 10.1016/j.cnsns.2023.107418
|
| [18] |
Y. Yang, L. Zhao, Normalized solutions for nonlinear Schrödinger equations on graphs, J. Math. Anal. Appl., 536 (2024), 128173. https://doi.org/10.1016/j.jmaa.2024.128173 doi: 10.1016/j.jmaa.2024.128173
|
| [19] |
Z. He, C. Ji, Existence and multiplicity of solutions for the logarithmic Schrödinger equation with a potential on lattice graphs, J. Geom. Anal., 34 (2024), 378. https://doi.org/10.1007/s12220-024-01829-w doi: 10.1007/s12220-024-01829-w
|
| [20] |
B. Hua, W. Xu, Existence of ground state solutions to some nonlinear Schrödinger equations on lattice graphs, Calc. Var. Partial Differ. Equ., 62 (2023), 127. https://doi.org/10.1007/s00526-023-02470-1 doi: 10.1007/s00526-023-02470-1
|
| [21] |
M. Shao, Y. Yang, L. Zhao, Multiplicity and limit of solutions for logarithmic Schrödinger equations on graphs, J. Math. Phys., 65 (2024), 041508. https://doi.org/10.1063/5.0179851 doi: 10.1063/5.0179851
|
| [22] |
J. Xu, L. Zhao, Existence and convergence of solutions for nonlinear elliptic systems on graphs, Commun. Math. Stat., 12 (2024), 735–754. https://doi.org/10.1007/s40304-022-00318-2 doi: 10.1007/s40304-022-00318-2
|
| [23] |
Q. Gao, Q. Wang, X. Chang, Normalized ground state solutions of Schrödinger-KdV system in $\Bbb R^3$, Z. Angew. Math. Phys., 75 (2024). https://doi.org/10.1007/s00033-024-02330-8 doi: 10.1007/s00033-024-02330-8
|
| [24] |
A. Ambrosetti, E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75 (2007), 67–82. https://doi.org/10.1112/jlms/jdl020 doi: 10.1112/jlms/jdl020
|
| [25] |
C. Liu, Y. Zheng, On soliton solutions to a class of Schrödinger-KdV systems, Proc. Amer. Math. Soc., 141 (2013), 3477–3484. https://doi.org/10.1090/S0002-9939-2013-11629-1 doi: 10.1090/S0002-9939-2013-11629-1
|
| [26] |
C. Liu, Y. Zheng, On soliton solutions for a class of discrete Schrödinger systems, Adv. Differ. Equ. Control Process., 15 (2015), 19–43. http://dx.doi.org/10.17654/ADECPFeb2015-019-043 doi: 10.17654/ADECPFeb2015-019-043
|
| [27] |
E. N. Dancer, J. Wei, T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. Henri Poincaré C, 27 (2010), 953–969. https://doi.org/10.1016/j.anihpc.2010.01.009 doi: 10.1016/j.anihpc.2010.01.009
|
| [28] |
T. Lin, J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré C, 22 (2005), 403–439. https://doi.org/10.1016/J.ANIHPC.2004.03.004 doi: 10.1016/J.ANIHPC.2004.03.004
|
| [29] |
Y. Chen, W. Zou, Vector solutions for two coupled Schrödinger equations on Riemannian manifolds, J. Math. Phys., 60 (2019), 051502. https://doi.org/10.1063/1.5100021 doi: 10.1063/1.5100021
|
| [30] |
R. Adami, E. Serra, P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equ., 54 (2015), 743–761. https://doi.org/10.1007/s00526-014-0804-z doi: 10.1007/s00526-014-0804-z
|
| [31] |
R. Adami, E. Serra, P. Tilli, Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal., 271 (2016), 201–223. https://doi.org/10.1016/j.jfa.2016.04.004 doi: 10.1016/j.jfa.2016.04.004
|
| [32] |
R. Adami, E. Serra, P. Tilli, Negative energy ground states for the $L^2$-critical NLSE on metric graphs, Commun. Math. Phys., 352 (2017), 387–406. https://doi.org/10.1007/s00220-016-2797-2 doi: 10.1007/s00220-016-2797-2
|
| [33] |
