Goursat's lemma gives a good method to describe subgroups of the direct product of two groups $ G_1, G_2 $, and to determine whether subgroups of $ G_1\times G_2 $ are direct products. However, the usual symmetric version of Goursat's lemma is difficult to describe subgroups of a direct product of a finite number of groups. Fortunately, the asymmetric version of Goursat's lemma provide a new method to solve the difficulty. In this paper, we used additional conditions $ \pi_i(H) = G_i $, the injectivity $ \rho_i $, and $ H_{i22} = H_{i12}\cap H_{i21} $ for $ 1\leq i\leq 3 $ to give some related results about groups (resp. $ R $-modules, $ R $-algebras (rings as corollary)), and then we gave the answer on whether a $ R $-submodule $ M $ of $ M_1\times \cdots \times M_n $ has the form $ M = \widetilde N\times N_n $ and $ M = N_1\times \cdots \times N_n $. Further, we extended similar conclusions to $ R $-algebras (rings as corollary).
Citation: Kailing Lai, Fanning Meng, Leiling Zhang. The symmetric and asymmetric version of Goursat's Lemma[J]. Electronic Research Archive, 2025, 33(11): 6952-6970. doi: 10.3934/era.2025306
Goursat's lemma gives a good method to describe subgroups of the direct product of two groups $ G_1, G_2 $, and to determine whether subgroups of $ G_1\times G_2 $ are direct products. However, the usual symmetric version of Goursat's lemma is difficult to describe subgroups of a direct product of a finite number of groups. Fortunately, the asymmetric version of Goursat's lemma provide a new method to solve the difficulty. In this paper, we used additional conditions $ \pi_i(H) = G_i $, the injectivity $ \rho_i $, and $ H_{i22} = H_{i12}\cap H_{i21} $ for $ 1\leq i\leq 3 $ to give some related results about groups (resp. $ R $-modules, $ R $-algebras (rings as corollary)), and then we gave the answer on whether a $ R $-submodule $ M $ of $ M_1\times \cdots \times M_n $ has the form $ M = \widetilde N\times N_n $ and $ M = N_1\times \cdots \times N_n $. Further, we extended similar conclusions to $ R $-algebras (rings as corollary).
| [1] |
E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. Ec. Norm. Super., 6 (1889), 9–102. https://doi.org/10.24033/asens.317 doi: 10.24033/asens.317
|
| [2] |
L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ., 59 (2014), 93–103. https://doi.org/10.2478/tmmp-2014-0021 doi: 10.2478/tmmp-2014-0021
|
| [3] |
J. Petrillo, Counting subgroups in a direct product of finite cyclic groups, Coll. Math. J., 42 (2011), 215–222. https://doi.org/10.4169/college.math.j.42.3.215 doi: 10.4169/college.math.j.42.3.215
|
| [4] | D. D. Anderson, V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, Contemp. Math., 480 (2009), 1–12. |
| [5] |
S. E. Dickson, On algebras of finite representation type, Trans. Amer. Math. Soc., 135 (1969), 127–141. https://doi.org/10.2307/1995007 doi: 10.2307/1995007
|
| [6] | J. Lambek, Lectures on Rings and Modules, $3^{rd}$ Edition, American Mathematical Society, New York, 1986. https://bookstore.ams.org/chel-283.h |
| [7] |
F. N. Meng, J. H. Guo, On the extensions of Zassenhaus lemma and Goursat's lemma to algebraic structures, J. Math., 2022 (2022), 7705500. https://doi.org/10.1155/2022/7705500 doi: 10.1155/2022/7705500
|
| [8] | K. Bauer, D. Sen, P. Zvengrowski, A generalized Goursat lemma, Tatra Mt. Math. Publ., 64 (2015), 1–19. https://doi.org/10.1515/tmmp-2015-0039 |
| [9] |
B. R. A. Mbarga, Some remarks on Goursat lemma, Algebraic Struct. Appl., 8 (2021), 119–129. https://doi.org/10.22034/as.2021.2022 doi: 10.22034/as.2021.2022
|
| [10] | D. S. Dummit, R. M. Foote, Abstract Algebra, $3^{rd}$ Edition, John Wiley and Sons, Hoboken, 2004. |
| [11] | M. S. L. Liedokto, H. Susanto, I. M. Sulandra, On the extensions of Goursat's theorem to direct products of $n$ $R$-algebras, in AIP Conference Proceedings (The 3rd International Conference on Mathematics and its Applications, 2022), 3049 (2024), 020017. https://doi.org/10.1063/5.0194362 |
| [12] | S. Lang, Algebra, Springer, New York, 2002. https://doi.org/10.1007/978-1-4613-0041-0 |
| [13] |
M. S. L. Liedokto, H. Susanto, I. M. Sulandra, Generalization of Goursat's Theorem for Subrings of Direct Products of $n$ Rings, KnE Life Sci., 2024 (2024), 66–74. https://doi.org/10.18502/kls.v8i1.15397 doi: 10.18502/kls.v8i1.15397
|
| [14] | H. Q. He, Generalized Asymmetryic Goursat Lemma (in Chinese), Master thesis, Guangzhou University in Guangzhou, 2024. https://doi.org/10.27040/d.cnki.ggzdu.2024.000146 |