
Electronic
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(12): 7442–7462.
DOI: 10.3934/era.2025328
Received: 13 September 2025
Revised: 06 November 2025
Accepted: 04 December 2025
Published: 10 December 2025

Research article

A relaxation-type accelerating iteration method for large sparse horizontal
nonlinear complementarity problems

Liwei Tian1, Suping Liu1, Hua Zheng2,* and Xiaoping Lu3

1 School of Computer Science, Guangdong University of Science and Technology, Dongguan
523083, China

2 School of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China
3 School of Computer Science and Engineering, Macau University of Science and Technology,

Macao, China

* Correspondence: Email: hzheng@sgu.edu.cn.

Abstract: In this work, a relaxation modulus-based matrix splitting iteration method for large
sparse horizontal nonlinear complementarity problems was established. The convergence analysis
was presented, where the proposed conditions were shown to be weaker than the existing result.
Furthermore, a practical selection strategy of the relaxation parameter was provided by analyzing the
error function in each iteration. Numerical examples were given to verify the theoretical improvement
and show the effectiveness of the proposed method with the suggested relaxation parameters.

Keywords: horizontal nonlinear complementarity problem; modulus-based method; relaxation

1. Introduction

The horizontal nonlinear complementarity problem (HNCP) is an extension of various
complementarity problems, including the horizontal linear complementarity problem (HLCP),
nonlinear complementarity problem (NCP), linear complementarity problem (LCP) [1–3]. Given two
matrices A and B in Rn×n, a vector q in Rn, and a nonlinear function ϕ : Rn × Rn → Rn, our focus lies
in solving HNCPs. This involves the search for two vectors z and r in Rn such that

Az + q + ϕ(z, r) = Br, min{z, r} = 0, (1.1)

where the minimum operation is taken componentwise.
The HNCP can manifest in various applications, for example, when discretizing differential

equations in hydrodynamic lubrication incorporating complementarity constraints and a weak

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025328

7443

nonlinear source term [4–8]. A recent approach to address the HNCP involves transforming it into an
equivalent implicit fixed-point system. The modulus-based matrix splitting (MMS) iteration method,
as introduced in [9], represents a significant advancement. This method generalizes the MMS
iteration techniques for the LCP [10], NCP [11], and HLCP [12]. It has been shown to be much more
effective than the reduction approaches for solving the HNCP. Moreover, the MMS iteration method
has evolved into the modulus-based synchronous multisplitting iteration method, detailed in [13], to
leverage parallel computation techniques. An Anderson acceleration variation of the MMS iteration
method was developed in [14]. Additionally, a nonsmooth Newton method with nearly quadratic
convergence, under specific assumptions, was proposed in [15]. For a comprehensive overview of
various methods addressing different complementarity problems, readers can explore recent research
works such as [16–22], and the references therein.

Notably, within the realm of enhanced techniques related to the MMS iteration method, the
relaxation approach has demonstrated success in various problem domains including the LCP [23],
NCP [24], circular cone NCP [25], implicit complementarity problems [26], vertical LCP [27], and
HLCP [28–30]. The core concept behind the relaxation method involves merging the current iterative
vector with the previous one in the MMS iteration using a relaxation parameter. This integration
effectively leverages the information from the two most recent steps. By suitably selecting the
relaxation parameter, one can anticipate a faster convergence compared to the original MMS iteration
technique. Hence, in order to achieve higher computing efficiency, it is interesting to investigate the
relaxation MMS iteration method for the HNCP. The primary contributions of this study include:

• Establishing the relaxation MMS iteration method for the HNCP;
• Presenting a convergence theorem for the proposed method, which extends the convergent domain

of the parameter matrix beyond that outlined in [9];
• Providing a practical strategy for selecting the relaxation parameter.

Next, we will explain some definitions, notations, and results that have already been existed.
Denote e = (1, 1, . . . , 1)T ∈ Rn. Let A = (ai j) be an n × n real matrix, decomposed as A = DA − LA −

UA = DA −CA, where DA,−LA,−UA, and −CA represent the diagonal, the strictly lower-triangular, the
strictly upper-triangular, and the nondiagonal matrices of A, correspondingly. The symbol |A| denotes
|A| = (|ai j|). The comparison matrix of A is denoted as ⟨A⟩ = (⟨ai j⟩), defined such that ⟨aii⟩ = |aii|

if i = j and ⟨ai j⟩ = −|ai j| if i , j. We classify A as a strictly diagonal dominant (s.d.d.) matrix if
|aii| >

∑
j,i |ai j| for all 1 ≤ i ≤ n; a Z-matrix if CA ≥ 0; a nonsingular M-matrix if CA ≥ 0 and A−1 ≥ 0;

and an H-matrix if ⟨A⟩ forms a nonsingular M-matrix; an H+-matrix if A is an H-matrix with positive
diagonal entries (for example, see [31, 32]). If ⟨M⟩ − |N| is an M-matrix, we denote A = M − N as an
H-splitting. In represents the n × n identity matrix. ρ(A) is the spectral radius of A.

The structure of this paper is as follows. Section 2 introduces the new relaxation method tailored for
the HNCP, building upon the foundations laid out in [9]. In Section 3, the convergence theorems of the
proposed method are detailed, demonstrating enhancements over those presented in [9]. The strategy
for selecting the relaxation parameter is outlined in Section 4. Section 5 showcases numerical examples
to illustrate the efficacy of the proposed method. Finally, Section 6 provides concluding remarks.

2. The relaxation method

First, we revisit the MMS iteration method employed for the HNCP.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7444

Let A = MA−NA and B = MB−NB represent two splittings of A and B, respectively. By introducing
z = 1

γ
(|x| + x) and r = 1

γ
Ω(|x| − x), the HNCP can be equivalently transformed into a system of fixed-

point equations
(MBΩ + MA)x = (NBΩ + NA)x + (BΩ − A)|x| − γ(q + ϕ(z, r)), (2.1)

where Ω denotes a positive diagonal parameter matrix and γ represents a positive constant; see [9] for
details. Subsequently, the MMS iteration method is formulated based on (2.1) as follows.

Method 2.1. [9] MMS

1) Given A, B,Ω ∈ Rn×n; q, x(1) ∈ R; a nonlinear function ϕ, γ, ϵ > 0; a positive integer kmax,
initialize k = 1.

2) When k < kmax

3) Compute z(k) = 1
γ
(x(k) + |x(k)|) and r(k) = 1

γ
Ω(|x(k)| − x(k)).

4) If ∥Az(k) − Br(k) + q + ϕ(z(k), r(k))∥∞ < ϵ
5) break and output the results.
6) End If
7) Solve

(MBΩ + MA)x(k+1) = (NBΩ + NA)x(k) + (BΩ − A)|x(k)| − γ(q + ϕ(z(k), r(k)))
to get x(k+1).

8) k = k + 1.
9) End when

At the k-th iteration of Method 2.1, consider mixing the new approach vector and the previous one
before the next iteration, by introducing a positive diagonal matrix Λ(k) ∈ Rn×n. Then, the relaxation
modulus-based matrix splitting (RMMS) iteration method can be established as follows.

Method 2.2. RMMS

1) Given A, B,Ω ∈ Rn×n; q, x(1) ∈ R; a nonlinear function ϕ, γ, ϵ > 0; a positive integer kmax,
initialize k = 1.

2) When k < kmax

3) Compute z(k) = 1
γ
(x(k) + |x(k)|) and r(k) = 1

γ
Ω(|x(k)| − x(k)).

4) If ∥Az(k) − Br(k) + q + ϕ(z(k), r(k))∥∞ < ϵ
5) break and output the results.
6) End If
7) Solve

(MBΩ + MA)x(k+ 1
2) = (NBΩ + NA)x(k) + (BΩ − A)|x(k)| − γ(q + ϕ(z(k), r(k)))

to get x(k+ 1
2).

8) Calculate x(k+1) = Λ(k)x(k+ 1
2) + (In − Λ

(k))x(k).

9) k = k + 1.
10) End when

If we take Λ(k) = λ(k)In, where λ(k) is a scalar, then Step 8 of Method 2.2 is simplified to

x(k+1) = λx(k+ 1
2) + (1 − λ)x(k).

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7445

Remark 2.3. It is evident that Method 2.2 simplifies to Method 2.1 if we set Λ(k) = In for every k.

Furthermore, if we take

MA =
1
α

(DA − βLA),MB =
1
α

(DB − βLB), (2.2)

we can derive the relaxation modulus-based accelerated overrelaxation (RMAOR) iteration method.
When setting α = β, the RMAOR iteration method simplifies to the relaxation modulus-based
successive overrelaxation (RMSOR) iteration method.

3. Convergence analysis

In this section, the convergence conditions are presented for Method 2.2. Similar to the existing
literatures such as [9, 13], we assume that both of the system matrices of the HNCP are H+-matrices.

Lemma 3.4. [32] Let A ∈ Rn×n be a nonsingular M-matrix. Then, there exists a positive diagonal
matrix D ∈ Rn×n satisfying that AD is an s.d.d. matrix.

Lemma 3.5. [33] If A is an H-matrix, then we have |A−1| ≤ ⟨A⟩−1.

Lemma 3.6. [34] Let M ∈ Rn×n be an s.d.d. matrix. Then for any N ∈ Rn×n,
∥M−1N∥∞ ≤ max1≤i≤n

(|N|e)i
(⟨M⟩e)i

.

Lemma 3.7. [32] Let A ∈ Rn×n and B ∈ Rn×n be a Z-matrix and a nonsingular M-matrix, respectively.
If A ≥ B, then A is a nonsingular M-matrix.

In the subsequent discussion, following [9,13,14], the considered HNCP is always assumed to have
a unique solution (z∗, r∗). Moreover, we also assume that ϕ(z, r) satisfies the smoothness assumptions
outlined in [9] as below: let

ϕ(z, r) =
(
ϕ1(z1, r1), ϕ2(z2, r2), . . . , ϕn(zn, rn)

)T
be differentiable with

0 ≤
∂ϕi

∂zi
≤ ψzi and 0 ≤

∂ϕi

∂ri
≤ ψri ,

where ψzi , ψri ≥ 0, i = 1, 2, . . . , n.
Then, by the same deduction as those in Section 3 of [9], we have

ϕ(z(k), r(k)) − ϕ(z∗, r∗)

=
1
γ

[
(Φ(k)

z − Φ
(k)
r Ω)(x(k) − x∗) + (Φ(k)

z + Φ
(k)
r Ω)(|x(k)| − |x∗|)

]
, (3.1)

with Φ(k)
z ≤ Ψz and Φ(k)

r ≤ Ψr, where

Φ(k)
z = diag

(∂ϕ1

∂z1
(η1),

∂ϕ2

∂z2
(η2), . . . ,

∂ϕn

∂zn
(ηn)
)
,

Φ(k)
r = diag

(∂ϕ1

∂r1
(η1),

∂ϕ2

∂r2
(η2), . . . ,

∂ϕn

∂rn
(ηn)
)
,

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7446

Ψz = diag(ψz1 , ψz2 , . . . , ψzn),

Ψr = diag(ψr1 , ψr2 , . . . , ψrn),

and ηi is a convex combination of (z(k)
i , r

(k)
i) and (z∗i , r

∗
i), i = 1, 2, . . . , n.

Theorem 3.8. Let Ω ∈ Rn×n be a positive diagonal matrix, γ > 0,Λ(k) = λ(k)I, where λ(k) > 0, and
A, B ∈ Rn×n be two H+-matrices. Assume that A = MA − NA is an H-splitting, with a positive diagonal
matrix D making (⟨MA⟩ − |NA|)D be an s.d.d. matrix; |CMA | ≥ |CMB |Ω; |NA| ≥ |NB|Ω; and DB ≥ Ψr.
Then, for any x(1) ∈ Rn, Method 2.2 converges provided (I) or (II) is satisfied.
(I)

(DMB − Ψr)Ω ≥ DMA + Ψz (3.2)

and
0 < λ(k) <

2

1 +max
i

{[⟨MBΩ+MA⟩−2(⟨MA⟩−|NA |)]De}i
(⟨MBΩ+MA⟩De)i

. (3.3)

(II) B = MB − NB is an H-splitting,

(DMB − Ψr)−1(Ψz + |CMA | + |NA|)D̃e < ΩD̃e < D−1
MB

DMA D̃e, (3.4)

where D̃ is a positive diagonal matrix such that ⟨MB⟩D̃ is an s.d.d. matrix *, and

0 < λ(k) <
2

1 +max
i

{[⟨MBΩ+MA⟩−2(DMBΩ−ΨrΩ−Ψz−|CMA |−|NA |)]Ω−1D̃e}i
(⟨MBΩ+MA⟩Ω−1D̃e)i

. (3.5)

Proof. By the assumptions that |CMA | ≥ |CMB |Ω and |NA| ≥ |NB|Ω, one can easily get

|CMA +CMBΩ| + |CMA −CMBΩ| = 2|CMA |, |NA + NBΩ| + |NA − NBΩ| = 2|NA|. (3.6)

Let δ(k) = x(k) − x∗ and δ̄(k) = |x(k)| − |x∗|. By Step 7 of Method 2.2, together with (3.1), we have
the error

δ(k+ 1
2) = (MBΩ + MA)−1[(NBΩ + NA)δ(k) + (BΩ − A)δ̄(k) − (Φ(k)

z − Φ
(k)
r Ω)δ(k)

+(Φ(k)
z + Φ

(k)
r Ω)δ̄(k)]

= (MBΩ + MA)−1
{[

NBΩ + NA − Φ
(k)
z + Φ

(k)
r Ω
]
δ(k) + (BΩ − A − Φ(k)

z − Φ
(k)
r Ω)δ̄(k)

}
.

Then, by Step 8 of Method 2.2, we get

δ(k+1) = λ(k)δ(k+ 1
2) + (1 − λ(k))δ(k)

= λ(k)(MBΩ + MA)−1
{[

NBΩ + NA − Φ
(k)
z + Φ

(k)
r Ω
]
δ(k)

+(BΩ − A − Φ(k)
z − Φ

(k)
r Ω)δ̄(k)

}
+ (1 − λ(k))δ(k). (3.7)

Next, we distinguish the following deductions to two cases.
*Since B = MB − NB is an H-splitting, we have ⟨MB⟩ − |NB| is a nonsingular M-matrix. Then ⟨MB⟩ is also a nonsingular M-matrix

due to ⟨MB⟩ ≥ ⟨MB⟩ − |NB|, which implies such D̃ exists.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7447

Case (I): By (3.2), we have DMBΩ ≥ DMA . Together with |CMA | ≥ |CMB |Ω, we get ⟨MB⟩Ω ≥ ⟨MA⟩.
Therefore, we have

⟨MBΩ + MA⟩ ≥ ⟨MB⟩Ω + ⟨MA⟩ ≥ 2⟨MA⟩ ≥ 2(⟨MA⟩ − |NA|). (3.8)

Since A = MA − NA is an H-splitting, one can see that ⟨MBΩ + MA⟩ is an M-matrix by Lemma 3.7,
which implies that MBΩ + MA is an H-matrix. By (3.7) and Lemma 3.5, we have

|δ(k+1)| ≤ [λ(k)⟨MBΩ + MA⟩
−1(|NBΩ + NA − Φ

(k)
z + Φ

(k)
r Ω|

+|BΩ − A − Φ(k)
z − Φ

(k)
r Ω|) + |1 − λ

(k)|In]|δ(k)| (3.9)
� (λ(k)M−1N + |1 − λ(k)|In)|δ(k)|,

where
M = ⟨MBΩ + MA⟩,N = |NBΩ + NA − Φ

(k)
z + Φ

(k)
r Ω| + |BΩ − A − Φ(k)

z − Φ
(k)
r Ω|.

Note that (⟨MA⟩ − |NA|)D is an s.d.d. matrix. By (3.8), it is clear that MDe = ⟨MBΩ + MA⟩De ≥
2(⟨MA⟩ − |NA|)De > 0, which implies thatMD is an s.d.d. matrix, too. Then, by Lemma 3.6, we have

∥(MD)−1ND∥∞ ≤ max
1≤i≤n

(|ND|e)i

(⟨MD⟩e)i
. (3.10)

By (3.6), we directly deduce that

MDe − NDe

= (⟨MBΩ + MA⟩ − |NBΩ + NA − Φ
(k)
z + Φ

(k)
r Ω| − |BΩ − A − Φ(k)

z − Φ
(k)
r Ω|)De

= (|DMBΩ + DMA | − |CMBΩ +CMA | − |NBΩ + NA − Φ
(k)
z + Φ

(k)
r Ω|

−|DMBΩ − DMA −CMBΩ +CMA − NBΩ + NA − Φ
(k)
z − Φ

(k)
r Ω|]De

≥ (DMBΩ + DMA − |CMBΩ +CMA | − |CMBΩ −CMA | − Φ
(k)
z − Φ

(k)
r Ω

−|DMBΩ − DMA − Φ
(k)
z − Φ

(k)
r Ω| − |NBΩ + NA| − |NBΩ − NA|]De

= (DMBΩ + DMA − 2|CMA | − 2|NA| − Φ
(k)
z − Φ

(k)
r Ω

−|DMBΩ − DMA − Φ
(k)
z − Φ

(k)
r Ω|)De. (3.11)

With (3.2), we can get

MDe − NDe

≥ [DMBΩ + DMA − 2|CMA | − 2|NA| − Φ
(k)
z − Φ

(k)
r Ω − (DMBΩ − DMA − Φ

(k)
z − Φ

(k)
r Ω)]De

= (2DMA − 2|CMA | − 2|NA|)De

= 2(⟨MA⟩ − |NA|)De

> 0, (3.12)

which implies that ∥(MD)−1ND∥∞ < 1 by (3.10). Then, by direct computation, we have

λ(k)∥D−1M−1ND∥∞ + |1 − λ(k)| < 1

for λ(k) satisfying (3.3). Furthermore, we get

ρ
(
(λ(k)M−1N + |1 − λ(k)|In)

)
Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7448

= ρ
(
D−1(λ(k)M−1N + |1 − λ(k)|In)D

)
≤ λ(k)∥D−1M−1ND∥∞ + |1 − λ(k)|

< 1,

which implies that Method 2.2 is convergent by (3.9).
Case (II): By the first inequality of (3.4), we have

DMBΩD̃e > (ΨrΩ + Ψz + |CMA | + |NA|)D̃e ≥ |CMA |D̃e. (3.13)

On the other hand, note that DMBΩ < DMA is satisfied according the second inequality of (3.4). Then,
with (3.13), we have

⟨MBΩ + MA⟩Ω
−1D̃e

≥ (⟨MBΩ⟩ + ⟨MA⟩)Ω−1D̃e

≥ (⟨MBΩ⟩ + DMBΩ − |CMA |)Ω
−1D̃e

≥ ⟨MB⟩D̃e

> 0,

which implies that MBΩ + MA is an H-matrix. Then, by the same deductions as those in Case (I), we
can also get the error (3.9). Moreover, we have

∥(MΩ−1D̃)−1NΩ−1D̃∥∞ ≤ max
1≤i≤n

(|NΩ−1D̃|e)i

(⟨MΩ−1D̃⟩e)i
(3.14)

and

MΩ−1D̃e − NΩ−1D̃e

≥ (DMBΩ + DMA − 2|CMA | − 2|NA| − Φ
(k)
z − Φ

(k)
r Ω

−|DMBΩ − DMA − Φ
(k)
z − Φ

(k)
r Ω|)Ω

−1D̃e, (3.15)

similar to (3.10) and (3.11), respectively. By (3.4) and (3.15), we get

MΩ−1D̃e − NΩ−1D̃e

≥ [DMBΩ + DMA − 2|CMA | − 2|NA| − Φ
(k)
z − Φ

(k)
r Ω

+(DMBΩ − DMA − Φ
(k)
z − Φ

(k)
r Ω)]Ω−1D̃e

= 2(DMBΩ − Φ
(k)
z − Φ

(k)
r Ω − |CMA | − |NA|)Ω−1D̃e

≥ 2(DMBΩ − Ψz − ΨrΩ − |CMA | − |NA|)Ω−1D̃e

> 0.

Then, when (3.5) is satisfied, by the same deductions as those following (3.12) in Case (I), we can also
get

ρ
(
(λ(k)M−1N + |1 − λ(k)|In)

)
< 1,

which finishes the proof. □

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7449

Remark 3.9. We have obtained the convergence conditions of Method 2.2 in Theorem 3.8. Note that
if we take λ(k) ≡ 1, Theorem 3.8 reduces to the convergence theorem of Method 2.1. Comparing to
Theorem 2 in [9], some comments can be given.

• Theorem 3.8 presents convergence conditions for two distinct cases, and we hereby state that
these two cases are mutually exclusive. Indeed, by (3.2), we have

Ω ≥ (DMB − Ψr)−1(DMA + Ψz) ≥ D−1
MB

DMA ,

while inequality (3.4) clearly implies

ΩD̃e < D−1
MB

DMA D̃e⇒ Ω < D−1
MB

DMA .

• The proof techniques between Theorem 3.8 and Theorem 2 of [9] are different from each other.
• The assumptions in Case (I) are the same as those in Theorem 2 of [9].
• One can have more choices of the parameter matrix Ω in Case (II) of Theorem 3.8 than Theorem

2 of [9]. In fact, Ω can be chosen when Ω ≤ D−1
MB

DMA in the former but not in the latter. Hence,
the research scope of the convergence of the MMS iteration method for the HNCP has been
extended. Numerical examples will be presented in the following section to show the significance
of the improvement.

4. Selection strategy for relaxation parameters

For acceleration methods incorporating relaxation techniques, a natural question arises regarding
the selection of optimal relaxation parameters λ(k) in application. However, due to the modulus
operations present in the equivalent modulus equation of the HNCP, the convergence analysis actually
involves approximation when estimating the spectral radius of the iteration matrix of the MMS
iteration. This significantly complicates the search for theoretically optimal parameters. In most
existing literatures on relaxation-type methods such as [28–30], which investigate relaxation
approaches for the HLCP (a simplified case of the HNCP considered in this paper), no theoretical
analysis had been conducted regarding the selection strategy for relaxation parameters. Instead, in
numerical experiments, the computational performance of the relaxation method was demonstrated
merely by exhaustively testing parameters within a predefined interval.

