Research article Special Issues

Galerkin-based solution for the time-fractional diffusion-wave equation

  • Published: 02 September 2025
  • In this work, a new spectral Galerkin approach to solving the time-fractional diffusion-wave equation (TFDWE) with non-homogeneous initial and boundary conditions is presented. A suitable transformation is used to convert the TFDWE governed by non-homogeneous conditions into a modified one governed by homogeneous conditions. New basis functions in terms of specific shifted Horadam polynomials are used. Some new definite integral formulas that are crucial to the numerical implementation are developed, and the Galerkin scheme is analyzed in detail to obtain the approximate solutions. A thorough convergence and error analysis of the proposed expansion is established. A number of numerical experiments are carried out to show the scheme's applicability and accuracy when compared to other methods.

    Citation: Waleed Mohamed Abd-Elhameed, Mohamed A. Abdelkawy, Naher Mohammed A. Alsafri, Ahmed Gamal Atta. Galerkin-based solution for the time-fractional diffusion-wave equation[J]. Electronic Research Archive, 2025, 33(9): 5179-5206. doi: 10.3934/era.2025232

    Related Papers:

  • In this work, a new spectral Galerkin approach to solving the time-fractional diffusion-wave equation (TFDWE) with non-homogeneous initial and boundary conditions is presented. A suitable transformation is used to convert the TFDWE governed by non-homogeneous conditions into a modified one governed by homogeneous conditions. New basis functions in terms of specific shifted Horadam polynomials are used. Some new definite integral formulas that are crucial to the numerical implementation are developed, and the Galerkin scheme is analyzed in detail to obtain the approximate solutions. A thorough convergence and error analysis of the proposed expansion is established. A number of numerical experiments are carried out to show the scheme's applicability and accuracy when compared to other methods.