S. Dovetta, L. Tentarelli, $L^2$-critical NLS on noncompact metric graphs with localized nonlinearity: Topological and metric features, Calc. Var. Partial Differ. Equ., 58 (2019). https://doi.org/10.1007/s00526-019-1565-5 doi: 10.1007/s00526-019-1565-5
|
| [34] |
D. Pierotti, N. Soave, Ground states for the NLS equation with combined nonlinearities on noncompact metric graphs, SIAM J. Math. Anal., 54 (2022), 768–790. https://doi.org/10.1137/20M1377837 doi: 10.1137/20M1377837
|
| [35] |
D. Pierotti, N. Soave, G. Verzini, Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. Roy. Soc. Edinburgh Sect. A, 151 (2021), 705–733. https://doi.org/10.1017/prm.2020.36 doi: 10.1017/prm.2020.36
|
| [36] |
E. Serra, L. Tentarelli, Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differ. Equ., 260 (2016), 5627–5644. https://doi.org/10.1016/j.jde.2015.12.030 doi: 10.1016/j.jde.2015.12.030
|
| [37] |
C. Cacciapuoti, S. Dovetta, E. Serra, Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86 (2018), 305–327. https://doi.org/10.1007/s00032-018-0288-y doi: 10.1007/s00032-018-0288-y
|
| [38] |
X. Chang, L. Jeanjean, N. Soave, Normalized solutions of $L^2$-supercritical NLS equations on compact metric graphs, Ann. Inst. Henri Poincaré C, 41 (2023), 933–959. https://doi.org/10.4171/AIHPC/88 doi: 10.4171/AIHPC/88
|
| [39] |
S. Dovetta, Existence of infinitely many stationary solutions of the $L^2$-subcritical and critical NLSE on compact metric graphs, J. Differ. Equ., 264 (2018), 4806–4821. https://doi.org/10.1016/j.jde.2017.12.025 doi: 10.1016/j.jde.2017.12.025
|
| [40] |
R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. H. Poincaré C, 31 (2014), 1289–1310. http://dx.doi.org/10.1016/j.anihpc.2013.09.003 doi: 10.1016/j.anihpc.2013.09.003
|
| [41] | R. Adami, E. Serra, P. Tilli, Nonlinear dynamics on branched structures and networks, Riv. Math. Univ. Parma, 8 (2017), 109–159. |
| [42] |
A. Kairzhan, D. Noja, D. E. Pelinovsky, Standing waves on quantum graphs, J. Phys. A, 55 (2022), 243001. https://doi.org/10.1088/1751-8121/ac6c60 doi: 10.1088/1751-8121/ac6c60
|
| [43] |
D. Noja, D. E. Pelinovsky, Standing waves of the quintic NLS equation on the tadpole graph, Calc. Var. Partial Differ. Equ., 59 (2020). https://doi.org/10.1007/s00526-020-01832-3 doi: 10.1007/s00526-020-01832-3
|
| [44] |
M. Lorenzo, M. Lucci, V. Merlo, I. Ottaviani, M. Salvato, M. Cirillo, et al., On Bose Einstein condensation in josephson junctions star graph arrays, Phys. Lett. A, 378 (2014), 655–658. https://doi.org/10.1016/j.physleta.2013.12.032 doi: 10.1016/j.physleta.2013.12.032
|
| [45] |
D. Noja, Nonlinear Schrödinger equation on graphs: Recent results and open problems, Philos. Trans. A Math. Phys. Eng. Sci., 372 (2014), 20130002. https://doi.org/10.1098/rsta.2013.0002 doi: 10.1098/rsta.2013.0002
|
| [46] | G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, American Mathematical Society, 2013. https://doi.org/10.1090/surv/186 |
| [47] | L. C. Evans, Partial Differential Equations, second edition, American Mathematical Society, Providence, 2010. https://doi.org/10.1090/gsm/019 |
| [48] | M. Willem, Minimax Theorems, Springer Science, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
| [49] | K. Chang, Methods in Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. https://doi.org/10.1007/3-540-29232-2 |