To propose a theoretically grounded strategy for selecting near-optimal relaxation parameters,
consider the error δ(k+1) following the relaxation operation in the k-th iteration. Clearly, we have

δ(k+1) = (1 − λ(k))δ(k) + λ(k)δ(k+ 1
2).

Let
f (λ) = ∥(1 − λ)δ(k) + λδ(k+ 1

2)∥22.

One can easily get that the minimum point of the above quadratic function f is

λmin = 1 +
(x(k+ 1

2) − x∗)T (x(k) − x(k+ 1
2))

||x(k) − x(k+ 1
2)||22

, (4.1)

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7450

which will make the relaxation operation work. Note that x∗ is unknown beforehand. During the
iteration, when k > 1, replacing x∗ by x(k− 1

2), a feasible choice of the relaxation parameter based
on (4.1) can be

λ(k) � λ0 = 1 +
(x(k+ 1

2) − x(k− 1
2))T (x(k) − x(k+ 1

2))

||x(k) − x(k+ 1
2)||22

. (4.2)

Furthermore, combining with Theorem 3.8, we can use the upper bounds given in (3.3) and (3.5),
denoted by τ1 and τ2, respectively, to guarantee the theoretical rationality of the choice of λ(k).
Specifically,

λ(k) � λ1 =

{
λ0, if λ0 ≤ τ1,

τ1, otherwise,
(4.3)

for Case (I), while

λ(k) � λ2 =

{
λ0, if λ0 ≤ τ2,

τ2, otherwise,
(4.4)

for Case (II).
Clearly, the dominant computational cost in calculating the upper bounds given by (3.3) or (3.5)

arises from matrix-vector multiplication. This indicates that the required computational effort of (4.3)
or (4.3) is O(n2), which is of the same order as the per-iteration cost of the MMS iteration.

5. Numerical examples

This section presents numerical examples to demonstrate the effectiveness of the proposed method.
The computations were run on an Intel(R) Core(TM) i7-10710U. The programming language
is MATLAB.

The following two examples are from [9].

Example 5.10. [9] Let z(u, v), r(u, v), and q(u, v) be three R2 → R2 mappings. Take into account the
following boundary problem:

△z +
∂2r
∂2u
+ µz + νr − q − ϕ(z, r) = 0, min{z, r} = 0,

where µ and ν are real parameters.

By using a five-point difference scheme along with appropriate boundary conditions to discretize
the problem, an HNCP can be formulated. Specially, the matrices A and B take the forms

A =



S −Im

−Im S −Im
. . .

. . .
. . .

−Im S −Im

−Im S


, B =



S
S

. . .

S
S


,

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7451

where

S =



4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


∈ Rm×m,

respectively, and n = m2.

Example 5.11. [9] Let

A =



T −0.5Im

−1.5Im T −0.5Im
. . .

. . .
. . .

−1.5Im T −0.5Im

−1.5Im T


, B =



T
T

. . .

T
T


,

where

T =



4 −0.5
−1.5 4 −0.5

. . .
. . .

. . .

−1.5 4 −0.5
−1.5 4


+ µI ∈ Rm×m,

and q = Az∗ − Br∗, where n = m2.

In all numerical experiments, let x(1) = e, γ = 1, kmax = 150, and ϵ = 10−8. The nonlinear functions
are chosen as below. 

ϕ1 =
1
2 (r + z + sin(r) cos(r) + sin(z) cos(z)),

ϕ2 = −
1

1+r+z ,

ϕ3 = arctan(r) + arctan(z),
ϕ4 = sin(r + z),
ϕ5 = ln(1 + r + z),
ϕ6 = z2,

ϕ7 = r2,

ϕ8 = zr,
ϕ9 = |sin(r)| + z2.

(5.1)

We remark that the first five functions are constructed satisfying the smoothness assumption presented
in Section 3, while the remaining four are from [9].

5.1. Experiment 1

We first verify the improvement on the larger convergence range of the positive diagonal parameter
matrix Ω, shown in the third item of Remark 3.9. Here, we consider the case of µ = ν = 4.

Consider the first five functions in (5.1), which satisfy the smoothness assumptions with Ψz = Ψr =

In. Let
Ω = θ(DMB − In)−1(DMA + In). (5.2)

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7452

Consider the SOR splitting. Taking m = 64 and m = 128, by direct computation, we can get the
ranges of θ making Ω given by (5.2) satisfy (3.4). Specifically, for the two examples, we have the
following results.

• If α = 0.8, then 0.7778 ≤ θ ≤ 1.
• If α = 0.9, then 0.7465 ≤ θ ≤ 1.
• If α = 1.0, then 0.7143 ≤ θ ≤ 1.
• If α = 1.1, then 0.9130 ≤ θ ≤ 1.

To show more behaviors of the methods, we run the numerical experiments with more choices of the
parameters. Therefore, we set 0.4 ≤ θ ≤ 1 and 0.8 ≤ α ≤ 1.2. Numerical results of the MMS iteration
method are shown in Tables 1 and 2. Since the computation cost of each iteration in the MMS are
the same with different θ and α, we only shown the iteration steps, which can accurately measure the
computational efficiency.

It can be seen from Tables 1 and 2 that the MMS iteration method converges in most cases, with
only a few cases where the iteration steps have exceeded kmax. By the definition of Ω given in (5.2), θ
should satisfy θ ≥ 1 according to Theorem 2 of [9]. As the numerical results show, when θ < 1, the
MMS iteration method still converges in most cases, and in some cases, the computational efficiencies
are better than those of θ = 1. These facts can also be visually observed in Figures 1–4. Therefore, the
improvement of the convergence range of Ω is significant.

Table 1. Iteration steps of Method 2.1 for Example 5.10.

m = 64 m = 128

α

θ
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ϕ1 0.8 45 46 49 52 55 59 63 47 48 50 54 57 61 65
0.9 37 37 40 42 46 49 53 38 38 41 44 47 51 54
1.0 70 40 32 35 38 41 44 72 41 33 36 39 42 46
1.1 150 76 45 32 31 34 37 150 77 46 32 32 35 38
1.2 150 150 80 48 37 44 51 150 150 82 49 39 46 53

ϕ2 0.8 88 91 96 101 108 114 121 91 95 99 105 112 119 125
0.9 72 75 80 85 91 96 102 75 78 83 88 94 100 106
1.0 60 63 67 72 77 82 88 62 65 70 75 80 85 91
1.1 58 52 57 61 66 71 75 59 55 59 63 68 73 78
1.2 119 57 48 52 56 61 65 122 59 49 54 58 63 68

ϕ3 0.8 49 49 51 54 57 61 64 51 51 53 56 59 63 67
0.9 39 40 41 44 47 50 54 41 41 43 46 49 52 55
1.0 71 42 34 36 39 42 45 72 43 35 37 40 43 46
1.1 150 75 46 33 32 35 38 150 77 47 34 33 36 39
1.2 150 150 81 49 36 33 37 150 150 83 51 37 34 38

ϕ4 0.8 45 46 48 51 55 58 62 47 48 50 53 56 60 64
0.9 40 37 39 42 45 49 52 41 38 41 43 47 50 54
1.0 82 44 32 35 38 41 44 84 45 33 36 39 42 45
1.1 150 85 47 32 31 34 37 150 87 48 33 32 35 38
1.2 150 150 88 50 37 44 49 150 150 90 51 39 46 51

ϕ5 0.8 56 56 58 61 65 69 73 58 58 60 63 67 71 75
0.9 45 46 48 50 54 57 61 46 47 49 52 56 59 63
1.0 61 38 39 42 45 48 51 63 39 40 43 46 50 53
1.1 165 64 41 34 37 40 43 170 66 42 36 38 42 45
1.2 150 158 67 43 32 34 37 150 163 69 44 33 35 38

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7453

Table 2. Iteration steps of Method 2.1 for Example 5.11.

m = 64 m = 128

α

θ
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ϕ1 0.8 32 34 37 40 44 48 52 33 35 38 42 46 50 54
0.9 26 24 27 31 34 38 42 27 25 28 32 36 39 43
1.0 45 28 21 23 27 30 33 46 29 21 24 27 31 34
1.1 104 50 31 25 30 35 40 107 51 31 26 30 36 41
1.2 150 109 55 51 58 80 101 150 113 56 54 63 88 115

ϕ2 0.8 65 69 75 81 87 93 100 67 72 78 84 91 98 104
0.9 49 54 59 64 70 76 82 51 56 61 67 73 79 85
1.0 36 41 46 51 57 62 67 37 43 48 53 59 65 70
1.1 35 30 35 41 46 50 55 36 31 37 42 47 53 58
1.2 60 36 27 31 36 41 45 61 37 28 33 38 42 47

ϕ3 0.8 35 36 38 42 45 49 53 36 37 40 43 47 51 54
0.9 29 26 28 32 35 38 42 30 27 29 33 36 40 43
1.0 50 31 22 23 27 30 33 51 32 23 24 28 31 34
1.1 113 54 34 24 22 26 29 116 55 35 24 23 27 30
1.2 150 103 56 37 38 41 45 150 106 58 38 40 43 47

ϕ4 0.8 32 34 37 40 44 47 51 33 35 38 41 45 49 53
0.9 29 24 28 31 34 38 41 30 25 28 32 35 39 43
1.0 46 30 23 23 27 30 33 47 31 24 24 28 31 34
1.1 109 49 31 25 29 34 40 112 50 32 26 30 35 41
1.2 150 110 52 53 64 86 112 150 111 53 58 67 100 139

ϕ5 0.8 40 41 44 48 51 56 60 41 43 46 49 53 58 62
0.9 29 30 33 37 40 44 48 30 31 34 38 42 46 50
1.0 41 27 24 28 31 35 38 42 28 25 29 32 36 40
1.1 83 44 29 21 24 27 30 85 45 29 22 25 28 32
1.2 150 85 47 31 28 35 40 150 87 48 31 29 36 42

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

1

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
40

50

60

70

80

90

100

110

120

130

ite
ra

tio
n

st
ep

s

2

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

3

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

4

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

5

=0.8
=0.9
=1.0
=1.1
=1.2

Figure 1. The iteration steps of Method 2.1 for Example 5.10 with m = 64.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7454

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

1

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
40

50

60

70

80

90

100

110

120

130

ite
ra

tio
n

st
ep

s

2

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

3

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

4

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

5

=0.8
=0.9
=1.0
=1.1
=1.2

Figure 2. The iteration steps of Method 2.1 for Example 5.10 with m = 128.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

1

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

30

40

50

60

70

80

90

100

ite
ra

tio
n

st
ep

s

2

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s
3

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

4

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

5

=0.8
=0.9
=1.0
=1.1
=1.2

Figure 3. The iteration steps of Method 2.1 for Example 5.11 with m = 64.

5.2. Experiment 2

Next, we show the efficiency of the RMMS iteration method.
To illustrate more computational behavior of the method outside the sufficient convergence

conditions, consider all nine functions given in (5.1). Let Ω be given in (5.2) with θ = 1, which
satisfies the convergence conditions of both MMS and RMMS iteration methods. SOR splitting is
also used with 0.8 ≤ α ≤ 1.2. When m = 512 and m = 1024, numerical results are shown in Tables 3

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7455

and 4, where “IT” is the iteration step and “T” is the CPU time in seconds. Here, for Method 2.2, two
strategies of the relaxation parameter are considered, the first given by (4.2) and the second given by
(4.3), correspondingly denoted by “RMMS1” and “RMMS2”. When α is given, one can see that the
RMMS1 and RMMS2 require significantly fewer iteration steps than the MMS, resulting in
significantly less CPU time. Even when α changes from 0.8 to 1.2, the RMMS1 and RMMS2 are
more superior to the MMS, which can be seen more clearly in Figures 5 and 6, where the blue
(RMMS1) and red (RMMS2) lines are almost always below the black (MMS) lines for a fixed m.
Furthermore, the comparisons of the MMS, RMMS1, and RMMS2 for the optimal cases are shown in
Figures 7–10. For the comparison between the RMMS1 and RMMS2, the RMMS1 without an upper
bound constraint is better than the RMMS2. This implies that the theoretical conditions may be
improved. In addition, Method 2.2 is more effective than Method 2.1 with the strategy given
in Section 4.

Table 3. Numerical comparisons of Method 2.1 and Method 2.2 for Example 5.10.

m = 512 m = 1024
MMS RMMS2 RMMS1 MMS RMMS2 RMMS1

α IT T IT T IT T IT T IT T IT T
ϕ1 0.8 69 2.2883 45 1.2288 32 0.8726 71 9.9271 47 5.7038 32 3.8877

0.9 57 1.4967 40 1.1027 32 0.8809 59 7.0076 40 4.8522 32 3.9221
1.0 48 1.2913 37 1.0151 31 0.8533 50 5.6432 38 4.6539 32 3.9143
1.1 41 1.1736 32 0.8773 30 0.8197 42 5.5499 33 4.0616 30 3.6306
1.2 56 1.5706 33 0.9113 32 0.8776 58 7.3800 33 4.0741 32 3.9039

ϕ2 0.8 134 4.1852 91 2.5051 55 1.5275 138 18.5767 93 10.2230 58 6.4235
0.9 113 3.1663 78 2.1746 50 1.3792 117 13.9116 80 8.7294 53 5.8363
1.0 97 2.6303 69 1.9052 52 1.4457 100 10.7404 71 7.7700 53 5.8897
1.1 84 2.4775 64 1.7748 50 1.3910 86 9.0032 65 7.2113 49 5.3462
1.2 72 1.8699 58 1.5968 47 1.3091 74 7.8276 59 6.4469 50 5.4954

ϕ3 0.8 71 2.3154 46 1.3557 32 0.9576 73 9.6761 47 5.0806 33 3.5461
0.9 59 1.7581 40 1.1992 31 0.9132 60 6.5988 42 4.5837 31 3.3804
1.0 49 1.4023 36 1.0588 30 0.8894 51 5.3953 38 4.0872 31 3.3610
1.1 41 1.1644 32 0.9558 30 0.8869 42 4.6030 35 3.7707 30 3.2506
1.2 41 1.3194 30 0.8968 31 0.9264 42 4.5108 31 3.3318 31 3.3318

ϕ4 0.8 68 2.2003 44 1.2787 33 0.9442 69 9.4393 44 4.6365 34 3.5879
0.9 57 1.5991 39 1.1282 31 0.8899 58 6.1149 39 4.0794 31 3.2614
1.0 48 1.3990 36 1.0358 32 0.9165 49 5.1026 37 3.9368 34 3.6174
1.1 40 1.1395 33 0.9526 31 0.8889 41 4.3585 34 3.6206 31 3.2635
1.2 55 1.6339 34 0.9792 33 0.9473 57 6.0616 32 3.3770 33 3.4561

ϕ5 0.8 80 2.5542 53 1.4630 36 0.9809 82 11.1193 54 5.8840 37 4.0263
0.9 67 1.8655 45 1.2325 35 0.9693 69 7.6724 47 5.1334 36 3.9553
1.0 56 1.4928 42 1.1470 33 0.9141 58 6.2072 42 4.6304 34 3.7417
1.1 48 1.3061 37 1.0137 32 0.8797 49 5.3486 38 4.1223 33 3.6256
1.2 40 1.1276 33 0.8985 33 0.8979 41 4.5427 33 3.5819 34 3.7208

ϕ6 0.8 53 1.6380 36 1.0336 28 0.7981 54 6.7672 36 4.0446 28 3.1069
0.9 43 1.2361 31 0.8856 26 0.7438 45 5.3154 32 3.5842 27 3.0081
1.0 36 0.9499 27 0.7783 26 0.7477 37 4.1743 28 3.1182 26 2.8968
1.1 31 0.9254 26 0.7412 25 0.7211 32 3.4015 26 2.8925 26 2.9146
1.2 58 1.7075 25 0.7198 25 0.7111 60 6.4912 26 2.8931 26 2.9133

ϕ7 0.8 16 0.5270 12 0.3181 8 0.2133 16 2.0114 12 1.3325 8 0.8881
0.9 13 0.3470 10 0.2637 8 0.2131 13 1.5080 10 1.1125 8 0.8887
1.0 11 0.2893 9 0.2394 7 0.1852 11 1.2339 9 1.0047 7 0.7767
1.1 9 0.2380 8 0.2116 6 0.1590 9 0.9707 8 0.8887 6 0.6665
1.2 7 0.1830 6 0.1581 5 0.1324 7 0.7552 6 0.6748 5 0.5578

ϕ8 0.8 127 3.8693 86 2.2634 56 1.4936 131 18.0876 89 9.3168 57 5.9101
0.9 106 2.8132 74 1.9715 51 1.3457 110 11.5652 76 7.9031 52 5.4111
1.0 90 2.3307 67 1.7676 49 1.2844 93 9.5899 71 7.4337 49 5.1012
1.1 75 1.9862 61 1.6014 53 1.3934 78 8.1981 63 6.6103 54 5.6336
1.2 58 1.5616 53 1.4115 50 1.3185 60 6.2761 54 5.6108 50 5.2251

ϕ9 0.8 70 2.3586 46 1.3090 34 0.9801 73 9.9177 46 4.9512 35 3.7419
0.9 59 1.6608 43 1.2280 34 0.9754 60 6.3531 44 4.6968 34 3.6390
1.0 49 1.4065 38 1.0970 34 0.9772 51 5.3157 38 4.0543 34 3.6184
1.1 41 1.2998 33 0.9380 30 0.8563 42 4.4518 35 3.7126 31 3.2973
1.2 59 1.6016 35 1.0130 32 0.9175 61 6.7017 34 3.6252 35 3.7691

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7456

Table 4. Numerical comparisons of Method 2.1 and Method 2.2 for Example 5.11.

m = 512 m = 1024
MMS RMMS2 RMMS1 MMS RMMS2 RMMS1

α IT T IT T IT T IT T IT T IT T
ϕ1 0.8 57 1.9219 40 1.1633 28 0.8180 59 8.0153 41 4.9187 28 3.4131

0.9 46 1.2619 35 1.0353 28 0.8192 47 5.3114 36 4.3665 28 3.4122
1.0 36 0.9976 31 0.9175 29 0.8543 37 4.0196 31 3.7481 30 3.6156
1.1 44 1.2036 28 0.8268 26 0.7576 45 5.1346 31 3.7694 29 3.5206
1.2 127 3.9634 29 0.8444 32 0.9435 132 17.0945 30 3.6432 34 4.0864

ϕ2 0.8 112 3.4504 82 2.1965 42 1.1382 115 15.5008 84 8.8244 47 4.9360
0.9 91 2.4893 69 1.8749 43 1.1655 94 10.0291 71 7.4673 45 4.8031
1.0 75 1.9977 59 1.5954 41 1.1166 77 7.8956 61 6.4990 42 4.4593
1.1 61 1.6049 54 1.4596 43 1.1699 63 6.7663 55 5.7600 43 4.5461
1.2 50 1.3984 48 1.3085 41 1.1104 52 5.5457 49 5.1794 37 3.9095

ϕ3 0.8 58 2.0714 41 1.2043 27 0.7937 59 8.0961 42 4.5845 28 3.0438
0.9 46 1.4162 34 1.0112 26 0.7754 47 5.2527 34 3.7009 26 2.8252
1.0 36 1.0806 31 0.9102 25 0.7455 37 3.9823 32 3.5148 25 2.7379
1.1 32 0.9239 26 0.7639 23 0.6846 33 3.6066 26 2.8375 24 2.5897
1.2 50 1.4392 24 0.7115 25 0.7357 51 5.4382 24 2.6271 25 2.7003

ϕ4 0.8 56 1.8652 39 1.2268 29 0.9164 58 7.8559 40 4.7293 29 3.4160
0.9 45 1.3360 35 1.1058 29 0.9187 46 4.9973 36 4.2683 29 3.4343
1.0 36 1.0894 30 0.9562 27 0.8535 37 3.9345 31 3.6449 29 3.4223
1.1 44 1.3459 29 0.9238 26 0.8258 45 4.8882 30 3.5963 27 3.2050
1.2 156 5.1261 31 0.9729 36 1.1428 162 20.6109 28 3.3022 33 3.9054

ϕ5 0.8 66 2.4429 47 1.4877 29 0.9083 68 10.2677 48 5.7117 29 3.4761
0.9 53 1.6208 38 1.2021 28 0.8792 54 6.3875 39 4.6780 29 3.4423
1.0 42 1.4092 34 1.0570 27 0.8545 43 4.9386 36 4.3152 27 3.2017
1.1 33 1.0262 30 0.9456 24 0.7516 34 4.0715 32 3.8260 25 3.0165
1.2 44 1.3393 27 0.8431 23 0.7285 46 5.7485 28 3.3584 25 2.9671

ϕ6 0.8 43 1.4620 30 0.9742 23 0.7519 44 6.1519 32 3.7727 24 2.7999
0.9 34 0.8934 27 0.8861 23 0.7533 34 3.7129 27 3.1662 23 2.7086
1.0 25 0.7257 23 0.7597 21 0.6950 27 2.8439 23 2.6871 22 2.5721
1.1 45 1.3760 23 0.7565 24 0.7813 46 4.9030 23 2.6999 24 2.8148
1.2 141 5.0358 23 0.7493 25 0.8253 146 18.2818 23 2.7028 24 2.8260

ϕ7 0.8 16 0.5624 12 0.3062 8 0.2071 16 2.1887 12 1.3245 8 0.8675
0.9 13 0.3256 11 0.2809 7 0.1803 13 1.4851 11 1.2135 7 0.7652
1.0 10 0.2560 9 0.2313 6 0.1534 10 1.0754 9 0.9916 6 0.6544
1.1 7 0.1835 6 0.1531 5 0.1284 7 0.7487 6 0.6538 5 0.5437
1.2 5 0.1325 4 0.1032 4 0.1018 5 0.5228 4 0.4388 4 0.4351

ϕ8 0.8 105 3.3092 78 2.1830 47 1.3227 109 16.1149 80 8.8254 48 5.3416
0.9 83 2.3341 64 1.7794 43 1.2086 86 9.1724 66 7.2990 44 4.8540
1.0 69 1.9003 58 1.6290 45 1.2496 71 7.3787 60 6.6028 45 4.9439
1.1 61 1.6912 55 1.5408 38 1.0560 63 6.8008 57 6.3245 43 4.7034
1.2 125 3.5487 53 1.4914 43 1.2009 129 15.1253 53 5.8688 51 5.6352

ϕ9 0.8 58 1.9737 41 1.3027 30 0.9438 60 8.0158 42 5.0516 30 3.6197
0.9 46 1.3948 36 1.1358 28 0.8837 48 5.1084 38 4.6094 28 3.3523
1.0 35 1.0867 32 1.0028 27 0.8536 36 3.9552 32 3.8581 27 3.2575
1.1 45 1.3312 32 1.0064 30 0.9471 47 5.0703 32 3.8827 30 3.6211
1.2 127 4.2831 33 1.0355 30 0.9550 132 17.6775 29 3.4687 33 3.9334

Remark 5.12. The numerical results presented in Section 5 reveal that Method 2.2 performs better
with the relaxation parameter given in (4.2) than in (4.3), which implies that there may exist potential
improvements for the choice of relaxation parameter.

6. Conclusions

We have applied the relaxation technique to the MMS iteration method for solving the HNCP. When
presenting the convergence conditions of the relaxation method, we also enlarge the convergence range
of the positive diagonal parameter matrix. Moreover, by minimizing the error in the k-th iteration, we
provide the strategy of the relaxation parameter. Finally, the improved convergence range and the
effectiveness of the relaxation strategy are validated by numerical examples.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7457

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

1

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

30

40

50

60

70

80

90

100

110

ite
ra

tio
n

st
ep

s

2

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

3

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

4

=0.8
=0.9
=1.0
=1.1
=1.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
20

40

60

80

100

120

140

160

ite
ra

tio
n

st
ep

s

5

=0.8
=0.9
=1.0
=1.1
=1.2

Figure 4. The iteration steps of Method 2.1 for Example 5.11 with m = 128.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

9

10

C
P

U
 ti

m
e

1

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

20

C
P

U
 ti

m
e

2

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

9

10
C

P
U

 ti
m

e
3

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

9

10

C
P

U
 ti

m
e

4

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

C
P

U
 ti

m
e

5

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

C
P

U
 ti

m
e

6

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.5

1

1.5

2

2.5

C
P

U
 ti

m
e

7

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

20

C
P

U
 ti

m
e

8

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

9

10

C
P

U
 ti

m
e

9

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

Figure 5. Comparison of CPU times between Method 2.1 and Method 2.2 for Example 5.10.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7458

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

C
P

U
 ti

m
e

1

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

C
P

U
 ti

m
e

2

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

1

2

3

4

5

6

7

8

9

C
P

U
 ti

m
e

3

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

5

10

15

20

25

C
P

U
 ti

m
e

4

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

C
P

U
 ti

m
e

5

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

20

C
P

U
 ti

m
e

6

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

0.5

1

1.5

2

2.5

C
P

U
 ti

m
e

7

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

C
P

U
 ti

m
e

8

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

2

4

6

8

10

12

14

16

18

C
P

U
 ti

m
e

9

MMS
512

RMMS1
512

RMMS2
512

MMS
1024

RMMS1
1024

RMMS2
1024

Figure 6. Comparison of CPU times between Method 2.1 and Method 2.2 for Example 5.11.

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

10

20

30

40

50

60

70

80

ite
ra

tio
n

st
ep

m=512

MMS
RMMS2
RMMS1

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
P

U
 ti

m
e

m=512

MMS
RMMS2
RMMS1

Figure 7. Optimal comparisons between Method 2.1 and Method 2.2 for Example 5.10 when
m = 512.

Additionally, it is essential to acknowledge that, besides relaxation, there are various techniques
that have been employed to improve the convergence speed of MMS iteration methods across different
complementarity problems, as reviewed in Section 1. It is conceivable that combining one or more
of these techniques with the relaxation method could lead to even better performance in solving large
sparse HNCPs. This avenues represent promising directions for future research.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7459

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

10

20

30

40

50

60

70

80

ite
ra

tio
n

st
ep

m=1024

MMS
RMMS2
RMMS1

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

1

2

3

4

5

6

7

8

C
P

U
 ti

m
e

m=1024

MMS
RMMS2
RMMS1

Figure 8. Optimal comparisons between Method 2.1 and Method 2.2 for Example 5.10 when
m = 1024.

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

10

20

30

40

50

60

70

80

ite
ra

tio
n

st
ep

m=512

MMS
RMMS2
RMMS1

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
P

U
 ti

m
e

m=512

MMS
RMMS2
RMMS1

Figure 9. Optimal comparisons between Method 2.1 and Method 2.2 for Example 5.11 when
m = 512.

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

10

20

30

40

50

60

70

ite
ra

tio
n

st
ep

m=1024

MMS
RMMS2
RMMS1

φ
1

φ
2

φ
3

φ
4

φ
5

φ
6

φ
7

φ
8

φ
9

φ

0

1

2

3

4

5

6

7

C
P

U
 ti

m
e

m=1024

MMS
RMMS2
RMMS1

Figure 10. Optimal comparisons between Method 2.1 and Method 2.2 for Example 5.11
when m = 1024.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

7460

Acknowledgement

This work was supported by Key Laboratory of Kunpeng+Intelligent Manufacturing in
Guangdong Province (No. 2023KSYS012), Research on Key Technologies of Industrial Internet
Collaborative Manufacturing Based on Blockchain (No. 2022ZDJS146), Basic and Applied Basic
Research Foundation of Guangdong (No. 2024A1515011822), Guangdong Provincial Ordinary
University Characteristic Innovation Project (No. 2025KTSCX138), and Science and Technology
Development Fund, Macau SAR (No. 0026/2025/RIA1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Society for Industrial
and Applied Mathematics, 1992.

2. M. C. Ferris, O. Mangasarian, J. S. Pang, Complementarity: Applications, Algorithms and
Extensions, Springer Science & Business Media, 2013.

3. F. Facchinei, J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, Springer, New York, 2023.

4. C. Delprete, A. Razavykia, Piston ring-liner lubrication and tribological performance
evaluation: A review, Proc. Inst. Mech. Eng. Part J, 232 (2018), 193–209.
https://doi.org/10.1177/1350650117706269

5. M. Giacopini, M. Fowell, D. Dini, A. Strozzi, A mass-conserving complementarity formulation
to study lubricant films in the presence of cavitation, J Tribol, 132 (2010), 041702.
https://doi.org/10.1115/1.4002215

6. M. Kostreva, Elasto-hydrodynamic lubrication: A nonlinear complementarity problem, Int J
Numer Methods Fluids, 4 (1984), 377–397. https://doi.org/10.1002/fld.1650040407

7. G. H. Meyer, Free boundary problems with nonlinear source terms, Numer. Math., 43 (1984),
463–482. https://doi.org/10.1007/BF01390185

8. K. Oh, The numerical solution of dynamically loaded elastohydrodynamic contact as a nonlinear
complementarity problem, J. Tribol., 106 (1984), 88–95. https://doi.org/10.1115/1.3260872

9. F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for a class of
horizontal nonlinear complementarity problems, Numer. Algorithms, 87 (2021), 667–687.
https://doi.org/10.1007/s11075-020-00983-w

10. Z. Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems,
Numer. Linear Algebra Appl., 17 (2010), 917–933. https://doi.org/10.1002/nla.680

11. Z. C. Xia, C. L .Li, Modulus-based matrix splitting iteration methods for a class
of nonlinear complementarity problem, Appl. Math. Comput., 271 (2015), 34–42.
https://doi.org/10.1016/j.amc.2015.08.108

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

https://dx.doi.org/https://doi.org/10.1177/1350650117706269
https://dx.doi.org/https://doi.org/10.1115/1.4002215
https://dx.doi.org/https://doi.org/10.1002/fld.1650040407
https://dx.doi.org/https://doi.org/10.1007/BF01390185
https://dx.doi.org/https://doi.org/10.1115/1.3260872
https://dx.doi.org/https://doi.org/10.1007/s11075-020-00983-w
https://dx.doi.org/https://doi.org/10.1002/nla.680
https://dx.doi.org/https://doi.org/10.1016/j.amc.2015.08.108

7461

12. F. Mezzadri, E. Galligani, Modulus-based matrix splitting methods for horizontal
linear complementarity problems, Numer. Algorithms, 83 (2020), 201–219.
https://doi.org/10.1007/s11075-019-00677-y

13. F. Bu, S. Vong, H. Zheng, Modulus-based synchronous multisplitting method for horizontal
nonlinear complementarity problem, J. Appl. Math. Comput., 70 (2024), 2405–2426.
https://doi.org/10.1007/s12190-024-02059-7

14. Z. Li, H. Zhang, Anderson acceleration of the modulus based matrix splitting algorithms for
horizontal nonlinear complementarity systems, Numer. Linear Algebra Appl., 29(2022), e2438.
https://doi.org/10.1002/nla.2438

15. X. H. Shao, Z. Wang, The nonsmooth Newton’s method for the horizontal
nonlinear complementarity problem, Numer. Algorithms, 96 (2024), 75–103.
https://doi.org/10.1007/s11075-023-01640-8

16. X. M. Fang, The convergence of the modulus-based Jacobi (MJ) iteration method for
solving horizontal linear complementarity problems, Comput. Appl. Math., 41 (2022), 134.
https://doi.org/10.1007/s40314-022-01842-1

17. X. M. Fang, The convergence of a modulus-based matrix splitting iteration method for
solving the implicit complementarity problems, J. Appl. Math. Comput., 69 (2023), 853–870.
https://doi.org/10.1007/s12190-022-01773-4

18. Z. F. Fu, S. L. Wu, L. Li, New modulus-based matrix splitting method for the
vertical nonlinear complementarity problem, J. Comput. Appl. Math., 457 (2025), 116251.
https://doi.org/10.1016/j.cam.2024.116251

19. J. He, S. Vong, Newton-type methods for solving vertical linear complementarity problems, J.
Comput. Appl. Math., 460 (2025), 116418. https://doi.org/10.1016/j.cam.2024.116418

20. D. Hussain, K. J. Pan, B. Kumar, Numerical exploration of two generalized iteration methods
for solving nonlinear complementarity problems, J. Appl. Math. Comput., 71 (2025), 3381–3397.
https://doi.org/10.1007/s12190-024-02334-7

21. F. Mezzadri, E. Galligani, Modulus-based matrix splitting algorithms for generalized complex-
valued horizontal linear complementarity problems, J. Comput. Appl. Math., 460 (2025), 116440.
https://doi.org/10.1016/j.cam.2024.116440

22. Y. J. Xie, Y. F. Ke, Neural network approaches based on new NCP-functions for
solving tensor complementarity problem, J. Appl. Math. Comput., 67 (2021), 833–853.
https://doi.org/10.1007/s12190-021-01509-w

23. H. Zheng, W. Li, S. Vong, A relaxation modulus-based matrix splitting iteration method
for solving linear complementarity problems, Numer. Algorithms, 74 (2017), 137–152.
https://doi.org/10.1007/s11075-016-0142-7

24. H. Zheng, S. Vong, L. Liu, The relaxation modulus-based matrix splitting iteration method for
solving a class of nonlinear complementarity problems, Intern. J. Comput. Math., 96 (2019), 1648–
1667. https://doi.org/10.1080/00207160.2018.1504928

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

https://dx.doi.org/https://doi.org/10.1007/s11075-019-00677-y
https://dx.doi.org/https://doi.org/10.1007/s12190-024-02059-7
https://dx.doi.org/https://doi.org/10.1002/nla.2438
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01640-8
https://dx.doi.org/https://doi.org/10.1007/s40314-022-01842-1
https://dx.doi.org/https://doi.org/10.1007/s12190-022-01773-4
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116251
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116418
https://dx.doi.org/https://doi.org/10.1007/s12190-024-02334-7
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.116440
https://dx.doi.org/https://doi.org/10.1007/s12190-021-01509-w
https://dx.doi.org/https://doi.org/10.1007/s11075-016-0142-7
https://dx.doi.org/https://doi.org/10.1080/00207160.2018.1504928

7462

25. Y. F. Ke, C. F. Ma, H. Zhang, The relaxation modulus-based matrix splitting iteration methods for
circular cone nonlinear complementarity problems, Comput. Appl. Math., 37 (2018), 6795–6820.
https://doi.org/10.1007/s40314-018-0687-2

26. N. Li, J. Ding, J. F. Yin, Modified relaxation two-sweep modulus-based matrix splitting iteration
method for solving a class of implicit complementarity problems, J. Comput. Appl. Math., 413
(2022), 114370. https://doi.org/10.1016/j.cam.2022.114370

27. D. Wang, J. Li, Relaxation modulus-based matrix splitting iteration method for
vertical linear complementarity problem, J. Comput. Appl. Math., 437 (2024), 115430.
https://doi.org/10.1016/j.cam.2023.115430

28. Z. G. Huang, J. J. Cui, The relaxation modulus-based matrix splitting iteration method for
horizontal linear complementarity problems, Bull. Iran. Math. Soc., 48 (2022), 3285–3319.
https://doi.org/10.1007/s41980-022-00695-y

29. Z. G. Huang, J. J. Cui, A relaxation two-sweep modulus-based matrix splitting iteration method
for horizontal linear complementarity problems, Jpn. J. Ind. Appl. Math., 40 (2023), 141–182.
https://doi.org/10.1007/s13160-022-00514-1

30. D. Wang, J. Li, General double-relaxation two-sweep modulus-based matrix splitting iteration
methods for horizontal linear complementarity problem, Numer. Algorithms, 98 (2025), 1965–
1983. https://doi.org/10.1007/s11075-024-01860-6

31. Z. Z. Bai, On the convergence of the multisplitting methods for the linear
complementarity problem, SIAM J. Matrix Anal. Appl., 21 (1999), 67–78.
https://doi.org/10.1137/S0895479897324032

32. A. Berman, R. J. Plemmons, Nonnegative Matrix in the Mathematical
Sciences, Society for Industrial and Applied Mathematics, Philadelphia, 1994.
https://doi.org/10.1137/1.9781611971262

33. A. Frommer, G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra
Appl., 119 (1989), 141–152. https://doi.org/10.1016/0024-3795(89)90074-8

34. J. G. Hu, Estimates of ∥B−1C∥∞ and their applications, Math. Numer. Sin., 4 (1982), 272–282.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 33, Issue 12, 7442–7462.

https://dx.doi.org/https://doi.org/10.1007/s40314-018-0687-2
https://dx.doi.org/https://doi.org/10.1016/j.cam.2022.114370
https://dx.doi.org/https://doi.org/10.1016/j.cam.2023.115430
https://dx.doi.org/https://doi.org/10.1007/s41980-022-00695-y
https://dx.doi.org/https://doi.org/10.1007/s13160-022-00514-1
https://dx.doi.org/https://doi.org/10.1007/s11075-024-01860-6
https://dx.doi.org/https://doi.org/10.1137/S0895479897324032
https://dx.doi.org/https://doi.org/10.1137/1.9781611971262
https://dx.doi.org/https://doi.org/10.1016/0024-3795(89)90074-8
https://creativecommons.org/licenses/by/4.0

	Introduction
	The relaxation method
	Convergence analysis
	Selection strategy for relaxation parameters
	Numerical examples
	Experiment 1
	Experiment 2

	Conclusions

