A class of nonlinear integral equations with delay, related to infectious diseases, is studied. Making use of some tools from operators theory, we deal with the well-posedness in an adequate functional space, approximation of solution, estimates of lower/upper solutions and the data dependence of solutions.
Citation: Munirah Aali Alotaibi, Bessem Samet. A nonlinear delay integral equation related to infectious diseases[J]. Electronic Research Archive, 2023, 31(12): 7337-7348. doi: 10.3934/era.2023371
A class of nonlinear integral equations with delay, related to infectious diseases, is studied. Making use of some tools from operators theory, we deal with the well-posedness in an adequate functional space, approximation of solution, estimates of lower/upper solutions and the data dependence of solutions.
| [1] |
K. L. Cooke, J. L. Kaplan, A periodicity threshold theorem for epidemics and population growth, Math. Biosci., 31 (1976), 87–104. https://doi.org/10.1016/0025-5564(76)90042-0 doi: 10.1016/0025-5564(76)90042-0
|
| [2] | F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer, Germany, 2021. https://doi.org/10.1007/978-981-16-0626-7 |
| [3] |
A. Bica, The error estimation in terms of the first derivative in a numerical method for the solution of a delay integral equation from biomathematics, Rev. Anal. Numér. Théorie Approximation, 34 (2005), 23–36. https://doi.org/10.33993/jnaat341-788 doi: 10.33993/jnaat341-788
|
| [4] |
M. Dobriţoiu, A. M. Dobriţoiu, An approximating algorithm for the solution of an integral equation from epidemics, Ann. Univ. Ferrara, 56 (2010), 237–248. https://doi.org/10.1007/s11565-010-0109-x doi: 10.1007/s11565-010-0109-x
|
| [5] |
M. Dobriţoiu, M. A. Şerban, Step method for a system of integral equations from biomathematics, Appl. Math. Comput., 227 (2014), 412–421. https://doi.org/10.1016/j.amc.2013.11.038 doi: 10.1016/j.amc.2013.11.038
|
| [6] |
M. Otadi, M. Mosleh, Universal approximation method for the solution of integral equations, Math. Sci., 11 (2017), 181–187. https://doi.org/10.1007/s40096-017-0212-6 doi: 10.1007/s40096-017-0212-6
|
| [7] |
D. Guo, V. Lakshmikantham, Positive solution of nonlinear integral equation arising in infectious diseases, J. Math. Anal. Appl., 134 (1988), 1–8. https://doi.org/10.1016/0022-247X(88)90002-9 doi: 10.1016/0022-247X(88)90002-9
|
| [8] |
R. Torrejón, Positive almost periodic solutions of a state-dependent delay nonlinear integral equation, Nonlinear Anal. Theory Methods Appl., 20 (1993), 1383–1416. https://doi.org/10.1016/0362-546X(93)90167-Q doi: 10.1016/0362-546X(93)90167-Q
|
| [9] |
K. Ezzinbi, M. A. Hachimi, Existence of positive almost periodic solutions of functional equations via Hilbert's projective metric, Nonlinear Anal. Theory Methods Appl., 26 (1996), 1169–1176. https://doi.org/10.1016/0362-546X(94)00331-B doi: 10.1016/0362-546X(94)00331-B
|
| [10] | V. Berinde, Approximating fixed points of weak $\varphi$-contractions using the Picard iteration, Fixed Point Theory, 4 (2003), 131–142. |
| [11] |
V. Berinde, I. A. Rus, Asymptotic regularity, fixed points and successive approximations, Filomat, 34 (2020), 965–981. https://doi.org/10.2298/FIL2003965B doi: 10.2298/FIL2003965B
|
| [12] |
A. Petruşel, I. A. Rus, Stability of Picard operators under operator perturbations, Ann. West Univ. Timisoara Math. Comput. Sci., 56 (2018), 3–12. https://doi.org/10.2478/awutm-2018-0012 doi: 10.2478/awutm-2018-0012
|
| [13] | I. A. Rus, Weakly Picard mappings, Commentat. Math. Univ. Carol., 34 (1993), 769–773. |
| [14] | I. A. Rus, Fiber Picard operators theorem and applications, Studia Univ. Babeş-Bolyai, Math., 44 (1999), 89–98. |
| [15] |
I. A. Rus, A. Petruşel, M. A. Şerban, Fiber Picard operators on gauge spaces and applications, Z. Anal. Anwend., 27 (2008), 407–423. https://doi.org/10.4171/ZAA/1362 doi: 10.4171/ZAA/1362
|
| [16] | M. Dobriţoiu, I. A. Rus, M. A. Şerban, An integral equation arising from infectious diseases via Picard operators, Studia Univ. Babeş-Bolyai Math., 52 (2007), 81–94. |
| [17] | S. B. Prešić, Sur une classe d'inéquations aux différences finies et sur la convergence de certaines suites, Publ. Inst. Math., 5 (1965), 75–78. |