    加载中


    [1] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, 2010.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)X8001-5
    [3] T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus With Applications in Mechanics: Wave Propagation, Impact and Variational Principles, John Wiley & Sons, 2014.
    [4] R. Magin, Fractional calculus in bioengineering, part 1, in Critical Reviews in Biomedical Engineering, 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10
    [5] Z. Odibat, S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl., 58 (2009), 2199–2208. https://doi.org/10.1016/j.camwa.2009.03.009 doi: 10.1016/j.camwa.2009.03.009
    [6] D. Albogami, D. Maturi, H. Alshehri, Adomian decomposition method for solving fractional time-Klein-Gordon equations using Maple, Appl. Math., 14 (2023), 411–418. https://doi.org/10.4236/am.2023.146024 doi: 10.4236/am.2023.146024
    [7] P. Roul, V. M. K. Prasad Goura, R. Cavoretto, A numerical technique based on B-spline for a class of time-fractional diffusion equation, Numer. Methods Partial Differ. Equations, 39 (2023), 45–64. https://doi.org/10.1002/num.22790 doi: 10.1002/num.22790
    [8] X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor–corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
    [9] B. Azarnavid, M. Emamjomeh, M. Nabati, A. Dinmohammadi, An efficient iterative method for multi-order nonlinear fractional differential equations based on the integrated Bernoulli polynomials, Comput. Appl. Math., 43 (2024), 68. https://doi.org/10.1007/s40314-023-02573-7 doi: 10.1007/s40314-023-02573-7
    [10] R. M. Hafez, Y. H. Youssri, Legendre-collocation spectral solver for variable-order fractional functional differential equations, Comput. Methods Differ. Equations, 8 (2020), 99–110. https://doi.org/10.22034/cmde.2019.9465 doi: 10.22034/cmde.2019.9465
    [11] A. K. Farhood, O. H. Mohammed, Homotopy perturbation method for solving time-fractional nonlinear variable-order delay partial differential equations, Partial Differ. Equations Appl. Math., 7 (2023), 100513. https://doi.org/10.1016/j.padiff.2023.100513 doi: 10.1016/j.padiff.2023.100513
    [12] R. Kumar, R. Koundal, S. A. Shehzad, Modified homotopy perturbation approach for the system of fractional partial differential equations: A utility of fractional Wronskian, Math. Methods Appl. Sci., 45 (2022), 809–826. https://doi.org/10.1002/mma.7815 doi: 10.1002/mma.7815
    [13] X. Zhang, Y. Feng, Z. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equations, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
    [14] S. M. Turq, R. I. Nuruddeen, R. Nawaz, Recent advances in employing the Laplace homotopy analysis method to nonlinear fractional models for evolution equations and heat-typed problems, Int. J. Thermofluids, 22 (2024), 100681. https://doi.org/10.1016/j.ijft.2024.100681 doi: 10.1016/j.ijft.2024.100681
    [15] P. Rahimkhani, Y. Ordokhani, Hahn wavelets collocation method combined with Laplace transform method for solving fractional integro-differential equations, Math. Sci., 18 (2024), 463–477. https://doi.org/10.1007/s40096-023-00514-3 doi: 10.1007/s40096-023-00514-3
    [16] Q. H. Do, H. T. B. Ngo, M. Razzaghi, A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105597. https://doi.org/10.1016/j.cnsns.2020.105597 doi: 10.1016/j.cnsns.2020.105597
    [17] A. García, M. Negreanu, F. Ureña, A. M. Vargas, On the numerical solution to space fractional differential equations using meshless finite differences, J. Comput. Appl. Math., 457 (2025), 116322. https://doi.org/10.1016/j.cam.2024.116322 doi: 10.1016/j.cam.2024.116322
    [18] P. Rahimkhani, M. H. Heydari, Numerical investigation of $\psi$-fractional differential equations using wavelets neural networks, Comput. Appl. Math., 44 (2025), 54. https://doi.org/10.1007/s40314-024-02965-3 doi: 10.1007/s40314-024-02965-3
    [19] Z. Avazzadeh, O. Nikan, J. T. Machado, M. N. Rasoulizadeh, Numerical analysis of time-fractional Sobolev equation for fluid-driven processes in impermeable rocks, Adv. Contin. Discrete Models, 2022 (2022), 48. https://doi.org/10.1186/s13662-022-03720-w doi: 10.1186/s13662-022-03720-w
    [20] H. M. Ahmed, Enhanced shifted Jacobi operational matrices of derivatives: Spectral algorithm for solving multiterm variable-order fractional differential equations, Bound. Value Probl., 2023 (2023), 108. https://doi.org/10.1186/s13661-023-01796-1 doi: 10.1186/s13661-023-01796-1
    [21] Y. H. Youssri, R. M. Hafez, Exponential Jacobi spectral method for hyperbolic partial differential equations, Math. Sci., 13 (2019), 347–354. https://doi.org/10.1007/s40096-019-00304-w doi: 10.1007/s40096-019-00304-w
    [22] Y. Yang, C. Wen, Y. Liu, H. Li, J. Wang, Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model, Commun. Anal. Mech., 16 (2024), 24–52. https://doi.org/10.3934/CAM.2024002 doi: 10.3934/CAM.2024002
    [23] S. Yang, Y. Liu, H. Liu, C. Wang, Numerical methods for semilinear fractional diffusion equations with time delay, Adv. Appl. Math. Mech., 14 (2022), 56–78. https://doi.org/10.4208/aamm.OA-2020-0387 doi: 10.4208/aamm.OA-2020-0387
    [24] J. Lai, H. Liu, On a novel numerical scheme for Riesz fractional partial differential equations, Mathematics, 9 (2021), 2014. https://doi.org/10.3390/math9162014 doi: 10.3390/math9162014
    [25] A. Pskhu, S. Rekhviashvili, Fractional diffusion–wave equation with application in electrodynamics, Mathematics, 8 (2020), 2086. https://doi.org/10.3390/math8112086 doi: 10.3390/math8112086
    [26] S. Singh, S. Singh, A. Aggarwal, A new spline technique for the time fractional diffusion–wave equation, MethodsX, 10 (2023), 102007. https://doi.org/10.1016/j.mex.2023.102007 doi: 10.1016/j.mex.2023.102007
    [27] Y. Povstenko, Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry, Nonlinear Dyn., 59 (2010), 593–605. https://doi.org/10.1007/s11071-009-9566-0 doi: 10.1007/s11071-009-9566-0
    [28] Y. Wang, L. Zhang, H. Li, Combination of discrete technique with Bernoulli polynomial approximation for solving a class of time distributed-order and space variable-order fractional damped diffusion-wave equation, J. Appl. Math. Comput., 71 (2025), 3125–3152. https://doi.org/10.1007/s12190-024-02354-3 doi: 10.1007/s12190-024-02354-3
    [29] A. A. Alikhanov, M. S. Asl, C. Huang, A. Khibiev, A second-order difference scheme for the nonlinear time-fractional diffusion-wave equation with generalized memory kernel in the presence of time delay, J. Comput. Appl. Math., 438 (2024), 115515. https://doi.org/10.1016/j.cam.2023.115515 doi: 10.1016/j.cam.2023.115515
    [30] L. Qing, X. Li, Analysis of a meshless generalized finite difference method for the time-fractional diffusion-wave equation, Comput. Math. Appl., 172 (2024), 134–151. https://doi.org/10.1016/j.camwa.2024.08.008 doi: 10.1016/j.camwa.2024.08.008
    [31] W. An, X. Zhang, An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation, Electron. Res. Arch., 32 (2024), 354–369. https://doi.org/10.3934/era.2024017 doi: 10.3934/era.2024017
    [32] M. Shafiq, A. Fatima, M. Abbas, M. Alosaimi, F. A. Abdullah, An effective extended cubic B-spline approach for solving time-fractional diffusion wave equation with exponential kernel, Alexandria Eng. J., 117 (2025), 148–163. https://doi.org/10.1016/j.aej.2024.12.102 doi: 10.1016/j.aej.2024.12.102
    [33] A. A. Alikhanov, M. S. Asl, C. Huang, A. M. Apekov, Temporal second-order difference schemes for the nonlinear time-fractional mixed sub-diffusion and diffusion-wave equation with delay, Physica D, 464 (2024), 134194. https://doi.org/10.1016/j.physd.2024.134194 doi: 10.1016/j.physd.2024.134194
    [34] J. Guo, Y. Chen, Q. Liang, Fast evaluation and robust error analysis of the virtual element methods for time fractional diffusion wave equation, Comput. Math. Appl., 177 (2025), 41–57. https://doi.org/10.1016/j.camwa.2024.11.001 doi: 10.1016/j.camwa.2024.11.001
    [35] J. Shen, T. Tang, L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7
    [36] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036114
    [37] W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta, A collocation procedure for the numerical treatment of the FitzHugh–Nagumo equation using a kind of Chebyshev polynomials, AIMS Math., 10 (2025), 1201–1223. https://doi.org/10.3934/math.2025057 doi: 10.3934/math.2025057
    [38] A. A. El-Sayed, Pell–Lucas polynomials for numerical treatment of the nonlinear fractional-order Duffing equation, Demonstr. Math., 56 (2023), 20220220. https://doi.org/10.1515/dema-2022-0220 doi: 10.1515/dema-2022-0220
    [39] W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta, A collocation procedure for treating the time-fractional FitzHugh–Nagumo differential equation using shifted Lucas polynomials, Mathematics, 12 (2024), 3672. https://doi.org/10.3390/math12233672 doi: 10.3390/math12233672
    [40] Y. H. Youssri, M. I. Ismail, A. G. Atta, Chebyshev Petrov–Galerkin procedure for the time-fractional heat equation with nonlocal conditions, Phys. Scr., 99 (2024), 015251. https://doi.org/10.1088/1402-4896/ad1700 doi: 10.1088/1402-4896/ad1700
    [41] N. Arar, B. Deghdough, S. Dekkiche, Z. Torch, A. M. Nagy, Numerical solution of the Burgers' equation using Chelyshkov polynomials, Int. J. Appl. Comput. Math., 10 (2024), 33. https://doi.org/10.1007/s40819-023-01663-8 doi: 10.1007/s40819-023-01663-8
    [42] W. M. Abd-Elhameed, M. M. Alsuyuti, New spectral algorithm for fractional delay pantograph equation using certain orthogonal generalized Chebyshev polynomials, Commun. Nonlinear Sci. Numer. Simul., 841 (2025), 108479. https://doi.org/10.1016/j.cnsns.2024.108479 doi: 10.1016/j.cnsns.2024.108479
    [43] S. S. Djordjevic, G. B. Djordjevic, Generalized Horadam polynomials and numbers, An. Şt. Univ. Ovidius Constanţa, 26 (2018), 91–101. https://doi.org/10.2478/auom-2018-0005 doi: 10.2478/auom-2018-0005
    [44] R. Keskin, Z. Siar, Some new identities concerning the Horadam sequence and its companion sequence, Commun. Korean Math. Soc., 34 (2019), 1–16. https://doi.org/10.4134/CKMS.c170261 doi: 10.4134/CKMS.c170261
    [45] O. D. Bagdasar, P. J. Larcombe, On the characterization of periodic generalized Horadam sequences, J. Differ. Equations Appl., 20 (2014), 1069–1090. https://doi.org/10.1080/10236198.2014.891022 doi: 10.1080/10236198.2014.891022
    [46] Z. Avazzadeh, H. Hassani, M. J. Ebadi, A. B. Eshkaftaki, A new approach of generalized shifted Vieta–Fibonacci polynomials to solve nonlinear variable order time fractional Burgers–Huxley equations, Phys. Scr., 99 (2024), 125258. https://doi.org/10.1088/1402-4896/ad8fde doi: 10.1088/1402-4896/ad8fde
    [47] M. H. Alharbi, A. F. A. Sunayh, A. G. Atta, W. M. Abd-Elhameed, Novel approach by shifted Fibonacci polynomials for solving the fractional Burgers equation, Fractal Fract., 8 (2024), 427. https://doi.org/10.3390/fractalfract8070427 doi: 10.3390/fractalfract8070427
    [48] W. M. Abd-Elhameed, O. M. Alqubori, A. G. Atta, A collocation approach for the nonlinear fifth-order KdV equations using certain shifted Horadam polynomials, Mathematics, 13 (2025), 300. https://doi.org/10.3390/math13020300 doi: 10.3390/math13020300
    [49] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, 1988. https://doi.org/10.1007/978-3-642-84108-8
    [50] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Springer-Verlag, 1989.
    [51] Y. H. Youssri, M. A. Zaky, R. M. Hafez, Romanovski–Jacobi spectral schemes for high-order differential equations, Appl. Numer. Math., 198 (2024), 148–159. https://doi.org/10.1016/j.apnum.2023.12.015 doi: 10.1016/j.apnum.2023.12.015
    [52] E. Aourir, N. Izem, H. L. Dastjerdi, A computational approach for solving third kind VIEs by collocation method based on radial basis functions, J. Comput. Appl. Math., 440 (2024), 115636. https://doi.org/10.1016/j.cam.2023.115636 doi: 10.1016/j.cam.2023.115636
    [53] M. A. Abdelkawy, A collocation method based on Jacobi and fractional order Jacobi basis functions for multi-dimensional distributed-order diffusion equations, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 781–792. https://doi.org/10.1515/ijnsns-2018-0111 doi: 10.1515/ijnsns-2018-0111
    [54] M. A. Taema, M. A. Dagher, Y. H. Youssri, Spectral collocation method via Fermat polynomials for Fredholm–Volterra integral equations with singular kernels and fractional differential equations, Palest. J. Math., 14 (2025), 481–492.
    [55] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
    [56] M. Abdelhakem, D. Abdelhamied, M. El-Kady, Y. H. Youssri, Two modified shifted Chebyshev–Galerkin operational matrix methods for even-order partial boundary value problems, Bound. Value Probl., 2025 (2025), 34. https://doi.org/10.1186/s13661-025-02021-x doi: 10.1186/s13661-025-02021-x
    [57] Q. Zhang, W. Zhao, G. Zou, A time variable stepping technique for solving the Navier–Stokes equations with an adaptive minimum dissipation criterion, Z. Angew. Math. Phys., 76 (2025), 67. https://doi.org/10.1007/s00033-025-02429-6 doi: 10.1007/s00033-025-02429-6
    [58] W. M. Abd-Elhameed, Y. H. Youssri, A. G. Atta, Tau algorithm for fractional delay differential equations utilizing seventh-kind Chebyshev polynomials, J. Math. Model., 12 (2024), 277–299. https://doi.org/10.22124/jmm.2024.25844.2295 doi: 10.22124/jmm.2024.25844.2295
    [59] W. M. Abd-Elhameed, A. F. Abu Sunayh, M. H. Alharbi, A. G. Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Math., 9 (2024), 34567–34587. https://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
    [60] A. F. Horadam, Extension of a synthesis for a class of polynomial sequences, Fibonacci Q., 34 (1996), 68–74. https://doi.org/10.1080/00150517.1996.12429098 doi: 10.1080/00150517.1996.12429098
    [61] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press (Elsevier), 1999.
    [62] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press/World Scientific, 2010. https://doi.org/10.1142/P614
    [63] Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko–Parkes equation, Fractals, 2025 (2025). https://doi.org/10.1142/S0218348X25501026 doi: 10.1142/S0218348X25501026
    [64] K. J. Wang, An effective computational approach to the local fractional low-pass electrical transmission lines model, Alexandria Eng. J., 110 (2025), 629–635. https://doi.org/10.1016/j.aej.2024.07.021 doi: 10.1016/j.aej.2024.07.021
    [65] C. Li, X. Dao, P. Guo, Fractional derivatives in complex planes, Nonlinear Anal. Theory Methods Appl., 71 (2009), 1857–1869. https://doi.org/10.1016/j.na.2009.01.021 doi: 10.1016/j.na.2009.01.021
    [66] M. Shafiq, M. Abbas, E. K. El-Shewy, M. A. E. Abdelrahman, N. F. Abdo, A. A. El-Rahman, Numerical investigation of the fractional diffusion–wave equation with the Mittag–Leffler function, Fractal Fract., 8 (2024), 18. https://doi.org/10.3390/fractalfract8010018 doi: 10.3390/fractalfract8010018
    [67] S. Sabermahani, Y. Ordokhani, P. Agarwal, Application of general Lagrange scaling functions for evaluating the approximate solution time-fractional diffusion-wave equations, Comput. Methods Differ. Equations, 13 (2025), 450–465. https://doi.org/10.22034/cmde.2024.59007.2503 doi: 10.22034/cmde.2024.59007.2503
    [68] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, Friedr. Vieweg & Sohn, 1998.
    [69] A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion–wave equations, J. Comput. Phys., 293 (2015), 142–156. https://doi.org/10.1016/j.jcp.2014.03.039 doi: 10.1016/j.jcp.2014.03.039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(621) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog