In this work, a relaxation modulus-based matrix splitting iteration method for large sparse horizontal nonlinear complementarity problems was established. The convergence analysis was presented, where the proposed conditions were shown to be weaker than the existing result. Furthermore, a practical selection strategy of the relaxation parameter was provided by analyzing the error function in each iteration. Numerical examples were given to verify the theoretical improvement and show the effectiveness of the proposed method with the suggested relaxation parameters.
Citation: Liwei Tian, Suping Liu, Hua Zheng, Xiaoping Lu. A relaxation-type accelerating iteration method for large sparse horizontal nonlinear complementarity problems[J]. Electronic Research Archive, 2025, 33(12): 7442-7462. doi: 10.3934/era.2025328
In this work, a relaxation modulus-based matrix splitting iteration method for large sparse horizontal nonlinear complementarity problems was established. The convergence analysis was presented, where the proposed conditions were shown to be weaker than the existing result. Furthermore, a practical selection strategy of the relaxation parameter was provided by analyzing the error function in each iteration. Numerical examples were given to verify the theoretical improvement and show the effectiveness of the proposed method with the suggested relaxation parameters.
| [1] | R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Society for Industrial and Applied Mathematics, 1992. |
| [2] | M. C. Ferris, O. Mangasarian, J. S. Pang, Complementarity: Applications, Algorithms and Extensions, Springer Science & Business Media, 2013. |
| [3] | F. Facchinei, J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2023. |
| [4] |
C. Delprete, A. Razavykia, Piston ring-liner lubrication and tribological performance evaluation: A review, Proc. Inst. Mech. Eng. Part J, 232 (2018), 193–209. https://doi.org/10.1177/1350650117706269 doi: 10.1177/1350650117706269
|
| [5] |
M. Giacopini, M. Fowell, D. Dini, A. Strozzi, A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation, J Tribol, 132 (2010), 041702. https://doi.org/10.1115/1.4002215 doi: 10.1115/1.4002215
|
| [6] |
M. Kostreva, Elasto-hydrodynamic lubrication: A nonlinear complementarity problem, Int J Numer Methods Fluids, 4 (1984), 377–397. https://doi.org/10.1002/fld.1650040407 doi: 10.1002/fld.1650040407
|
| [7] |
G. H. Meyer, Free boundary problems with nonlinear source terms, Numer. Math., 43 (1984), 463–482. https://doi.org/10.1007/BF01390185 doi: 10.1007/BF01390185
|
| [8] |
K. Oh, The numerical solution of dynamically loaded elastohydrodynamic contact as a nonlinear complementarity problem, J. Tribol., 106 (1984), 88–95. https://doi.org/10.1115/1.3260872 doi: 10.1115/1.3260872
|
| [9] |
F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems, Numer. Algorithms, 87 (2021), 667–687. https://doi.org/10.1007/s11075-020-00983-w doi: 10.1007/s11075-020-00983-w
|
| [10] |
Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl., 17 (2010), 917–933. https://doi.org/10.1002/nla.680 doi: 10.1002/nla.680
|
| [11] |
Z. C. Xia, C. L.Li, Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem, Appl. Math. Comput., 271 (2015), 34–42. https://doi.org/10.1016/j.amc.2015.08.108 doi: 10.1016/j.amc.2015.08.108
|
| [12] |
F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for horizontal linear complementarity problems, Numer. Algorithms, 83 (2020), 201–219. https://doi.org/10.1007/s11075-019-00677-y doi: 10.1007/s11075-019-00677-y
|
| [13] |
F. Bu, S. Vong, H. Zheng, Modulus-based synchronous multisplitting method for horizontal nonlinear complementarity problem, J. Appl. Math. Comput., 70 (2024), 2405–2426. https://doi.org/10.1007/s12190-024-02059-7 doi: 10.1007/s12190-024-02059-7
|
| [14] |
Z. Li, H. Zhang, Anderson acceleration of the modulus based matrix splitting algorithms for horizontal nonlinear complementarity systems, Numer. Linear Algebra Appl., 29(2022), e2438. https://doi.org/10.1002/nla.2438 doi: 10.1002/nla.2438
|
| [15] |
X. H. Shao, Z. Wang, The nonsmooth Newton's method for the horizontal nonlinear complementarity problem, Numer. Algorithms, 96 (2024), 75–103. https://doi.org/10.1007/s11075-023-01640-8 doi: 10.1007/s11075-023-01640-8
|
| [16] |
X. M. Fang, The convergence of the modulus-based Jacobi (MJ) iteration method for solving horizontal linear complementarity problems, Comput. Appl. Math., 41 (2022), 134. https://doi.org/10.1007/s40314-022-01842-1 doi: 10.1007/s40314-022-01842-1
|
| [17] |
X. M. Fang, The convergence of a modulus-based matrix splitting iteration method for solving the implicit complementarity problems, J. Appl. Math. Comput., 69 (2023), 853–870. https://doi.org/10.1007/s12190-022-01773-4 doi: 10.1007/s12190-022-01773-4
|
| [18] |
Z. F. Fu, S. L. Wu, L. Li, New modulus-based matrix splitting method for the vertical nonlinear complementarity problem, J. Comput. Appl. Math., 457 (2025), 116251. https://doi.org/10.1016/j.cam.2024.116251 doi: 10.1016/j.cam.2024.116251
|
| [19] |
J. He, S. Vong, Newton-type methods for solving vertical linear complementarity problems, J. Comput. Appl. Math., 460 (2025), 116418. https://doi.org/10.1016/j.cam.2024.116418 doi: 10.1016/j.cam.2024.116418
|
| [20] |
D. Hussain, K. J. Pan, B. Kumar, Numerical exploration of two generalized iteration methods for solving nonlinear complementarity problems, J. Appl. Math. Comput., 71 (2025), 3381–3397. https://doi.org/10.1007/s12190-024-02334-7 doi: 10.1007/s12190-024-02334-7
|
| [21] |
F. Mezzadri, E. Galligani, Modulus-based matrix splitting algorithms for generalized complex-valued horizontal linear complementarity problems, J. Comput. Appl. Math., 460 (2025), 116440. https://doi.org/10.1016/j.cam.2024.116440 doi: 10.1016/j.cam.2024.116440
|
| [22] |
Y. J. Xie, Y. F. Ke, Neural network approaches based on new NCP-functions for solving tensor complementarity problem, J. Appl. Math. Comput., 67 (2021), 833–853. https://doi.org/10.1007/s12190-021-01509-w doi: 10.1007/s12190-021-01509-w
|
| [23] |
H. Zheng, W. Li, S. Vong, A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems, Numer. Algorithms, 74 (2017), 137–152. https://doi.org/10.1007/s11075-016-0142-7 doi: 10.1007/s11075-016-0142-7
|
| [24] |
H. Zheng, S. Vong, L. Liu, The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems, Intern. J. Comput. Math., 96 (2019), 1648–1667. https://doi.org/10.1080/00207160.2018.1504928 doi: 10.1080/00207160.2018.1504928
|
| [25] |
Y. F. Ke, C. F. Ma, H. Zhang, The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems, Comput. Appl. Math., 37 (2018), 6795–6820. https://doi.org/10.1007/s40314-018-0687-2 doi: 10.1007/s40314-018-0687-2
|
| [26] |
N. Li, J. Ding, J. F. Yin, Modified relaxation two-sweep modulus-based matrix splitting iteration method for solving a class of implicit complementarity problems, J. Comput. Appl. Math., 413 (2022), 114370. https://doi.org/10.1016/j.cam.2022.114370 doi: 10.1016/j.cam.2022.114370
|
| [27] |
D. Wang, J. Li, Relaxation modulus-based matrix splitting iteration method for vertical linear complementarity problem, J. Comput. Appl. Math., 437 (2024), 115430. https://doi.org/10.1016/j.cam.2023.115430 doi: 10.1016/j.cam.2023.115430
|
| [28] |
Z. G. Huang, J. J. Cui, The relaxation modulus-based matrix splitting iteration method for horizontal linear complementarity problems, Bull. Iran. Math. Soc., 48 (2022), 3285–3319. https://doi.org/10.1007/s41980-022-00695-y doi: 10.1007/s41980-022-00695-y
|
| [29] |
Z. G. Huang, J. J. Cui, A relaxation two-sweep modulus-based matrix splitting iteration method for horizontal linear complementarity problems, Jpn. J. Ind. Appl. Math., 40 (2023), 141–182. https://doi.org/10.1007/s13160-022-00514-1 doi: 10.1007/s13160-022-00514-1
|
| [30] |
D. Wang, J. Li, General double-relaxation two-sweep modulus-based matrix splitting iteration methods for horizontal linear complementarity problem, Numer. Algorithms, 98 (2025), 1965–1983. https://doi.org/10.1007/s11075-024-01860-6 doi: 10.1007/s11075-024-01860-6
|
| [31] |
Z. Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM J. Matrix Anal. Appl., 21 (1999), 67–78. https://doi.org/10.1137/S0895479897324032 doi: 10.1137/S0895479897324032
|
| [32] | A. Berman, R. J. Plemmons, Nonnegative Matrix in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994. https://doi.org/10.1137/1.9781611971262 |
| [33] |
A. Frommer, G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl., 119 (1989), 141–152. https://doi.org/10.1016/0024-3795(89)90074-8 doi: 10.1016/0024-3795(89)90074-8
|
| [34] | J. G. Hu, Estimates of $\|{B^{-1}C}\|_\infty$ and their applications, Math. Numer. Sin., 4 (1982), 272–282. |