Research article

On $ 3 $-parameter generalized quaternions with higher order Leonardo numbers components

  • Published: 17 November 2025
  • In this paper, a novel type of $ 3 $-parameter generalized quaternions ($ 3 $ -PGQs) is introduced, constructed from higher order Leonardo numbers and referred to as the higher order Leonardo $ 3 $-parameter generalized quaternions (shortly, higher order Leonardo $ 3 $-PGQs). Several fundamental properties of these quaternions are examined, including their recurrence relations, a Binet-type formula, and both generating and exponential generating functions. In addition, the obtained identities show that the higher order Leonardo $ 3 $-PGQs can be expressed in closed form in terms of Fibonacci numbers, Fibonacci generalized quaternions, and higher order Leonardo numbers.

    Citation: Kübra GÜL. On $ 3 $-parameter generalized quaternions with higher order Leonardo numbers components[J]. Electronic Research Archive, 2025, 33(11): 6789-6804. doi: 10.3934/era.2025300

    Related Papers:

  • In this paper, a novel type of $ 3 $-parameter generalized quaternions ($ 3 $ -PGQs) is introduced, constructed from higher order Leonardo numbers and referred to as the higher order Leonardo $ 3 $-parameter generalized quaternions (shortly, higher order Leonardo $ 3 $-PGQs). Several fundamental properties of these quaternions are examined, including their recurrence relations, a Binet-type formula, and both generating and exponential generating functions. In addition, the obtained identities show that the higher order Leonardo $ 3 $-PGQs can be expressed in closed form in terms of Fibonacci numbers, Fibonacci generalized quaternions, and higher order Leonardo numbers.



    加载中


    [1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., New York, 2001. https://doi.org/10.1002/9781118033067
    [2] A. P. Lyapin, S. S. Akhtamova, Recurrence relations for the sections of the generating series of the solution to the multidimensional difference equation, Vestn. Udmurtsk. Univ. Mat. Mekh., 31 (2021), 414–423. https://doi.org/10.35634/vm210305 doi: 10.35634/vm210305
    [3] P. Catarino, A. Borges, On Leonardo numbers, Acta Math. Univ. Comen., 89 (2019), 75–86.
    [4] P. Catarino, A. Borges, A note on incomplete Leonardo numbers, Integers, 20 (2020), 1–7.
    [5] G. Y. Saçlı, On 3-parameter generalized quaternions with the Leonardo $p$-sequence, J. Sci. Arts, 24 (2024), 21–30. https://doi.org/10.46939/J.Sci.Arts-24.1-a03 doi: 10.46939/J.Sci.Arts-24.1-a03
    [6] Y. Alp, E. G. Koçer, Some properties of Leonardo numbers, Konuralp J. Math., 9 (2021), 183–189.
    [7] E. Tan, D. Savin, S. Yılmaz, A new class of Leonardo hybrid numbers and some remarks on Leonardo quaternions over finite fields, Mathematics, 11 (2023), 4701. https://doi.org/10.3390/math11224701 doi: 10.3390/math11224701
    [8] M. Özvatan, Generalized Golden-Fibonacci Calculus and Applications, Master's thesis, Izmir Institute of Technology, 2018.
    [9] C. Kızılateş, T. Kone, On higher order Fibonacci quaternions, J. Anal., 29 (2021), 1071–1082. https://doi.org/10.1007/s41478-020-00295-1 doi: 10.1007/s41478-020-00295-1
    [10] C. K. Cook, M. R. Bacon, Some identities for Jacobsthal and Jacobsthal Lucas numbers satisfying higher order recurrence relations, Ann. Math. Inf., 41 (2013), 27–39.
    [11] K. Gül, On the higher order Leonardo quaternions, in Explorations in Mathematical Analysis, (2023), 135–150.
    [12] H. Özimamoğlu, On hyper complex numbers with higher order Pell numbers components, J. Anal., 31 (2023), 2443–2457. https://doi.org/10.1007/s41478-023-00579-2 doi: 10.1007/s41478-023-00579-2
    [13] W. R. Hamilton, Elements of Quaternions, Longman, Green, and Company, London, 1866.
    [14] L. E. Dickson, On the theory of numbers and generalized quaternions, Am. J. Math., 46 (1924), 1–16. https://doi.org/10.2307/2370658 doi: 10.2307/2370658
    [15] L. W. Griffiths, Generalized quaternion algebras and the theory of numbers, Am. J. Math., 50 (1928), 303–314. https://doi.org/10.2307/2371761 doi: 10.2307/2371761
    [16] H. Pottman, J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 2001.
    [17] D. Savin, C. Flaut, C. Ciobanu, Some properties of the symbol algebras, Carpathian J. Math., 25 (2009), 239–245.
    [18] T. D. Şentürk, Z. Ünal, $3$ -parameter generalized quaternions, Comput. Methods Funct. Theory, 22 (2022), 575–608. https://doi.org/10.1007/s40315-022-00451-7 doi: 10.1007/s40315-022-00451-7
    [19] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon., 70 (1963), 289–291. https://doi.org/10.2307/2313129 doi: 10.2307/2313129
    [20] S. Halici, On Fibonacci quaternions, Adv. Appl. Clifford Algebr., 22 (2012), 321–327. https://doi.org/10.1007/s00006-011-0317-1 doi: 10.1007/s00006-011-0317-1
    [21] S. Halici, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebr., 23 (2013), 105–112. https://doi.org/10.1007/s00006-012-0337-5 doi: 10.1007/s00006-012-0337-5
    [22] A. F. Horadam, Quaternion recurrence relations, Ulam Quarterly, 2 (1993), 23–33.
    [23] M. R. Iyer, A note on Fibonacci quaternions, Fibonacci Quarterly, 7 (1969), 225–229. https://doi.org/10.1080/00150517.1969.12431146 doi: 10.1080/00150517.1969.12431146
    [24] M. Akyigit, H. H. Koksal, M. Tosun, Fibonacci generalized quaternions, Adv. Appl. Clifford Algebr., 24 (2014), 631–641. https://doi.org/10.1007/s00006-014-0458-0 doi: 10.1007/s00006-014-0458-0
    [25] E. Polatli, A generalization of Fibonacci and Lucas quaternions, Adv. Appl. Clifford Algebr., 26 (2016), 719–730. https://doi.org/10.1007/s00006-015-0626-x doi: 10.1007/s00006-015-0626-x
    [26] S. Halici, A. Karataş, On a generalization for quaternion sequences, Chaos, Solitons Fractals, 98 (2017), 178–182. https://doi.org/10.1016/j.chaos.2017.03.037 doi: 10.1016/j.chaos.2017.03.037
    [27] K. Gul, On bi-periodic Jacobsthal and Jacobsthal-Lucas quaternions, J. Math. Res., 11 (2019), 44–52. https://doi.org/10.5539/jmr.v11n2p44 doi: 10.5539/jmr.v11n2p44
    [28] K. Gül, Dual bicomplex Horadam quaternions, Notes Number Theory Discrete Math., 26 (2020), 187–205. https://doi.org/10.7546/nntdm.2020.26.4.187-205 doi: 10.7546/nntdm.2020.26.4.187-205
    [29] D. Bród, A. Szynal-Liana, I. Włoch, On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions, Czechoslovak Math. J., 72 (2022), 1239–1248. https://doi.org/10.21136/CMJ.2022.0174-22 doi: 10.21136/CMJ.2022.0174-22
    [30] G. Bilgici, Fibonacci $3$-parameter generalized quaternions, Eur. J. Sci. Technol., 41 (2022), 357–361. https://doi.org/10.31590/ejosat.1166686 doi: 10.31590/ejosat.1166686
    [31] C. Kızılateş, İ. Y. Kibar, On $3$ -parameter quaternions with higher order generalized Fibonacci numbers components, J. Anal., 32 (2024), 1819–1832. https://doi.org/10.1007/s41478-024-00730-7 doi: 10.1007/s41478-024-00730-7
    [32] Y. Deng, J. Tang, $3$-parameter generalized quaternions based on Gaussian-Leonardo numbers, Curr. Sci., 5 (2025), 4274–4285. https://doi.org/10.52845/CS/2025-5-4-73 doi: 10.52845/CS/2025-5-4-73
    [33] G. Bilgici, $k$-Fibonacci and $k$-Lucas 3-Parameter Generalized Quaternions, Bidge Publications, 2024.
    [34] G. Cerda-Morales, Third-order Jacobsthal $3$ -parameter generalized quaternions, preprint, arXiv: 2504.03646, https://doi.org/10.48550/arXiv.2504.03646
    [35] Z. İşbilir, N. Gürses, M. Tosun, On the $3$-parameter generalized quaternions with generalized Tribonacci numbers components, Filomat, 39 (2025), 3003–3027. https://doi.org/10.2298/FIL2509003I doi: 10.2298/FIL2509003I
    [36] Z. İşbilir, N. Gürses, Horadam $3$ -parameter generalized quaternions, Honam Math. J., 46 (2024), 407–427. https://doi.org/10.5831/HMJ.2024.46.3.407 doi: 10.5831/HMJ.2024.46.3.407
    [37] R. R. Stone, General identities for Fibonacci and Lucas numbers with polynomial subscripts in several variables, Fibonacci Q., 13 (1975), 289–294.
    [38] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, Halsted Press, 1989.
    [39] K. Gül, Higher order Leonardo numbers, in Cumhuriyet 10th International Conference on Applied Sciences, 29 (2023), 82–87.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(361) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog