This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in Rn, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result
|f|p1+a(x)|f|p2∈Ls(Rn)⇒|Du|p1+a(x)|Du|p2∈Ls(Rn)foranys>1
is established for the weak solutions of
−divA(x,Du)=−divF(x,f)inRn,
which are modeled on
−div(|Du|p1−2Du+a(x)|Du|p2−2Du)=−div(|f|p1−2f+a(x)|f|p2−2f),
where 0≤a(⋅)∈C0,α(Rn),α∈(0,1] and 1<p1<p2<p1+αp1n.
Citation: Bei-Lei Zhang, Bin Ge. Gradient estimates for the double phase problems in the whole space[J]. Electronic Research Archive, 2023, 31(12): 7349-7364. doi: 10.3934/era.2023372
[1] | Saravanan Shanmugam, R. Vadivel, S. Sabarathinam, P. Hammachukiattikul, Nallappan Gunasekaran . Enhancing synchronization criteria for fractional-order chaotic neural networks via intermittent control: an extended dissipativity approach. Mathematical Modelling and Control, 2025, 5(1): 31-47. doi: 10.3934/mmc.2025003 |
[2] | Lusong Ding, Weiwei Sun . Neuro-adaptive finite-time control of fractional-order nonlinear systems with multiple objective constraints. Mathematical Modelling and Control, 2023, 3(4): 355-369. doi: 10.3934/mmc.2023029 |
[3] | Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026 |
[4] | Vladimir Djordjevic, Ljubisa Dubonjic, Marcelo Menezes Morato, Dragan Prsic, Vladimir Stojanovic . Sensor fault estimation for hydraulic servo actuator based on sliding mode observer. Mathematical Modelling and Control, 2022, 2(1): 34-43. doi: 10.3934/mmc.2022005 |
[5] | Yangtao Wang, Kelin Li . Exponential synchronization of fractional order fuzzy memristor neural networks with time-varying delays and impulses. Mathematical Modelling and Control, 2025, 5(2): 164-179. doi: 10.3934/mmc.2025012 |
[6] | Zejiao Liu, Yu Wang, Yang Liu, Qihua Ruan . Reference trajectory output tracking for Boolean control networks with controls in output. Mathematical Modelling and Control, 2023, 3(3): 256-266. doi: 10.3934/mmc.2023022 |
[7] | Xiaoyu Ren, Ting Hou . Pareto optimal filter design with hybrid H2/H∞ optimization. Mathematical Modelling and Control, 2023, 3(2): 80-87. doi: 10.3934/mmc.2023008 |
[8] | Biresh Kumar Dakua, Bibhuti Bhusan Pati . A frequency domain-based loop shaping procedure for the parameter estimation of the fractional-order tilt integral derivative controller. Mathematical Modelling and Control, 2024, 4(4): 374-389. doi: 10.3934/mmc.2024030 |
[9] | Zhaoxia Duan, Jinling Liang, Zhengrong Xiang . Filter design for continuous-discrete Takagi-Sugeno fuzzy system with finite frequency specifications. Mathematical Modelling and Control, 2023, 3(4): 387-399. doi: 10.3934/mmc.2023031 |
[10] | Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016 |
This paper presents Calderón-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations in Rn, which are obtained through the use of the iteration-covering method. More precisely, a global Calderón-Zygmund type result
|f|p1+a(x)|f|p2∈Ls(Rn)⇒|Du|p1+a(x)|Du|p2∈Ls(Rn)foranys>1
is established for the weak solutions of
−divA(x,Du)=−divF(x,f)inRn,
which are modeled on
−div(|Du|p1−2Du+a(x)|Du|p2−2Du)=−div(|f|p1−2f+a(x)|f|p2−2f),
where 0≤a(⋅)∈C0,α(Rn),α∈(0,1] and 1<p1<p2<p1+αp1n.
Monotonicity and inequalities related to complete elliptic integrals of the second kind
by Fei Wang, Bai-Ni Guo and Feng Qi. AIMS Mathematics, 2020, 5(3): 2732–2742.
DOI: 10.3934/math.2020176
In Acknowledgments section, the Grant number of "Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering" is missing. Here we give the complete information of this fund.
The changes have no material impact on the conclusion of this article. The original manuscript will be updated [1]. We apologize for any inconvenience caused to our readers by this change.
This work was partially supported by the Foundation of the Department of Education of Zhejiang Province (Grant No. Y201635387), the National Natural Science Foundation of China (Grant No. 11171307), the Visiting Scholar Foundation of Zhejiang Higher Education (Grant No. FX2018093), and the Project for Combination of Education and Research Training at Zhejiang Institute of Mechanical and Electrical Engineering (Grant No. A027120206).
The authors thank anonymous referees for their careful corrections to, helpful suggestions to, and valuable comments on the original version of this manuscript.
The authors declare that they have no conflict of interest.
[1] |
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958
![]() |
[2] | V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Berlin, Heidelberg, 1994. https://doi.org/10.1007/978-3-642-84659-5 |
[3] |
P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
![]() |
[4] |
M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
![]() |
[5] |
M. Colombo, G. Mingione, Calderón-Zygmund estimates and nonuniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022
![]() |
[6] |
M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
![]() |
[7] |
P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/SPMJ/1392 doi: 10.1090/SPMJ/1392
![]() |
[8] |
T. Iwaniec, Projections onto gradient fields and Lp-estimates for degenerate elliptic equations, Stud. Math., 75 (1983), 293–312. https://doi.org/10.4064/sm-75-3-293-312 doi: 10.4064/sm-75-3-293-312
![]() |
[9] |
E. DiBenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. Math., 115 (1993), 1107–1134. https://doi.org/10.2307/2375066 doi: 10.2307/2375066
![]() |
[10] |
F. Yao, C. Zhang, S. Zhou, Global regularity estimates for a class of quasilinear elliptic equations in the whole space, Nonlinear Anal., 194 (2020), 111307. https://doi.org/10.1016/j.na.2018.07.004 doi: 10.1016/j.na.2018.07.004
![]() |
[11] |
L. Diening, S. Schwarzacher, Global gradient estimates for the p(x)-Laplacian, Nonlinear Anal. Theory Methods Appl., 106 (2014), 70–85. https://doi.org/10.1016/J.NA.2014.04.006 doi: 10.1016/J.NA.2014.04.006
![]() |
[12] |
C. Zhang, S. Zhou, B. Ge, Gradient estimates for the p(x)-Laplacian equation in RN, Ann. Pol. Math., 114 (2015), 45–65. https://doi.org/10.4064/ap114-1-4 doi: 10.4064/ap114-1-4
![]() |
[13] |
F. Yao, S. Zhou, Global estimates in Orlicz spaces for p-Laplacian systems in RN, J. Partial Differ. Equations, 25 (2012), 103–114. https://doi.org/10.4208/jpde.v25.n2.1 doi: 10.4208/jpde.v25.n2.1
![]() |
[14] |
S. S. Byun, S. Ryu, P. Shin, Calderón–Zygmund estimates for ω-minimizers of double phase variational problems, Appl. Math. Lett., 86 (2018), 256–263. https://doi.org/10.1016/j.aml.2018.07.009 doi: 10.1016/j.aml.2018.07.009
![]() |
[15] |
S. Baasandorj, S. S. Byun, J. Oh, Calderón–Zygmund estimates for generalized double phase problems, J. Funct. Anal., 279 (2020), 108670. https://doi.org/10.1016/j.jfa.2020.108670 doi: 10.1016/j.jfa.2020.108670
![]() |
[16] |
S. S. Byun, H. S. Lee, Calderón–Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl., 501 (2021), 124015. https://doi.org/10.1016/j.jmaa.2020.124015 doi: 10.1016/j.jmaa.2020.124015
![]() |
[17] |
P. Shin, Calderón–Zygmund estimates for general elliptic operators with double phase, Nonlinear Anal., 194 (2020), 111409. https://doi.org/10.1016/j.na.2018.12.020 doi: 10.1016/j.na.2018.12.020
![]() |
[18] |
P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equations, 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
![]() |
[19] |
S. Liang, S. Z. Zheng, On W1,γ(⋅)-regularity for nonlinear non-uniformly elliptic equations, Manuscr. Math., 159 (2019), 247–268. https://doi.org/10.1007/s00229-018-1053-9 doi: 10.1007/s00229-018-1053-9
![]() |
[20] |
L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007
![]() |
[21] |
E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. https://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
![]() |
[22] |
G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 6 (2007), 195–261. https://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01
![]() |
[23] | K. Taira, Singular integrals and Feller semigroups with jump phenomena, Rend. Circ. Mat. Palermo Ser. II, 2023. https://doi.org/10.1007/s12215-023-00907-2 |
[24] |
N. S. Papageorgiou, C. Vetro, F. Vetro, Robin problems with general potential and double resonance, Appl. Math. Lett., 68 (2017), 122–128. https://doi.org/10.1016/j.aml.2017.01.003 doi: 10.1016/j.aml.2017.01.003
![]() |
[25] |
L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20 (2008), 523–556. https://doi.org/10.1515/FORUM.2008.027 doi: 10.1515/FORUM.2008.027
![]() |
[26] | J. Malý, W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, American Mathematical Society, 1997. |
1. | Bhuban Chandra Deuri, Marija V. Paunović, Anupam Das, Vahid Parvaneh, Ali Jaballah, Solution of a Fractional Integral Equation Using the Darbo Fixed Point Theorem, 2022, 2022, 2314-4785, 1, 10.1155/2022/8415616 | |
2. | Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, 2022, 7, 2473-6988, 15484, 10.3934/math.2022848 | |
3. | Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled M-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838 | |
4. | N. K. Mahato, 2023, Chapter 16, 978-981-99-0596-6, 219, 10.1007/978-981-99-0597-3_16 | |
5. | Rahul Rahul, Nihar Kumar Mahato, Mohsen Rabbani, Nasser Aghazadeh, EXISTENCE OF THE SOLUTION VIA AN ITERATIVE ALGORITHM FOR TWO-DIMENSIONAL FRACTIONAL INTEGRAL EQUATIONS INCLUDING AN INDUSTRIAL APPLICATION, 2023, 35, 0897-3962, 10.1216/jie.2023.35.459 | |
6. | Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15 | |
7. | An Enhanced Darbo-Type Fixed Point Theorems and Application to Integral Equations, 2024, 11, 2395-602X, 120, 10.32628/IJSRST24116165 |