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Abstract: We consider the existence of solutions for some Schrodinger systems on locally finite
graphs. Using variationial method and Nehari manifold method, the existence and multiplicity of
nontrivial solutions are proved. More explicitly, we first give a functional setting of problem and prove
the compactness of Sobolev embedding. Then for the Schrodinger system with quadratical nonlinear
terms, the existence of nontrivial solutions is proved by using the Nehari manifold method. For the
Schrodinger system with cubic type nonlinearity, we first prove the existence of ground state solution
and then prove the multiplicity of solutions by combining the Nehari manifold method as well as the
Lusternik-Schnirelmann theory.
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1. Introduction

Partial or ordinary differential equations defined on Euclidean space and smooth manifolds have a
long and rich history, the differential equations on the graph as their discrete version, have attracted
increasing attention in the last decade. In the series seminal works of Grigor’yan, Lin, and Yang [1-3],
the authors studied the Yamabe equations, Schrodinger equations and Kazdan-Warner equations on
graphs. In these papers, the variational framework was systematically established and critical point
theory was applied to prove the existence of solution to the above mentioned equation. An important
ingredient in finding solutions is the precompactness of Sobolev embedding. If the graph has finite
vertices, Sobolev spaces are finite dimensional and hence the Sobolev embedding is precompact (see
[1,2]). If the graph is locally finite and has a positive measure with positive lower bound, it was proved
that the Sobolev embedding is also pre-compact in [3]. In [4], Lin and Yang proved existence and
positivity results for several equations including Schrodinger equations, the Yamabe equation and the
mean field equation on locally finite graphs using a novel local-to-global variational scheme.
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We assume that G = (V, E) is a connected locally finite graph, where V is the vertex set and E is the
edge set. We also assume the following four conditions on G = (V, E) are satisfied.

(G1) (Locally finite property) For all x € V, there exists at most finitely many vertices y € V such that
the edge xy € E.

(G,) (Connected property) For all x,y € V, there exists a path with at most finitely many edges
connecting the vertex x and the vertex y.

(G3) (Symmetric weight property) For any two different vertices x,y € V, there exists a positive
symmetric weight function w : V X V — R, that is, w, >0 and W, =W

yx*
(G4) (Positive finite measure) There exists a finite positive measure ¢ on G.

For a function u : V — R, define the u-Laplacian (or Laplacian) of u as follows:
1
Au(x) = —— ) wy @) —u(x), (1.1)
(%) ; o @0

where y ~ x means the edge xy belongs to E. The corresponding gradient form of two functions u and
v can be read as

1
I'(u,v) (x) := e Z Way (e (y) —u(x) (v (y) =v(x).
y~x

If u = v, we denote I' (u) = I" (u, u). The length of the gradient for u can be represented as

1

Vu ()| := VT (u) (x) = [ﬁ ; Wy ((y) —u(0)*| . (1.2)

Let us denote the integral of a function f on the graph G by

[ st= Y 070,

xeV
Forall 0 < p < 400, L” (V) on G can be defined as
L (V)= {u: V> R fullp, < +oo}.,

and the norm of u € L” (V) can be defined by

1

, v
il ey, 2= ( fv |M|pdﬂ) :[Zuoc)m(x)w] .

xeV

Moreover, L™ (V) is the normed space of functions u : V — R with

llzt]|zocvy := sup |u(x)| < +oo.
xeV
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For any two vertices x,y € V, because we assume the graph G is connected, there is a shortest path
v connecting the vertex x and the vertex y. Then the distance d (x,y) between the vertex x and the
vertex y can be defined as the number of edges of the shortest path y. More specifically, if xy € E, then
we have d (x,y) = 1. If xy ¢ E, then there is a shortest path y = {x;, x, ..., Xx+1} connecting the vertex
x and the vertex y, and the distance of x and y is d (x, y) = k. In this paper, for a fixed vertex § € V, we
will denote the distance between a vertex x and 6 as

d(x) = d(x,6).

Recall that the Sobolev space can be defined as

W2V = {u e L*(V) | f \Vul*du < +o0},

v
and its norm defined by

1
2
w2 = ( f (IVuf + u2>du) : (13)
v
Define the set of functions with compact support as C.(V) = {u : V — R | supp u C V contains only
finitely many vertices}, and WS’Z(V) is the completion of C.(V) with norm defined in (1.3). Then both
W'2(V) and WS’Z(V) are Hilbert spaces with inner product (u,v) = fv (VuVv + uv)du. Let a(x) be a
function defined on V, satisfying a(x) > ay > 0 for all x € V. Define the following space of functions

H := {u e W,A(V) | f (Vul* + a(x)u®)du < +oo} (1.4)
\%4

and its norm

1
2

el := {f(qul2 + a(X)uz)d,u] : (1.5)
Vv

Clearly, H is a Hilbert space with the following inner product:
(U, Vg := f(Vqu + a(xX)uv)du, Yu,veH.
v

For locally finite graph V with infinitely many vertices, both W!*(V) and H are infinite dimensional
vector spaces.

Based on the above notations, let us discuss some more related works. Chang and Zhang [5] relaxed
the conditions and extended the discussion in [2] to the locally finite graph, proving that a class of the
p-th nonlinear equation has a strictly positive global solution under appropriate conditions. Liu [6, 7]
considered the multiplicity of solutions to a perturbed Yamabe equation and the nonlinear Dirichlet
boundary condition problem on graphs. Han and Shao [8, 9] studied the existence and multiplicity of
solutions to nonlinear p-Laplacian equations on a locally finite graph. Yang and Zhang [10] proposed
and analyzed the existence and multiplicity of nontrivial solutions of the (p, g)-Laplacian coupled
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system with two parameters on a locally finite graph. For other papers on elliptic type equations
and variational problem on locally finite graph, we refer interested readers to the papers [11-13] and
their references.

For the Schrodinger equation, Qiu and Liu [14] extended the local-to-global variationial scheme

of [4] to the exponential-nonlinearity Schrodinger equation —Au + hu = fe", establishing the
existence of strictly negative solutions in three distinct regimes for weight function f. Zhang and
Zhao [15] considered the Schrodinger equation —Au + (A(a(x) + u = |ul’~'u with polynomial

nonlinearity on a locally finite graph and proved that for all 2 > 1, the equation has a ground state
solution if the weight function a(x) satisfies suitable conditions using the Nehari manifold method.
Chang et al. [16] studied the logarithmic Schrédinger equation —Au + a(x)u = ulogu?® on a locally
finite graph; the existence of ground state solutions was obtained by using the Nehari manifold
method and the mountain pass theorem. Chang et al. [17] proved the existence and respective limit
behavior of sign-changing solutions to the logarithmic Schrodinger equation. Yang and Zhao [18]
concerned themselves with the nonlinear equation —Au + Au = f (u) on a locally finite graph, and
proved that the equation has a normalized solution by employing variational methods. For other
studies of the Schrodinger equation, we refer interested readers to the papers [19-21] and
their references.

While these works focused on single-field problems on graphs, many physical and applied settings
such as coupled interaction models, nonlinear optics in multi-component media, and binary Bose-
Einstein condensates require the study of coupled fields. Xu and Zhao [22] studied the following
nonlinear system

a+p

—Au+ (Aa(x) + Du = “Z|u|*2upp)f in V,
—Av + (Ab(x) + 1)y = a’%ﬁlul"lvlﬁ‘zv in V,

on a locally finite graph G = (V, E) and proved that this system has a nontrivial ground state solution
depending on A under suitable assumptions on the potential functions a(x) and b(x) using the mountain
pass theorem.
In this paper we first consider the two-field coupled Schrodinger system on a locally finite graph
as follows,
~Au+a(xX)u=u’>-pBuv in V, (1.6)
—Av + b(x)v = 3y - guz in V, .
where A is the Laplacian given as in (1.1). To study problem (1.6), it is natural to consider the
vector space

H := {(u,v) e WH (V) x W2(V) | f a(x)u® + b(x)vidu < +oo}, (1.7)

Vv

with norm
1

2
||(et, V|| := (f IVul> + a(x)u® + |V + b(x)vzd,u) .
v
The space H is also a Hilbert space with the inner product defined by

(u,v), (@, Py = fVquo + a(x)up + VvV + b(x)vdpdu, VY(u,v),(p,¢) € H.

Vv
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We assume that the weight functions a(x) and b(x) satisfy the following assumptions:

(A)) there exist two positive constants ay and b satisfying a(x) > ag > 0, b(x) > by > 0.
(Ay) As d(x,60) — +oo, it holds that a(x) — +oo, b(x) = +c0 .

The first result of this paper can be stated as follows.

Theorem 1.1. Let G = (V,E) be a locally finite graph satisfying assumptions (G,) — (G4). For all
x €V, u(x) = uog > 0, if the weight functions a(x), b(x) satisfy the assumptions (A,) and (A;), then the
system (1.6) has a nontrivial solution (u, v).

The second system we concern is the following system with cubic nonlinearity,

{—82Au +a(x)u = +pv’u in V, (1.8)

—&*Av + b(x)v = uov? + pu*v  in

where A is the Laplacian given as in (1.1) and y;, u, > 0 and 8 # 0 are constants. The energy functional
Je : H, — R corresponding to system (1.8) can be defined as

1 1
Je(u,v) :25 ‘fsleul2 +a(u? + 4V + b(x)vzd,u -7 f(,ulu4 + ,uzv4 + Zﬁuzvz) du
14 14

1 1
=§||(u, W, - 1 f (ﬂ1M4 + vt + Zﬁuzvz) du. (1.9)
v

Here we define H, as

H, = {(u, v) € WH(V) x WH(V) | f E\Vul* + a(x)u? + €|Vv]* + b(x)v’du < +oo}
|4

with norm

1

2
|t V)|, = ( f EVul* + a(x)u® + X[Vv|* + b(x)vzd,u) :
v
The Nehari manifold corresponding to problem (1.8) can be defined as

N = {(u,v) € Hz \ {(0,0)} | {Jo(u,v), (u,v)) = 0}.

Namely,
N; = {(u, v) € He \ (0, 0)} G, v, = f (s + pav* + 2ﬁu2v2)du}. (1.10)
1%
Let m be the constant
m:= inf J.(u,v).
(u,v)EN,

If m 1s achieved by some vectors (u,v) € Ng, then (u,v) will have least energy among functions in
the Nehari manifold N, and it is indeed a critical point of the energy functional J, and hence a weak
solution of (1.8) (u,v) will be called as a ground state solution to the system (1.8). Using the Nehari
manifold method, we have the following result.
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Theorem 1.2. Let G = (V, E) be a locally finite graph satisfying assumptions (Gy) — (G4). For all
x €V, u(x) = ug > 0, the weight functions a(x), b(x) satisfies the assumptions (A, ) and (A,). For every
e > 0and for all |B] < o, system (1.8) has a ground state solution (ug, ve).

Finally, let us consider the multiplicity of solutions to the following system:

{—Au +a(x)u=u+pv*u in V, (L11)

~Av+a(x)y=v+pBu’>v in V,
we have

Theorem 1.3. Let G = (V, E) be a locally finite graph satisfying assumptions (Gy) — (G4). For all
x €V, u(x) = uop > 0, the weight function a(x) satisfies the assumptions (A;) and (A;), B < 0. Then

(i) If B < —1, then system (1.11) has a solution sequence (uy, vi) satisfying ||(ux, vi)llg — oo,
(ii) For any positive integer k, there exists a real number By > —1; when B < By, the system (1.11) has
at least k pairs of solutions (u,v), (v, u).

The continuous counterpart of (1.6), the so-called Schrodinger-Korteweg-de Vries (Schrodinger-
KdV) system, appears in models for interaction phenomena between short waves and long waves,
such as resonant interaction between short and long capillary-gravity water waves. Interested readers
are refered to [23] and their references for a comprehensive introduction to this system. The proof
of Theorem 1.1 is inspired by the seminal papers [24-26]. To prove it, we need the Sobolev-type
inequality for two-component vectors on locally finite graphs. Because the locally finite graphs are
generally unbounded, we use assumptions (A;) and (A,) on the weight functions a(x), b(x) to control
the L? integral near infinity; see (2.1). Another difficulty is that the system (1.6) has a semi-trivial
solution, namely, a solution of form (0, v) with v satisfying the equation —Av + b(x)v = %Ivlv; see
Section 3.2. Therefore, we distinguish the nontrivial solution from the semi-trivial one by comparing
their energies; see Section 3.3.

The continuous counterpart of (1.8) and (1.11) arises from Bose-Einstein condensates and
nonlinear optics theory, which has been extensively studied in the past two decades. The proof of
Theorems 1.2 and 1.3 are inspired by [27-29]. To prove Theorem 1.2, we study the minimizing
problem inf,,)en, Jo(#,v) and prove that the minimum can be achieved based on the structure of the
Nehari manifold N,, it is indeed a ground state solution of system (1.8) (see Section 4). To prove
Theorem 1.3, we need to choose a suitable Nahari manifold which is invariant under the convolution
map o(u,v) = (v,u), see (5.1). Then we can apply the genus theory to obtain the existence of
infinitely many nontrivial solutions (see Section 5).

For a metric graph, Schrodinger equations and systems study of propagation of optical pulses in
nonlinear optics, or of matter waves (in the theory of Bose-Einstein condensates) in ramified
structures such as T-junctions or X-junctions. For example, ground states of nonlinear Schrodinger
equations (NLS) were studied in [30-36] on noncompact metric graphs, the NLS on compact metric
graphs were considered in [37-39]; [40] investigated the existence of ground states for the NLS and
their dynamics on star graphs; [41] concerned the existence of ground states for the NLS on
noncompact quantum graphs; [42] proved the existence and stability of the standing waves on
noncompact quantum graphs; [43] studied the quintic NLS on tadpole graphs; Bose-Einstein
condensation in Josephson junctions star graph arrays was observed in [44]. We refer the interested
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readers to [45] for an introduction to the NLS on star graphs and [46] for an introduction to
quantum graphs.

2. The Sobolev embedding theorem for two-component system on locally finite graphs

Based on references [3] and [22], one has the following Sobolev embedding theorem.

Proposition 2.1. Let G = (V, E) be a locally finite graph satisfying assumptions (G) — (Gy). For all
x €V, u(x) > uy > 0, the weight functions a(x), b(x) satisfying conditions (A,) and (A,), then, for all
g € [2, 0], the Hilbert space H defined in (1.7) can be embedded continuously into LY(V,R?). That
is to say, for all (u,v) € H, there exists a positive constant C > 0 which depends on q such that the
following inequality holds:

Gz, V)l a2y < Cli(u, v)||5-

Furthermore, for all g € [2,c0), the embedding map from H into L1(V,R?) is a compact map, which
means that for any bounded sequence {(uy, vi)};., C H, there exists an element (u,v) C H satisfying
(up to a subsequence)

(ug, vi) — (u,v) weakly in H,

(ug, vi) = (u,v) forall x €'V,
(g, vi) = (u,v) in L(V,R?).

Proof. The proof is similar to that of [22]; we give it here for reader’s convenience. For a fixed vertex
Xo € V, we have the estimate

N, I = f IVul? + a(x)u® + |Vv|* + b(x)v’du
\%4

> f \Vul® + apu?® + |Vv|* + bov’du
|4

Zaofu2d,u
v

= a0 ) O ()

xeV

2
> aptou”(Xo),

1
aopo

1 1
G2, V)llzeo(vy = sup |u(x)] + sup [v(x)] < [\/— + \/—] ICet, )1,
xeV xeV aoldo b()/.l()

which tells us the embedding H < L*(V,R?) is continuous. It follows that the embedding map
H — L*(V,R?) is also continuous. Then, the interpolation inequality gives us that H < L4(V,R?)
continuously for any g € [2, oo].

Now we prove that the embedding map H — L4(V,R?) is compact for g € [2, co].

which yields u(xg) < [|(u, v)||y. Similarly, one has v(xj) < ##OH(M, V)||lz. Thus it holds that
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For a sequence {(ux, vi)};-, € H which is bounded, there exists weak limit (u, v) € H such that (up
to a subsequence)
(g, vi) = (u,v) weakly in H,
(U, vi) = (u,v) in L*(V,R?).

Then
lim fv [ = WEC) + (v = V)M
= lim " [u(x) (@t = )(DED) + p() 0 = )]

xeV

=0

for all (£,;) € L*(V,R?). For all xg € V, let (£1,171) = (64,,0), (£2,172) = (0,6,,) respectively (here,
Ox,(x0) = 1 and 0,,(x) = 0 for x # xo); thus

,}i_)rg/i(xo)(uk —u)(xp) =0,

Iim p(xo)(vie = v)(xo) = 0.

Because u(x) > uo > 0, it holds that (uy, vi)(x) — (u,v)(x) forall x € V as k — oo.

Now we will prove (u, vi) — (u,v) in the LY(V,R?) sense. Without loss of generality, assume that
(u,v) = (0,0). Because the sequence {(uy, vi)};-, C H is bounded, ||(u, vk)lli, < C for some constant
C > 0. From the assumptions on the functions a(x) and b(x), for any £ > 0, there is a constant R > 0
satisfying a(x) > Z?C and b(x) > Z?C for x € V satisfying d(x, #) > R. It then holds that

f (> + il dp 2.1)
d(x,0)>R

E
S —_

2C d(x,0)>R

£ £
< i”(ukavk)”%{ < 5

Note that the set {x € V | d(x,0) < R} is finite, and as k — oo u;(x) — 0, vi(x) — O for all vertex
x € V, there is a positive constant k, > 0 satisfying fd(x 6)<R(|uk|2 + vil))du < £ when k > ky. Hence

[ao)luxl + b0 vil*)dp

2
fv(lukl2 + [wi*)du < & when k is large enough. This gives us that limy_e [[(sx, vi)llz2(vz2) = 0.
For all x € V, it holds that

s VO = MU, Nt VIR, = HOVE() (22)

and hence

G2t viOll = (vm2) = sup lug(x)] + sup |vi(x)|
xeV xeV

1
<24 /-H(uk, vllz — 0,
Ho

as k — oo. For any given ¢ € [2, oo], there holds
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1tk VO, 5, = f gl + vl
’ \%

q-2 q-2
< [Sup |”k(x)|] f updy + |sup |Vk(x)|] f vidu
xeV \% xeV \%

< Wl [ (4 08) = 0

as k — oo. This concludes the proof.

Remark 2.1.1. In the L*(V,R?) estimate, we use the point-wise estimate (2.2), which does not hold in
the Euclidean case, and therefore the Sobolev embedding H'(R?) — L*(R?) is not true (see [47]).

3. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1.

3.1. The framework

We define the energy functional E : H — R corresponding to the system (1.6) on H as follows:

1
E(u,v) := 3 f IVul? + a(x)u? + |Vv[* + b(x)v’du
\%4

1 1
——fu4dy——f|vl3du+'§fu2vdu, Y(u,v) € H, (3.1
4 Jy 6 Jy 2y

and set A = inf, ey E(u,v). Clearly we have
A <J(0,0)=0. (3.2)
Now define the corresponding Nehari manifold by
={(u,v) € H\{(0,0)} | (E"(u, v), (u,v)) = O}.

Lemma 3.1. Given any element (u,v) € H \ {(0,0)}, there is a unique positive number t depending on
(u, v) satisfying (tu,tv) € M. The maxima of the function defined by g(t) = E(tu,tv) for t > 0 can be
achieved at the point .

Proof. Let us define the following functional P : H — R by

P(u V) _f|VI/t| + a(x)u? + |Vv]? +b(x)v2d,u

f 4d,u——f|v| d,u+—fu vd. (3.3)

Then (u,v) € H \ {(0,0)} is in the Nehari manifold M if and only if the condition P(u,v) = 0 holds.
Assuming that there is a positive number 7 satisfying (fu, fv) € M, we have
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P(tu,v) = P f IVul? + a(x)u® + |Vv|* + b(x)v’du
v

1. 36
-7 f utdu — =7 f |v|3d,u+—ﬂt3 f wvdu. (3.4)
|4 2 |4 2 |4

§ 1_ 36
P = f \Vul? + a(x)u? + |Vv|* + b(x)v’du — 7 f utdu — =7 f WPdu + b; f wvdu
%4 |4 2 \%4 2 |4

p 3 1 _
=P f u4d,u + (LB fuzvd,u - = f |v|3d;1) I+ f IVul® + a(x)u® + |Vv]* + b(x)vzd,u
14 2 Jy 2y v

=0.

Hence, we can obtain that

If [, u*dy # 0, from the fact that p(0) = [, [Vul®> + a(x)u® + |VvI* + b(x)V*du > 0, there exists a
unique positive real number 7 satisfying o(f) = 0, which means (fu, fv) € M. If fv u*dy = 0. We then
have v # 0, and there is a unique positive real number 7 = #(u, v) depending on (u,v) and satisfying
(tu,tv) € M.

Fix (@1, v) € M, which yields

(E'(, ), (it, V) = f IViil? + a(x)ii + V9] + b(x)v*du

\%
1 3
- f itdu — = f [P du + b f #*vdu = 0. (3.5)

v 2Jy 2 Jy

Thus | .
E(i1,7) = - f \Vi* + a(x)ii® + |Vi]* + b(x)Vdu + — f itdu,
6 Vv 12 \%

and

1 3
f IVi? + a(x)ii® + |Vi)* + b(x)¥*du = f wtdu+ - f [PPdu - & f W vdu
< Cill(@, DIz + Call(@, )l (3.6)

Therefore, ||(it, ¥)||y > p for some positive real number p > 0 and E(it, V) > épz.
Observe that the function

2

t
g = ) f IVul> + a(x)u® + |V + b(x)vzd/x
14

' 4 r 3 gr 2
—vaudu—gfvlvldy+7f‘;uvdu (3.7)

satisfies g(f) » Oast — O and g2(tf) » —oo ast — +oo, g(f) > %pz; its maximum must be achieved
at the interior of interval [0, +o0). Supposing we have g(7) = max g(¢), then it holds that g’(f) = 0 and
(E'(fu, tv), (fu, fv)) = 0 and therefore 7 = .
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For all (u,v) € M,

2
(P'(u,v), (u,v))y = — f IVul> + a(x)u? + |Vv|* + b(x)v>du — fu“d,u < —%.
v v
From the implicit function theorem, one can deduce that the Nehari manifold M is an infinite

dimensional C'-manifold.

Lemma 3.2. An element (u,v) € H is a critical point to the energy functional E if and only if it is a
constraint critical point of E on the Nehari manifold M.

Proof. If for (u,v) € M, El,(u,v) = 0, then E'(u,v) — wP’'(u,v) = 0 in H. From the definition
of the Nehari manifold M, one has (E[, (u,v), (u,v)) = —w(P'(u,v),(u,v)) = 0. Hence w = 0 and
(Ely(u,v), (u,v)) = 0. Conversely, if (u,v) is a non-trivial critical point of the energy functional E,
clearly it is a critical point of E|x,.

Lemma 3.3. The energy functional E satisfies the PS condition on the Nehari manifold M.

Proof. Assume {(u,,v,)}", C M is a Palais-Smale (PS) sequence of the energy functional E, then
E(uy,v,) — c for some real constant ¢ € R and El (u,,v,) — 0. Then the sequence {(u,,v,)},”, is
bounded in H, and up to subsequence one can assume (u,,v,) — (u,v) € H. From the compactness of
Sobolev embedding in Proposition 2.1, for p € [2, o], u,, = u, v, — vinthe L?(V) sense. Furthermore,

1 3 1 3
fuzd,u+—f|v,,|3d,u——Bfuivnd,uafu4du+—f|v|3d/1—£fu2vdu
14 2Jy 2 Jy v 2Jy 2 Jy
1 3
fu4dy+—f|v|3du—£fu2vdu > p?.
14 2Jy 2 Jy

El;\/((un, V) = E,(un’ V) — wnpl(umvn) -0

and

It also holds that

for a sequence {w,} C R. Then we have

CEly (s Vi)s s )Y = CE Uy V) Uy V)Y = Ol P Wy V), (s v,)) — 0,

Because (E’ (i, V), (U, v))g = 0, one has w, (P’ (u,, v,), (tty, v,)) = 0 and w, — 0. Denote
E(u,v) = % fv IVul? + a(x)u? + |Vv[* + b(x)v’du — F(u,v) — G(u, v) + BT (u, v)
= %((“n’ Vi), s vl = Fu, v) = G, v) + BT (u, v), (3.8)
here £(u,v) = ifv utdu, G(u,v) = %fv WPdu, T'(u,v) = %fv u’vdu, and we have

El(”n» Vn) = (un’ Vn) - ﬁl(”n» Vn) - GA,(”n’ Vn) +ﬁf’(una Vn)

and
pl(una Vn) = 2(un, Vn) - 4F,(una Vn) - 3GA/(”m vn) + 3ﬁTI(una Vn)~
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Hence we deduce that
(1 = 20,)(ttny V) = (1 = 4w, ) E' (t, v) + (1 = 30,)G (U, v) + B, — VBT (uty, v,) + 0(1).

We now claim that the operators £7, G’, T are compact mappings. Indeed, taking any & = (hy, h,) €
H, it holds that

KTt vi) = T, v), )| =

f (v, — UV)hldﬂ‘ < f v, — uvllhldu
Vv \%

< flunvn — uv|lhy|dp + flunv — uvllhy|du
\%4 1%

< flvn = Vleenllhldpe + f |y, — ulvIlh|dp
v v

<|lva — V||L3(V)||un||L3(V)”hl||L3(V) + |[u, — u||L3(V)||V”L3(V)”hl||L3(V) — 0,

1

KT 2 v) = T2, 0] = |3 f (2 — Y hdy
1%
1

| % 5
SE( Iui—Vﬁlzdu) ( f |h2|2du) :
|4 \%

Because u} + u* — |u} — u*| > 0, from Fatou’s lemma, one has

flim inf (u;‘; +ut —u) - u4|) du < lim inff(ui +ut —u) - u4|) du;
v v

n—+oo n—+oo

furthermore, it holds that lim inf,_, .« fv |u? — u*|ldu — 0 and fv lu? — u*PPdu < fv u — u*|ldu — 0, thus
(T;(un, V) — T;(u, v), h) — 0. Therefore the operator T’ is compact. Similarly, we deduce that

Sflui—fllhlldu
\%4

3
I
3 3,4
f u — u |3du) sy
1%

3
7
f |u3—u4|du) llzsvy = O,
\%4

[t ) = B, ), ) = f W = Yy
14

IA

IA

KG (s vi) = G, v), 1))

1
‘5 f <|vn|vn—|v|v)h2du‘
\%
1 1
1 2 : 2 :
f vl — IviviZd f ol
\% \%
1 1
2 2
( f |v;‘—v4|du) ( f |h2|2d#) - 0.
\% \%

Therefore the operators F” and G’ are compact mappings.

Therefore we have (i, v,) — F’(u, v)+G’(u, v) =BT (u,v) and (u,v) = F’(u,v)+ G’ (u, v) =BT (u, v).
Thus [, [Vul® + a(x)u? + [V + b(x)v2du = 4F(u,v) + 3G(u,v) — 3BT (u, v), which implies that (u,v) €
M.

IA

= N

<
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3.2. On the equation —Av + b(x)v = %Ivlv
To proceed, we need some properties of the single equation
1
—Av + b(x)v = Elvlv. 3.9

Let us define the corresponding energy functional E, : H; — R by

1 1
E):= > f IVv? + b(x)vzd,u ~ f |v|3d,u, Vv € Hy,
1% 1%

and

H, = {u e WH(V) | f b(x)uldu < +oo}.

\%4
We define the corresponding Nehari manifold as
My = {v e Hi \ {0} [(E|(v),v) = O}
Then the following results hold.

Lemma 3.4. M, is a nonempty C' smooth manifold. For all v € H, \ {0}, there exists a unique positive
real number t depending on v satisfying tv € M,. The maxima of the function g(t) = E\(tv) of t > 0
can be achieved at the point t > 0.

Proof. Take any v € H; \ {0}. Let us consider the following relation on # > 0:
- A
Pi(tv) =1 f IVvI* + b(x)vdu — — f WPdu = 0.
14 2 )y

Because fv [v[Pdu # 0, there exists a unique real number 7 = #(v) > 0 such that /v € M.
For any ¥ € M, one has

_ 1
Pi(¥) = f Vi[> + b(x)¥du — = f [P du = 0.
4 2y
Then

3
1 2
f V> + b(x)P?du = = f [Pdu < C( f IV + b(x)fzzd,u) .
\% 2 % \%

Thus it holds that [ [V#? + b(x)i?du > p? for some p > 0 and Ei(¥) = § [, VI + b(x)iPdu > 1p”.
Moreover, we have

3 3
(P|(¥),7) =2 f V3> + b(x)V*du — 3 f [PPdu = - f IVi)* + b(x)V?du < —p*.
\%4 \%4 |4

Therefore, the Nehari manifold M, is a C' manifold.
Because for the function

1 £
g@) == f Vv + b(x)vidu — — f vl dp,
2 Jy 6 Jy
itholds that g(rf) —» Oast — 0, g(f) » —cc ast — +o0, g(f) > épz, the maxima of 2(#) must be achieved
at the interior of the interval [0, +o0]. Suppose we have g(7) = maXxejo.+0] £(¢), we have §'(7) = 0, hence

Py(9) = (E|(fv), v) = 0, therefore 7 = 7.
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Lemma 3.5. Suppose vy € H, is a minimizer to the energy functional E| constraining on the Nehari
manifold My, i.e., E;(vo) = inf,,epr, E\(W). Then v is a weak solution of (3.9).

Lemma 3.6. The energy functional E, constraining on the Nehari manifold M, admits a minimizer
Vo, therefore, it is a weak solution of (3.9).

The proof of Lemmas 3.5 and 3.6 are standard arguments as in [48]; therefore, we omit them here.

3.3. Proof of Theorem 1.1

We will prove that (1.6) possesses a nontrivial solution which is different from the trivial solutions
up and uy, here uy := (0,vy) and u; = (0, —vy); vo 1s the solution obtained in Lemma 3.6. Let us define
the following constant

el
yi=  inf OH_
e=lp1pH\O00) [ vopddu

From the Sobolev embedding theorem, we can deduce that the constant vy is positive. Furthermore we
have the following result.

Proposition 3.7. (1) If the parameter B satisfies < —v, then uy is a saddle point to the energy
functional E on the Nehari manifold M, and it holds that inf p E < E(uy).

(2) If the parameter B satisfies B > vy, then w, is a saddle point to the energy functional E on the Nehari
manifold M, and it holds that inf 5y E < E(uy).

Define D?E|y(ug) and D?E|(u;) as the second derivative of E constrained on the Nehari manifold
M. Because E’(ug) = 0 and E’(u;) = 0, we then have

D’E|p(ug)[h, h] = E”(up)[h,h],  Vh = (hy, hy) € Ty, M,

D?E|p(u))[h,h] = E”(u))[h,h], Vh = (h;,hy) € Ty M.

One also has
DEi|pm,(vo)[h, h] = E}(vo)[h, k], Vh e T, M,

DE |, (=vo)lh, h] = E} (=vo)lh, h], Yh e T_, M;.
It then follows that

Lemma 3.8.
h = (hy, hy) € Ty, M if and only if h, € T,;M,,

h = (hy, hy) € Ty, M if and only if h, € T_, M,.

Proof of Proposition 3.7: For any (#,v) € H and h = (hy, h;) € H, then

E”(u,v)[h,h] = f IVhi* + a(x)h? + |Vho|* + b(x)h5du — 3 f whidy — f vhsdu
\4 \4 \4

+,8fvh%d,u +,8fuh1h2d,u.
\4 \4
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If (u,v) = ug = (0,vp), we then have
E”(up)[h,h] = fv IVhi? + a(x)h? + |Vho|* + b(x)hadu — fv vohidu + f8 fv vohidpu.
By taking h = (h;,0) € Ty, M, then
E"(uo)[(h1,0), (h1,0)] = fv (Vi + a()h?)du + B fv vohyd.
From the definition of the constant ¥ when the parameter 8 satisfies 8 < —y, there is i, € H, \ {0},

satisfying
3 J (VR + b(x)R})dp

Bl fv voh?du

Therefore,

E" (ug)[(1,0), (11,0)] = f(wilﬂz + h})du +,3fvol~z%d,u <0.

\%4 \4

Hence uy is a saddle point to the energy functional E restricting on M.
If we take (u,v) = u; = (0, —vp), then

E”(u))[h,h] = f IVhi|* + a(x)ht + [Vho|* + b(x)h5du + f vohsdu — 3 f vohidp.
\4 Vv Vv
By taking h = (h,,0) € T,, M, then we obtain
E" (u)[(h1,0), (h1,0)] = f Vi + a(o)hidy - B f vohidy.
Vv Vv

Using the definition of the constant y when 8 > 1, there exists /1, € H, \ {0}, satisfying

[, IVRo? + b(x)R3dy
< = <
fv voh3du

Therefore,
E"(a))[(h2,0), (72, 0)] = f (IVhol* + b(x)h3)du — B f vohidu < 0.
14 14

Thus u; is a saddle point of the energy functional E restricting on M.

From the Ekeland variational principle, we know that inf 5 £ can be achieved at some point (it, V) #
0, which is a weak solution of (1.6). If 8 < —y, E(i1,V) < E(uy). If 8 > vy, E(i1,V) < E(u;). Observe
that E(ug) = E(u;). Now we show that (@, V) is nontrivial, that is to say, &t # 0 and ¥ # 0.

If ¥ = 0, then & = 0, contradicting the fact that (iZ, V) # 0. If # = 0 and ¥V # 0, then E,(¥) = E(i1, V) <
E0,u) = E (u) for any u € M;; therefore, ¥ is a minimum of E; on M;. Hence E(ii,7) = E(uy) =
E(u,), which is also a contradiction.
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4. Proof of Theorem 1.2

First, we prove several properties of the Nehari manifold N,.
Lemma 4.1. The Nehari manifold N is non-empty.
Proof. ¥(u,v) € H. \ {(0,0)}, let us define

2 4

4

t t
() := J(tu, tv) = §||(u, Wiz - = f it + vt + 2Bu*vidu, > 0.
Vv

Then
@ =@y, -7 f,ulu“ + vt + 2BuPvidu,
\%4

If f'(t) = 0, then

. G, I,
f‘/ylu4 + v + 2Bu*vidu

Denote F(u,v) := piu* + pov* + 28u*v?, then

2
F(u,v):(u2 1/2)('2)1 /i)(‘lfz)

is quadratic about u?,v?. The F is positive is equivalent to (’Lg

B ) being a positive definite matrix,
2

and it is also equivalent to g; > 0, ujup — B> > 0, which gives |8] < +/uft2, then fv,ulu“ + vt +
2Bu*v*du > 0. Hence there exists a positive constant ¢ satisfying f7(¢) = 0, that is, {(J.(tu, tv), (tu, tv)) =

0, which implies that (tu, tv) € N,.
Lemma 4.2. The infimum of the problem m, = inf, ,yen, J:(u, V) is positive.

Proof. If (u,v) € N;, we have [|(u, v)IIf, = fv,ulu4 + vt + 2Butvidu, so

1
Jow,v) = Zlw, Iz,

By Proposition 2.1, we have
f,ulu4 + /12\/4 + 2ﬁu2v2d,u < C|(u, v)||}‘,£,
v
where C is a positive constant of the embedding H, — L*(V,R?). We then get

1
2 >—>0.
I, VI, = c

Therefore,

m, = inf J.(u,v)=

1 , 1
— inf ||(u,v >—>0.
(u,v)EN, 4 (uv)eN; ”( )”HS

~4C
This completes the proof.

4.1)
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Lemma 4.3. There exists some (ug,vy) € N, such that J (uz,v,;) = m.

Proof. Consider a sequence of vectors {(ux, vi)}” € N satisfying limy_,co Jo(ux, vi) = m,. From (4.1)
we get ||(u, Vk)||?1£ = 4J(ux, vi) — 4m, as k — oo; therefore, {(uy, vi)};” 1s a bounded sequence in H,.
From Proposition 2.1, there exists some vector (u.,v,.) € H, such that, as k — oo,

(l/lk, Vk) - (ué‘, Vs) in Hsa
(g, vi) = (us,ve) vV x€V, (4.2)
(s vi) = (U, ve) in LY(V,R?).

From (4.2) we get

l}im U+ pavy + 2Bugvidu = f,ului + oV + 2Buvidu. (4.3)
Because the norm of the Hilbert space H, is weak lower semi-continuity, we have

ICute, ve)llgy, < lim inf Gtk vl (4.4)

From (4.3) and (4.4) we get

1 1
Je(tte, ve) = Ste, volly, = 7 f s + vt + 2Bulvidy
\%4

.1 1
< fim inf | R, = 5 [ g + g + 2
k—co 2 4 v
= ]}im inf J(ug, vi)

—m,. (4.5)

By taking a subsequence, we can assume ||(u, Vk)||,%1€ — C for suitable positive constant C as k — oo.
Because (i, vi) € N,, we have

||(uk,vk)||zg = f,ului +,uzvi + Zﬁu,%v,%du =C as k- .
14
Combining (4.3) and (4.4) we get

lI(utes v, < Lim inf |y, vollz,
= ]}im inff,ului + ,uzvi + Zﬁu%vidu
—00 V
= f ftt; + poviy + 2Bugvidp.
v

If ||(u,, vg)||§ﬂ < fv it + vt + 2Buvidu, similar arguments as in Lemma 4.1 show that there exists
some constant

- [ Gtz VoI,

2
€ (0,1)
J o+ vt + 2ﬁu§V§dﬂ]
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such that (tu., tv,) € N, combined with (4.4), we get

1 2 tz 2
0 <my < Joltue, tve) = 2 li(tue, vo)lly, = 7 ll(e, volly,
|
< % lim inf —||(ug, vi)I[3,
k—o0 4 ¢
=7 ]}im inf J,.(ug, vi)
= *m,

< m,.

This result is contradictory, so we have ||(u, vo)ll}, = fv,u it + uovt + 2Buv2du, which means that
(Ug,ve) € Ng. It is easy to get J.(u., v.) > m,, and combining with (4.5), we get J.(u, v,) = m,. Thus
we finish the proof.

Lemma 4.4. The minimizer (u.,v.) € N, obtained in Lemma 4.3 is a ground state solution to the
system (1.8).

Proof. We are going to prove that for all (¢, ¢) € C.(V), it holds that (J.(u., v.), (¢, $)) = 0. We choose
g9 > 0 satisfying (u,, vs) 1= (Us + 59, v, + s¢) # (0,0) if s € (=&, &9). For s € (—&, &), there exists a
positive constant #(s) depending on s satisfying (#(s)u;, t(s)vy) € N.. We can take

(e + 50, v, + s,

Jo 1t + 500 + a(ve + 58)* + 2B + 59)(v, + 58)2dd

1(s) =

Particularly, one has #(0) = 1. Let us define a function y(s) : (—&g, &9) — R by

¥(s) = Jo(t(S)us, 1(s)vy).

Because (1(s)uy, t(s)vs) € Ng and J(ug, ve) = inf(,)en, Jo(u, v), we find that y(s) has a minimum at the
point s = 0. Therefore we have

0 =9'(0) = (J(t(O)us, t(0)ve), ' (0)(ug, ve) + H(0) (g, B))
= (S (Ug, V), ' (0)(ug, Vi) + (9, )
= <J;;(ua’ vs)’ (90’ ¢)> .

In the last equality, we use the fact (u.,v.) € N, and (J.(u.,ve), (us,v:)) = 0, which concludes
the proof.

Now we prove Theorem 1.2.

Proof. By the arguments above, for any |8| < iz, (ue, v,) obtained in Lemma 4.3 is a critical point
of the energy functional J.(u, v) when & > 0; thus (u,, v,) is a ground state solution of system (1.8).
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5. Proof of Theorem 1.3

Let us consider the corresponding energy functional J € C*(H, R) for problem (1.11)
1
J(u,v) ::E f IVul> + a(x)u® + |V + a(x)vzd/,t
v
1
~ 2 f(u*)“ + (v + 28u*vd.
v

Here, u* = max{u, 0} is the positive part of # and u~ = — min{u, O} is the negative part of u. We are
interested in nontrivial critical points of the energy functional J, which means that # # 0 and v # 0,
which is opposed to the semi-trivial critical points with form (u, 0) or (0, v). We have

Lemma 5.1. Every nontrivial critical point (u,v) € H of the energy functional J is a classical solution
to the problem (1.11).

Proof. Recall that a critical point (1, v) € H is a weak solution to the following system:

—Au + (a(x) — Bv®)u = (u*)* on V,
—Av + (a(x) — Bu®)y = (v*)> on V.

Testing the above system with negative parts u~ and v~, respectively, and taking integration, we get
f IV Pdy + f (a(x) = By¥)luPdu = 0 = f Vv Py + f (a(x) = Bu®)lv™Pdp.
14 v v v

Because 8 < 0, we conclude that u > 0 and v > 0 on V. Because (u,v) € H is nontrivial, we conclude
that u > 0 and v > 0. Indeed, if u(x) = 0 for some x,, then we have u(x) = 0 for all x satisfying x ~ xj.
Because xy is arbitrary, u = 0, which is a contradiction.

We define the modified Nehari manifold for the problem (1.11) as follows:

N ={u,v)eH|lu+0,v+0, f |Vu|2d,u + fa(x)uzdu —ﬁfuzvzd,u = f|u+l4du, 5.1
14 14 14 14

fleIzdu+fa(x)v2du—ﬁfu2v2du:f|v+|4d,u}
v v v v

Clearly, nontrivial critical points of the energy functional J are contained in the modified Nehari
manifold NV. Observe that in the case of a(x) = b(x), the space H can be decomposed as H = H X ‘H,
with H defined in (1.4) and its norm in (1.5). We will denote || - ||4 as || - || for brevity. We need some
properties about the modified Nehari manifold N summarized as follows.

Lemma 5.2. (1) The modified Nehari manifold N is a C*-submanifold of the Hilbert space H with
co-dimension two.
(2) If (u,v) is a critical point of Jy, which is the restricted functional of J to the modified Nehari
manifold N, then it is a nontrivial critical point of the energy functional J.
(3) For any (u,v) € N, we have J(u,v) = 1(lull* + [VII*) .
(4) The restricted functional Jy : N — R satisfies the PS condition.
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Proof. (1) From the Sobolev embedding relation H — L*(V,R?), we have
Cllull* = allbay, = Py CIVIE = My, > IV
with a universal constant C > 0 for (1, v) € N; hence we have
lull > €~ and ||v]| > C™""* for (u,v) € N. (5.2)
Furthermore, N = {(u,v) € H : u # 0,v # 0, F (u,v) = (0,0)7}, where F € C>(H,R?) is defined as

o V)) ) (f \VulPdu + [, a(xu*du —B [, u*vidu - || |u+|4dﬁ‘)
Fate.0) =\, 196 + J, aCon?du — B J, wvid— P )

Observe that if (u,v) € N, it holds that

F(u,v) = (

0. F 1 (u, vIu = =2 f lut|*du # 0
\%

and
3, F>(u, vy = =2 f WV *du # 0,
\%

where as 8, %, (u, v)u = 6,F(u,v)v = =23 fv u*v*du. Consequently,

_ —2fv lut|*du —2/3fvu2v2d,u
-2 [ utvidu -2 [ vt )

Because (u,v) € N, fvlu+l4d/4 > —,vauzvzd,u > 0 and fvlv+l4du > —,vauzvzd,u > 0, from which
we know that the matrix 7, is negative definite. Therefore ¥ (u, v)(u, 0) and ¥'(u, v)(0, v) are linearly
independent vectors in R?; thus ¥'(u,v) : H — R? is an onto map. From implicit function theorem we
know that N is a co-dimension two C>-submanifold in the Hilbert space H.

(2) Supposing (u,v) € N is a critical point of the restricted functional Jy, then there exist two
Lagrangian multipliers A, 4, € R satisfying

T = 0. F1(u,vu 8, F>(u, v)u
O F 1w, vy 0, F 2 (u, vy

AL F (u,v) + L5, (u,v) = J' (u,v).

Testing this equation against (u, 0), (0, v), respectively, gives

reli) =l

Because T, is a negative definite matrix, we have 4; = A, = 0, so J'(u,v) = 0.
(3) Take (u,v) € N, which holds that
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1 1
Ju,v) = EIIVulzdu + Efa(x)uzd,u
1% 14
1
— A_L(f \VulPdu + fa(x)uzdp—ﬁfuzvzdy)
14 14 14
1 1
+—f|Vv|2d,u+—fa(x)v2du
2 Jy 2 Jy
1
- Z(f IVVIZd,u+fa(x)vzdu—ﬁfuzvzd,u)
14 14 14

—’gfuzvzd,u
|4

1
= 5 (Il +101P)..

(4) Let us take a Palais-Smale (PS) sequence {(uy, vi)};2, C N to the restricted energy functional

Ju. Then the sequence {(uy, vi)};-, is bounded in the Hilbert space H. Therefore up to a subsequence,
one can assume (u, vi) — (u,v) € H, ux — u, vy — v in the L*(V) space. We then have

ut#0, vi£0.

Indeed, if u* = 0, then

lim 4 ll20y — 0 and  limsupB | wupvidu <0,
- k—o0 74
and thus ||u|| — 0 because (ug, vi) € N, which gives a contradiction to the estimates in (5.2). Similar
arguments shows that v* # 0.
Observe that

o(1) = Jp(ug, vi) = J (ug, vi) — A F] (g, vi) — 5F5 (ur, vi)  when  k — oo

for appropriate sequences {/lll‘ Yoo {/lg}k C R, the functionals ¥ and ¥, are defined in step (2). Then
we have

o(1) (J'(Mk, vi)ug, 0) — [AXF (uge, vi) + BF (e, vi) 1 (uig, 0))

I (i, vi)(0, vie) = [ F (e, vio) + AF (e, vi) 1(0, vi)

(VAT Gt vi) + 55 (i vl i, 00 o (4]
LA (g, vi) + A5 g, v (0, v ~ e\

/lk
(T + o) ( /lé) .

Because we have (i, v;) € N, the weak convergence implies

lull> - B f wvidp < f lu*|*dy  and P> -8 f wvidp < f v I*du.
14 \%4 14 \4
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Therefore T, is a negative definite matrix, so we have Ak, /115 — 0. Because the functionals ¥ (u, vi)
and 7 (ux, v) are still bounded, we then have J'(uy, vi) — O strongly. Thus (u,v) is weak solution to
the system

~Au+a(x)u=w)+p*u on V,
~Av+a(x)v=0") +Bu*>v on V.

Then we have
2 4 22 . 4 2.2 . 2
| = |u™y +ﬁf vaurdu, = lim (Iu,jl4 +,8fukvka’,u) = lim ||ug||".
M k— o0 v k— o0

From this we know that u;, — u strongly in the Hilbert space /H. Similar arguments show that vy — v
strongly in the Hilbert space H, hence (i, v;) converges strongly to (u, v) in the Hilbert space H.

To prove Theorem 1.3, for any ¢ € R, let us consider the sub-level sets defined by N¢ := {(u,v) €
N : J(u,v) < c} and level sets defined by

K. ={w,v)e N|Ju,v) =c,J'(u,v) =0} = {(u,v) € N : Iy(u,v) = ¢, J\(u,v) = 0}.

Observe that the functional J, the modified Nehari manifold AV and the sets N¢, K, are invariant under
the involution map
oc:H—->H (uv)—ouv) =(Q,u).

Define
c(B) := inf{J(u,v) | (u,v) € N is a fixed point of the involution map o}.
Then we have

Lemma 5.3. When g < —1, we have c(f) = oo; furthermore, it holds that limg_,_, g._; c(8) = oo.

Proof. When 8 < —1, by the definition of the modified Nehari manifold NV, we know that the involution
map o does not possess fixed points; therefore, ¢(8) = co. If -1 < 8 < 0, (u,u) € N with u € ‘H,
we have

2 4 4 4 4
Il = iy, + Bllllegy, < (1+Bllulltyy, < CL+ Bl

where C > 01is independent of 8 since we have the Sobolev embedding H < L*(V). Thus |ju||> >
and J(u, u) > m Because limg_, m = oo, we have limg_,_ g._; ¢(B) = o0.

1
C(1+p)

Because the restricted functional Jx : N — R satisfies the PS condition, standard arguments give
us the following equivariant version of the deformation lemma as in [49], so we omit the proof here.

Lemma 5.4. Suppose c € R, N C N is a o-invariant relative open neighborhood of K.. There exist
e>0anda C"' map n : [0,1] Xx N\ N — N such that, for any s € [0,1] and (u,v) € N\ N,
one has

n0, (u,v)) = (u,v), n(l,(u,v)) e N°aswell as o[n(s, (u,v))] = n(s, o(u,v)).

For a o-invariant closed subset A C N, let us define the genus y(A) to be the least n € N U {0} such
that there is a continuous map & : A — RY \ {0} satisfying h(c(u,v)) = —h(u,v) for any (u,v) € A. If
such map /4 does not exist, then we define y(A) = co. Particularly, if the set A has a fixed point to the
involution map o, then y(A) = oo. It also holds that y(0) = 0.
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Lemma 5.5.
(1) If o-invariant closed subsets A and B satisfy A C B, then it hold that y(A) < y(B).
(2) For o-invariant closed subsets A and B, it holds that y(A U B) < y(A) + y(B).

(3) For a continuous and o-equivalent map h : A — N, it holds that y(A) < y(h(A)).
For a o-invariant closed set A which does not contain fixed points of the involution map o, one has
the following:

(4) If the genus of A satisfies y(A) > 1, then the cardinality §A = .

(5) If the set A is compact, then the genus satisfies y(A) < oo, furthermore, there is a o-invariant
relatively open neighborhood N of A in N satisfying y(A) = y(N).
(6) If S be the boundary of a symmetrical bounded neighborhood of zero in a normed vector space with

dimension k, ¥ : S — N is a continuous map satisfying the condition y(—u) = o(Y(u)), then it holds
that y(W(S)) > k.

Proof. We prove (4): for a o-invariant finite subset A C N which does not contain fixed point of the
involution map o, we can write it as follows:

A= {(Ml, V]), T, (un, Vn), O-(I/ll, Vl), T, O-(Mn’ Vn)}
Define a continuous map 4 : A — R \ {0} by
hui,vi) =-1, h(ocw;,v))=-1, i=1,---,n,

which shows that the genus y(A) satisfies y(A) < 1.

To prove (6), assume by contradiction that there is a continuous map & : (S ) — R¥1\ {0} satisfying
h(o(u,v)) = —h(u,v). From this we know that 2 o ¢ : § — RK"!\ {0} is a continuous and odd map,
which gives a contradiction to the Borsuk-Ulam theorem. The other properties are clear.

Lemma 5.6. If the constant c satisfies ¢ < c(B), then we have y(K.) < oo; moreover, there is € > 0
satisfying
YNT?) < y(NTF) + y(Ko).

Proof. Because the restricted energy functional Jy, satisfies the PS condition, K, is a compact set. From
the definition of the constant c¢(8), we deduce that K, does not contain any fixed point of the involution
map o. Therefore y(K.) < oo, and there is a o-invariant relative open neighborhood N ¢ N of K, in
the modified Nehari manifold N satisfying y(N) = y(K,). Let e > 0 and 17 : [0, 1] X N*® \ N — N<*¢
be the deformation map given by Lemma 5.4. Set n; := n(1,-) : N“*\ N — N“*. Because n, is
o-equivalent, then we have y(N“** \ N) < y(N°?®) and therefore

YN < YN\ N) + y(N) < y(N“?) + y(K,).

We define ¢, := inf{c € R : ¥(N¢) > k}, k € N, which are the Lusternik-Schnirelmann-type level
sets corresponding to the genus y. Clearly, {c;};7, is a non-decreasing sequence. Then the
following holds.
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[

Lemma 5.7. (1) The sequence {ci}; ,

the constant 3.
(2) As k — oo, we have c; — ¢, and the limit ¢ satisfies the estimate c¢(8) < ¢ < oo.
(3) If for some | > k we have ¢ := ¢, = cxy1 = - -+ = ¢; < c(B), it then holds that y(K.) > 1 —k + 1.
(4) For c; < c(B), K., # O; furthermore, N has at leaset k pairs of critical points (u,v), (v, u) to the
energy functional J.

is uniformly bounded with an upper bound independently of

Proof. (1) We take W C H to be a k-dimensional subspace of H which consists of functions u € H
satisfying the property fv udu = 0. If we define S := {u € W : |lu]| = 1} to be the unit sphere of W,
then for every u € S it holds that u* # 0 and u~ # 0. Let us consider the map ¥ : S — N defined as

et P\ (1)
v = [(||u+||4) o (fie) )
Clearly for every u € S, Y(—u) = o(¥(u)) and it is a continuous map. Therefore we have y(¥(S)) > k
and ¢, < sup,.g J(W(u)) < oo. sup,¢ J(¥(u)) is independent of the parameter S, so the claim follows.

(2) By contradiction we assume that as k — oo it holds that ¢, — ¢ < ¢(B). For the constant ¢ = ¢,
let £ > 0 be the constant given in Lemma 5.6. We find that ¢ — € < ¢, when £k is large enough, hence
Y(N©®) is a finite number. Therefore we have the estimates y(N°*®) < y(N“®) + y(K;) < oo. This
gives a contradiction to the fact ¢ > ¢, for any k.

(3) By assumption and the definition of the Lusternik-Schnirelmann values ¢, for every € > 0 it
holds that y(N“7¢) < k — 1, y(N“*®) > [; therefore we have the estimate y(K.) > [ —k + 1.

(4) For ¢ < c(B), property (3) implies that y(K.,) > 1; hence the o-invariant set K., is nonempty.
For ¢; < ¢; < -+ < ¢, we conclude that there are at least k pairs of critical points to the energy
functional J in N“. If for some i < k and j > i, ¢; = ¢}, then by property (3) we have y(K,,) > 1; hence
the set K., contains infinitely many elements, corresponding to the fact that N has infinitely many
pairs of critical points to the energy functional J.

Proof of Theorem 1.3. (i) For every k, let us choose (u,vx) € K., which gives a sequence of
nontrivial critical points to the energy functional J with J(u, v) — co. We therefore have |ju|* +
Vil — oo.

(i1) Given a positive integer k, there is 5; > —1 satisfying ¢, < ¢(B) for 8 < B. Hence there exist at
least k pairs of nontrivial critical points to the energy functional J, and therefore (1.11) has at least k
pairs of solutions (u, v), (v, u).
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