Research article Special Issues

Quasilinear elliptic equations with unbalanced growth and singular perturbation

  • Dedicated to Professor Patrizia Pucci on the occasion of her 70th birthday.
  • Published: 13 November 2025
  • In this paper, we study parametric quasilinear elliptic equations driven by the double phase operator, where the right-hand side consists of a singular term and a sublinear term. By combining a new Hopf's Lemma with truncation techniques and an abstract critical point theorem, we establish the existence of three bounded positive solutions and provide an explicit upper bound for the parameter.

    Citation: Wulong Liu, Huayuan Feng, Yingjie Sun, Patrick Winkert. Quasilinear elliptic equations with unbalanced growth and singular perturbation[J]. Electronic Research Archive, 2025, 33(11): 6720-6741. doi: 10.3934/era.2025297

    Related Papers:

  • In this paper, we study parametric quasilinear elliptic equations driven by the double phase operator, where the right-hand side consists of a singular term and a sublinear term. By combining a new Hopf's Lemma with truncation techniques and an abstract critical point theorem, we establish the existence of three bounded positive solutions and provide an explicit upper bound for the parameter.



    加载中


    [1] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 675–710. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958
    [2] P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [3] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [4] W. Liu, G. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 59 (2018), 121503. https://doi.org/10.1063/1.5055300 doi: 10.1063/1.5055300
    [5] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. Theory Methods Appl., 121 (2015), 206–222. https://doi.org/10.1016/j.na.2014.11.001 doi: 10.1016/j.na.2014.11.001
    [6] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/spmj/1392 doi: 10.1090/spmj/1392
    [7] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equations, 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [8] P. Baroni, T. Kuusi, G. Mingione, Borderline gradient continuity of minima, J. Fixed Point Theory Appl., 15 (2014), 537–575. https://doi.org/10.1007/s11784-014-0188-x doi: 10.1007/s11784-014-0188-x
    [9] S. S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269–1300. https://doi.org/10.2140/apde.2020.13.1269 doi: 10.2140/apde.2020.13.1269
    [10] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
    [11] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [12] C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017 doi: 10.1016/j.jde.2019.01.017
    [13] J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal., 194 (2020), 111408. https://doi.org/10.1016/j.na.2018.12.019 doi: 10.1016/j.na.2018.12.019
    [14] M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728. https://doi.org/10.1515/anona-2020-0022 doi: 10.1515/anona-2020-0022
    [15] J. A. D. Ackroyd, On the laminar compressible boundary layer with stationary origin on a moving flat wall, Math. Proc. Cambridge Philos. Soc., 63 (1967), 871–888. https://doi.org/10.1017/S0305004100041840 doi: 10.1017/S0305004100041840
    [16] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford University Press, 1975.
    [17] M. G. Crandall, P. H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equations, 2 (1977), 193–222. https://doi.org/10.1080/03605307708820029 doi: 10.1080/03605307708820029
    [18] J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Edinburgh Math. Soc. Sect. A: Math., 128 (1998), 1389–1401. https://doi.org/10.1017/S0308210500027384 doi: 10.1017/S0308210500027384
    [19] Y. Sun, S. Wu, Y. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differ. Equations, 176 (2001), 511–531. https://doi.org/10.1006/jdeq.2000.3973 doi: 10.1006/jdeq.2000.3973
    [20] Y. Sun, S. Wu, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257–1284. https://doi.org/10.1016/j.jfa.2010.11.018 doi: 10.1016/j.jfa.2010.11.018
    [21] W. Liu, G. Dai, N. S. Papageorgiou, P. Winkert, Existence of solutions for singular double phase problems via the Nehari manifold method, Anal. Math. Phys., 12 (2022), 75. https://doi.org/10.1007/s13324-022-00686-6 doi: 10.1007/s13324-022-00686-6
    [22] Y. Bai, L. Gasiński, N. S. Papageorgiou, Singular double phase equations with a sign changing reaction, Commun. Nonlinear Sci. Numer. Simul., 142 (2025), 108566. https://doi.org/10.1016/j.cnsns.2024.108566 doi: 10.1016/j.cnsns.2024.108566
    [23] Z. Liu, N. S. Papageorgiou, Singular double phase equations, Acta Math. Sci., 43 (2023), 1031–1044. https://doi.org/10.1007/s10473-023-0304-3 doi: 10.1007/s10473-023-0304-3
    [24] N. S. Papageorgiou, D. D. Repovš, C. Vetro, Positive solutions for singular double phase problems, J. Math. Anal. Appl., 501 (2021), 123896. https://doi.org/10.1016/j.jmaa.2020.123896 doi: 10.1016/j.jmaa.2020.123896
    [25] W. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 507 (2022), 125762. https://doi.org/10.1016/j.jmaa.2021.125762 doi: 10.1016/j.jmaa.2021.125762
    [26] Y. Bai, N. S. Papageorgiou, S. Zeng, Parametric singular double phase Dirichlet problems, Adv. Nonlinear Anal., 12 (2023), 20230122. https://doi.org/10.1515/anona-2023-0122 doi: 10.1515/anona-2023-0122
    [27] N. S. Papageorgiou, V. D. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. - Ser. S, 14 (2021), 4465–4502. https://doi.org/10.3934/dcdss.2021111 doi: 10.3934/dcdss.2021111
    [28] G. Failla, L. Gasiński, N. S. Papageorgiou, M. Skupień, Existence and uniqueness of solutions for singular double phase equations, Appl. Anal., (2025), 1–16. https://doi.org/10.1080/00036811.2025.2515607
    [29] N. S. Papageorgiou, V. D. Rădulescu, S. Yuan, Nonautonomous double-phase equations with strong singularity and concave perturbation, Bull. London Math. Soc., 56 (2024), 1245–1262. https://doi.org/10.1112/blms.12991 doi: 10.1112/blms.12991
    [30] N. S. Papageorgiou, V. D. Rădulescu, Y. Zhang, Strongly singular double phase problems, Mediterr. J. Math., 19 (2022), 82. https://doi.org/10.1007/s00009-022-02013-6 doi: 10.1007/s00009-022-02013-6
    [31] A. Arora, G. Dwivedi, Existence results for singular double phase problem with variable exponents, Mediterr. J. Math., 20 (2023), 155. https://doi.org/10.1007/s00009-023-02366-6 doi: 10.1007/s00009-023-02366-6
    [32] R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal., 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312 doi: 10.1515/anona-2022-0312
    [33] A. Bahrouni, V.D. Rădulescu, D. D. Repovš, Nonvariational and singular double phase problems for the Baouendi-Grushin operator, J. Differ. Equations, 303 (2021), 645–666. https://doi.org/10.1016/j.jde.2021.09.033 doi: 10.1016/j.jde.2021.09.033
    [34] C. Farkas, P. Winkert, An existence result for singular Finsler double phase problems, J. Differ. Equations, 286 (2021), 455–473. https://doi.org/10.1016/j.jde.2021.03.036 doi: 10.1016/j.jde.2021.03.036
    [35] P. Garain, T. Mukherjee, On an anisotropic double phase problem with singular and sign changing nonlinearity, Nonlinear Anal. Real World Appl., 70 (2023), 103790. https://doi.org/10.1016/j.nonrwa.2022.103790 doi: 10.1016/j.nonrwa.2022.103790
    [36] U. Guarnotta, P. Winkert, Degenerate singular Kirchhoff problems in Musielak-Orlicz spaces, Nonlinear Anal., 264 (2026), 113986. https://doi.org/10.1016/j.na.2025.113986 doi: 10.1016/j.na.2025.113986
    [37] J. Han, Z. Liu, N. S. Papageorgiou, A singular double phase eigenvalue problem with a superlinear indefinite perturbation, Nonlinear Anal., 262 (2026), 113941. https://doi.org/10.1016/j.na.2025.113941 doi: 10.1016/j.na.2025.113941
    [38] N. S. Papageorgiou, Z. Peng, Singular double phase problems with convection, Nonlinear Anal. Real World Appl., 81 (2025), 104213. https://doi.org/10.1016/j.nonrwa.2024.104213 doi: 10.1016/j.nonrwa.2024.104213
    [39] M. T. O. Pimenta, P. Winkert, Strongly singular problems with unbalanced growth, Ann. Mat. Pura Appl., 204 (2025), 2129–2145. https://doi.org/10.1007/s10231-025-01564-1 doi: 10.1007/s10231-025-01564-1
    [40] I. Sim, B. Son, On a class of singular double phase problems with nonnegative weights whose sum can be zero, Nonlinear Anal., 237 (2023), 113384. https://doi.org/10.1016/j.na.2023.113384 doi: 10.1016/j.na.2023.113384
    [41] L. Zhao, Y. He, P. Zhao, The existence of three positive solutions of a singular $p$-Laplacian problem, Nonlinear Anal. Theory Methods Appl., 74 (2011), 5745–5753. https://doi.org/10.1016/j.na.2011.05.065 doi: 10.1016/j.na.2011.05.065
    [42] G. Bonanno, G. M. Bisci, Three weak solutions for elliptic Dirichlet problems, J. Math. Anal. Appl., 382 (2011), 1–8. https://doi.org/10.1016/j.jmaa.2011.04.026 doi: 10.1016/j.jmaa.2011.04.026
    [43] A. Kristály, H. Lisei, C. Varga, Multiple solutions for $p$-Laplacian type equations, Nonlinear Anal. Theory Methods Appl., 68 (2008), 1375–1381. https://doi.org/10.1016/j.na.2006.12.031 doi: 10.1016/j.na.2006.12.031
    [44] G. Bonanno, G. M. Bisci, V. D. Rădulescu, Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces, Nonlinear Anal. Theory Methods Appl., 74 (2011), 4785–4795. https://doi.org/10.1016/j.na.2011.04.049 doi: 10.1016/j.na.2011.04.049
    [45] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
    [46] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
    [47] N. S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, 2$^{nd}$ edition, De Gruyter, Berlin, 2024. https://doi.org/10.1515/9783111286952
    [48] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. Theory Methods Appl., 54 (2003), 651–665. https://doi.org/10.1016/S0362-546X(03)00092-0 doi: 10.1016/S0362-546X(03)00092-0
    [49] B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. Theory Methods Appl., 74 (2011), 7446–7454. https://doi.org/10.1016/j.na.2011.07.064 doi: 10.1016/j.na.2011.07.064
    [50] B. Ricceri, On a three critical points theorem, Arch. Math., 75 (2000), 220–226. https://doi.org/10.1007/s000130050496 doi: 10.1007/s000130050496
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(209) PDF downloads(27) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog