The hippocampus in the brain encodes memorized information as long-term memory through the plasticity of the CA3–CA1 synaptic network, thereby forming stable engrams. Based on the hippocampal CA3–CA1 synaptic network model, memory engrams are encoded as trajectories within a stable heteroclinic network, where saddle points signify different information blocks. This stable heteroclinic network is further refined into a knowledge network that illustrates the relationships between information blocks, defining the retrieval efficiency, capability, and integration quality of the network among these blocks. In this paper, we examined the impact of the local and global topological properties of the knowledge network on retrieval efficiency, capability, and integration quality. Numerical results indicated that the retrieval efficiency between any two information blocks in the knowledge network decreased with the out-degree of the cue's corresponding node, increased with the in-degree of the target's corresponding node, and was negatively correlated with the distance between node pairs. The retrieval capability of any information block was determined by the out-degree centrality and out-closeness of the corresponding node, while the integration quality of the knowledge network was influenced by the information blocks corresponding to nodes with higher degree centrality or betweenness centrality, and was negatively correlated with the average path length of the network.
Citation: Lei Yang, Honghui Zhang, Zhongkui Sun. Topological structure determines integration quality and retrieval efficiency[J]. Electronic Research Archive, 2025, 33(11): 6742-6770. doi: 10.3934/era.2025298
The hippocampus in the brain encodes memorized information as long-term memory through the plasticity of the CA3–CA1 synaptic network, thereby forming stable engrams. Based on the hippocampal CA3–CA1 synaptic network model, memory engrams are encoded as trajectories within a stable heteroclinic network, where saddle points signify different information blocks. This stable heteroclinic network is further refined into a knowledge network that illustrates the relationships between information blocks, defining the retrieval efficiency, capability, and integration quality of the network among these blocks. In this paper, we examined the impact of the local and global topological properties of the knowledge network on retrieval efficiency, capability, and integration quality. Numerical results indicated that the retrieval efficiency between any two information blocks in the knowledge network decreased with the out-degree of the cue's corresponding node, increased with the in-degree of the target's corresponding node, and was negatively correlated with the distance between node pairs. The retrieval capability of any information block was determined by the out-degree centrality and out-closeness of the corresponding node, while the integration quality of the knowledge network was influenced by the information blocks corresponding to nodes with higher degree centrality or betweenness centrality, and was negatively correlated with the average path length of the network.
| [1] |
E. Kandel, Y. Dudai, M. Mayford, The molecular and systems biology of memory, Cell, 157 (2014), 163–186. https://doi.org/10.1016/j.cell.2014.03.001 doi: 10.1016/j.cell.2014.03.001
|
| [2] |
S. Josselyn, S. Tonegawa, Memory engrams: Recalling the past and imagining the future, Science, 367 (2020), eaaw4325. https://doi.org/10.1126/science.aaw4325 doi: 10.1126/science.aaw4325
|
| [3] |
S. Chen, N. Cheng, X. Chen, C. Wang, Integration and competition between space and time in the hippocampus, Neuron, 112 (2024), 3651–3664. https://doi.org/10.1016/j.neuron.2024.08.007 doi: 10.1016/j.neuron.2024.08.007
|
| [4] |
L. D. Kolibius, S. A. Josselyn, S. Hanslmayr, On the origin of memory neurons in the human hippocampus, Trends Cognit. Sci., 29 (2025), 421–433. https://doi.org/10.1016/j.tics.2025.01.013 doi: 10.1016/j.tics.2025.01.013
|
| [5] |
A. Tzilivaki, J. J. Tukker, N. Maier, P. Poirazi, R. P. Sammons, D. Schmitz, Hippocampal GABAergic interneurons and memory, Neuron, 111 (2023), 3154–3175. https://doi.org/10.1016/j.neuron.2023.06.016 doi: 10.1016/j.neuron.2023.06.016
|
| [6] |
R. E. Harvey, H. L. Robinson, C. Liu, A. Oliva, A. Fernandez-Ruiz, Hippocampo-cortical circuits for selective memory encoding, routing, and replay, Neuron, 111 (2023), 2076–2090. https://doi.org/10.1016/j.neuron.2023.04.015 doi: 10.1016/j.neuron.2023.04.015
|
| [7] |
J. W. Chen, C. Zhang, P. Y. Hu, B. Min, L. P. Wang, Flexible control of sequence working memory in the macaque frontal cortex, Neuron, 112 (2024), 3502–3514. https://doi.org/10.1016/j.neuron.2024.07.024 doi: 10.1016/j.neuron.2024.07.024
|
| [8] |
D. F. Tomé, Y. Zhang, T. Aida, O. Mosto, Y. Lu, M. Chen, et al., Dynamic and selective engrams emerge with memory consolidation, Nat. Neurosci., 27 (2024), 561–572. https://doi.org/10.1038/s41593-023-01551-w doi: 10.1038/s41593-023-01551-w
|
| [9] |
Y. M. Zhou, H. W. Zhu, Z. Y. Liu, X. Chen, X. J. Su, C. N. Ma, et al., A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine, Nat. Neurosci., 22 (2019), 1986–1999. https://doi.org/10.1038/s41593-019-0524-y doi: 10.1038/s41593-019-0524-y
|
| [10] |
R. Refaeli, T. Kreisel, M. Groysman, A. Adamsky, I. Goshen, Engram stability and maturation during systems consolidation, Curr. Biol., 33 (2023), 3942–3950. https://doi.org/10.1016/j.cub.2023.07.042 doi: 10.1016/j.cub.2023.07.042
|
| [11] |
L. Y. Prince, T. J. Bacon, C. M. Tigaret, J. R. Mellor, Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit, Front. Synaptic Neurosci., 8 (2016), 32. https://doi.org/10.3389/fnsyn.2016.00032 doi: 10.3389/fnsyn.2016.00032
|
| [12] |
B. Lei, B. Kang, Y. Hao, H. Yang, Z. Zhong, Z. Zhai, et al., Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating, Neuron, 113 (2025), 471–485. https://doi.org/10.1016/j.neuron.2024.11.010 doi: 10.1016/j.neuron.2024.11.010
|
| [13] |
D. Osorio-Gómez, M. I. Miranda, K. Guzmán-Ramos, F. Bermúdez-Rattoni, Transforming experiences: Neurobiology of memory updating/editing, Front. Syst. Neurosci., 17 (2023), 1103770. https://doi.org/10.3389/fnsys.2023.1103770 doi: 10.3389/fnsys.2023.1103770
|
| [14] |
C. Wang, H. Yue, Z. Hu, Y. Shen, J. Ma, J. Li, et al., Microglia mediate forgetting via complement-dependent synaptic elimination, Science, 367 (2020), 688–694. https://doi.org/10.1126/science.aaz2288 doi: 10.1126/science.aaz2288
|
| [15] |
J. Ruzicka, M. Dalecka, K. Safrankova, D. Peretti, P. Jendelova, J. C. F. Kwok, et al., Perineuronal nets affect memory and learning after synapse withdrawal, Transl. Psychiatry, 12 (2022), 480. https://doi.org/10.1038/s41398-022-02226-z doi: 10.1038/s41398-022-02226-z
|
| [16] |
N. J. Mandelberg, R. Tsien, Weakening synapses to cull memories, Science, 363 (2019), 31–32. https://doi.org/10.1126/science.aaw1675 doi: 10.1126/science.aaw1675
|
| [17] |
R. Fukaya, R. Miyano, H. Hirai, T. Sakaba, Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses, Front. Cell. Neurosci., 17 (2023), 1237589. https://doi.org/10.3389/fncel.2023.1237589 doi: 10.3389/fncel.2023.1237589
|
| [18] |
K. Isler, C. P. van Schaik, Metabolic costs of brain size evolution, Biol. Lett., 2 (2006), 557–560. https://doi.org/10.1098/rsbl.2006.0538 doi: 10.1098/rsbl.2006.0538
|
| [19] |
E. Bullmore, O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci., 13 (2012), 336–349. https://doi.org/10.1038/nrn3214 doi: 10.1038/nrn3214
|
| [20] |
Q. She, G. Chen, R. Chan, Evaluating the small-world-ness of a sampled network: Functional connectivity of entorhinal-hippocampal circuitry, Sci. Rep., 6 (2016), 21468. https://doi.org/10.1038/srep21468 doi: 10.1038/srep21468
|
| [21] |
S. Muldoon, E. Bridgeford, D. Bassett, Small-world propensity and weighted brain networks, Sci. Rep., 6 (2016), 22057. https://doi.org/10.1038/srep22057 doi: 10.1038/srep22057
|
| [22] |
P. Taylor, Y. Wang, M. Kaiser, Within brain area tractography suggests local modularity using high resolution connectomics, Sci. Rep., 7 (2017), 39859. https://doi.org/10.1038/srep39859 doi: 10.1038/srep39859
|
| [23] |
M. P. van den Heuvel, O. Sporns, Network hubs in the human brain, Trends Cognit. Sci., 17 (2013), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 doi: 10.1016/j.tics.2013.09.012
|
| [24] |
O. Sporns, Structure and function of complex brain networks, Dialogues Clin. Neurosci., 15 (2013), 247–262. https://doi.org/10.31887/DCNS.2013.15.3/osporns doi: 10.31887/DCNS.2013.15.3/osporns
|
| [25] |
A. Hahn, M. Breakspear, L. Rischka, W. Wadsak, G. M. Godbersen, V. Pichler, et al., Reconfiguration of functional brain networks and metabolic cost converge during task performance, eLife, 9 (2020), e52443. https://doi.org/10.7554/eLife.52443 doi: 10.7554/eLife.52443
|
| [26] |
L. K. Gallos, H. A. Makse, M. Sigman, A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks, Proc. Natl. Acad. Sci. U.S.A., 109 (2012), 2825–2830. https://doi.org/10.1073/pnas.1106612109 doi: 10.1073/pnas.1106612109
|
| [27] |
L. Yang, H. H. Zhang, Z. K. Sun, L. Du, G. R. Chen, Hippocampal CA3–CA1 synaptic network model of memory, Nonlinear Dyn., 112 (2024), 7499–7525. https://doi.org/10.1007/s11071-024-09375-4 doi: 10.1007/s11071-024-09375-4
|
| [28] |
L. Yang, H. H. Zhang, Z. K. Sun, Hippocampus encoding memory engrams as stable heteroclinic network, Chaos, 34 (2024), 123118. https://doi.org/10.1063/5.0223045 doi: 10.1063/5.0223045
|
| [29] | L. Yang, H. H. Zhang, Z. K. Sun, Modeling dynamics of memory integration and retrieval in the hippocampus, Eur. Phys. J. Spec. Top., 2025 (2025). https://doi.org/10.1140/epjs/s11734-025-01821-7 |
| [30] | T. D. Shou, Neurobiology, 3nd edition (in Chinese), Beijing: Higher Education Press, 2013. |
| [31] |
A. Guet-McCreight, F. K. Skinner, L. Topolnik, Common principles in functional organization of VIP/calretinin cell-driven disinhibitory circuits across cortical areas, Front. Neural Circuits, 14 (2020), 32. https://doi.org/10.3389/fncir.2020.00032 doi: 10.3389/fncir.2020.00032
|
| [32] |
E. Abs, R. B. Poorthuis, D. Apelblat, K. Muhammad, M. B. Pardi, L. Enke, et al., Learning-related plasticity in dendrite-targeting layer 1 interneurons, Neuron, 100 (2018), 684–699. https://doi.org/10.1016/j.neuron.2018.09.001 doi: 10.1016/j.neuron.2018.09.001
|
| [33] |
Z. Kohus, S. Káli, L. Rovira-Esteban, D. Schlingloff, O. Papp, T. F. Freund, et al., Properties and dynamics of inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons expressing parvalbumin or cholecystokinin, J. Physiol., 594 (2016), 3745–3774. https://doi.org/10.1113/JP272231 doi: 10.1113/JP272231
|
| [34] |
R. Evangelista, G. Cano, C. Cooper, D. Schmitz, N. Maier, R. Kempter, Generation of sharp wave-ripple events by disinhibition, J. Neurosci., 40 (2020), 7811–7836. https://doi.org/10.1523/JNEUROSCI.2174-19.2020 doi: 10.1523/JNEUROSCI.2174-19.2020
|
| [35] |
B. Dudok, P. M. Klein, E. Hwaun, B. R. Lee, Z. Yao, O. Fong, et al., Alternating sources of perisomatic inhibition during behavior, Neuron, 109 (2021), 997–1012. https://doi.org/10.1016/j.neuron.2021.01.003 doi: 10.1016/j.neuron.2021.01.003
|
| [36] |
M. Udakis, V. Pedrosa, S. E. L. Chamberlain, C. Clopath, J. R. Mellor, Interneuron-specific plasticity at parvalbumin and somatostatin inhibitory synapses onto CA1 pyramidal neurons shapes hippocampal output, Nat. Commun., 11 (2020), 4395. https://doi.org/10.1038/s41467-020-18074-8 doi: 10.1038/s41467-020-18074-8
|
| [37] |
T. Jing, L. Yang, W. G. Sun, Exact calculations of network coherence in weighted ring-trees networks and recursive trees, Phys. Scr., 96 (2021), 085217. https://doi.org/10.1088/1402-4896/ac0277 doi: 10.1088/1402-4896/ac0277
|
| [38] |
J. Chen, L. Zhou, W. G. Sun, Consensus analysis of chain star networks coupled by leaf nodes, Phys. Scr., 98 (2023), 125204. https://doi.org/10.1088/1402-4896/ad0588 doi: 10.1088/1402-4896/ad0588
|
| [39] |
A. J. DeCostanzo, C. C. A. Fung, T. Fukai, Hippocampal neurogenesis reduces the dimensionality of sparsely coded representations to enhance memory encoding, Front. Comput. Neurosci., 12 (2019), 99. https://doi.org/10.3389/fncom.2018.00099 doi: 10.3389/fncom.2018.00099
|
| [40] |
P. Rao-Ruiz, E. Visser, M. Mitrić, A. B. Smit, M. C. van den Oever, A synaptic framework for the persistence of memory engrams, Front. Synaptic Neurosci., 13 (2021), 661476. https://doi.org/10.3389/fnsyn.2021.661476 doi: 10.3389/fnsyn.2021.661476
|
| [41] |
K. M. Swallow, J. M. Zacks, R. A. Abrams, Event boundaries in perception affect memory encoding and updating, J. Exp. Psychol. Gen., 138 (2009), 236–257. https://doi.org/10.1037/a0015631 doi: 10.1037/a0015631
|
| [42] |
S. Tazerart, D. E. Mitchell, S. Miranda-Rottmann, R. Araya, A spike-timing-dependent plasticity rule for dendritic spines, Nat. Commun., 11 (2020), 4276. https://doi.org/10.1038/s41467-020-17861-7 doi: 10.1038/s41467-020-17861-7
|