Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Energy-to-peak control for switched systems with PDT switching

  • Received: 06 June 2023 Revised: 16 July 2023 Accepted: 17 July 2023 Published: 24 July 2023
  • This paper investigates the issue of energy-to-peak control for continuous-time switched systems. A generalized switching signal, known as persistent dwell-time switching, is considered. Two different strategies for state-feedback controller design are proposed, using distinct Lyapunov functions and a few decoupling techniques. The critical distinction between these two strategies lies in their temporal characteristics: one is time-independent, while the other is quasi-time-dependent. Compared to the former, the latter has the potential to be less conservative. The validity of the proposed design strategies is demonstrated through an example.

    Citation: Jingjing Dong, Xiaofeng Ma, Lanlan He, Xin Huang, Jianping Zhou. Energy-to-peak control for switched systems with PDT switching[J]. Electronic Research Archive, 2023, 31(9): 5267-5285. doi: 10.3934/era.2023268

    Related Papers:

    [1] Michael T. Fasullo, Mingzeng Sun . Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS Genetics, 2017, 4(2): 84-102. doi: 10.3934/genet.2017.2.84
    [2] Carina Ladeira, Susana Viegas, Mário Pádua, Elisabete Carolino, Manuel C. Gomes, Miguel Brito . Relation between DNA damage measured by comet assay and OGG1 Ser326Cys polymorphism in antineoplastic drugs biomonitoring. AIMS Genetics, 2015, 2(3): 204-218. doi: 10.3934/genet.2015.3.204
    [3] Vladlena Tiasto, Valeriia Mikhailova, Valeriia Gulaia, Valeriia Vikhareva, Boris Zorin, Alexandra Kalitnik, Alexander Kagansky . Esophageal cancer research today and tomorrow: Lessons from algae and other perspectives. AIMS Genetics, 2018, 5(1): 75-90. doi: 10.3934/genet.2018.1.75
    [4] Britta Muster, Alexander Rapp, M. Cristina Cardoso . Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation. AIMS Genetics, 2017, 4(1): 47-68. doi: 10.3934/genet.2017.1.47
    [5] Mrinalini Tiwari, Suhel Parvez, Paban K Agrawala . Role of some epigenetic factors in DNA damage response pathway. AIMS Genetics, 2017, 4(1): 69-83. doi: 10.3934/genet.2017.1.69
    [6] Mi Young Son, Paul Hasty . Homologous recombination defects and how they affect replication fork maintenance. AIMS Genetics, 2018, 5(4): 192-211. doi: 10.3934/genet.2018.4.192
    [7] Asaad M Mahmood, Jim M Dunwell . Evidence for novel epigenetic marks within plants. AIMS Genetics, 2019, 6(4): 70-87. doi: 10.3934/genet.2019.4.70
    [8] Hossein Mozdarani, Sohail Mozdarani . De novo cytogenetic alterations in spermatozoa of subfertile males might be due to genome instability associated with idiopathic male infertility: Experimental evidences and Review of the literature
    . AIMS Genetics, 2016, 3(4): 219-238. doi: 10.3934/genet.2016.4.219
    [9] Huong Thi Thu Phung, Hoa Luong Hieu Nguyen, Dung Hoang Nguyen . The possible function of Flp1 in homologous recombination repair in Saccharomyces cerevisiae. AIMS Genetics, 2018, 5(2): 161-176. doi: 10.3934/genet.2018.2.161
    [10] Jasmin Knopf, Mona HC Biermann, Luis E Muñoz, Martin Herrmann . Antibody glycosylation as a potential biomarker for chronic inflammatory autoimmune diseases. AIMS Genetics, 2016, 3(4): 280-291. doi: 10.3934/genet.2016.4.280
  • This paper investigates the issue of energy-to-peak control for continuous-time switched systems. A generalized switching signal, known as persistent dwell-time switching, is considered. Two different strategies for state-feedback controller design are proposed, using distinct Lyapunov functions and a few decoupling techniques. The critical distinction between these two strategies lies in their temporal characteristics: one is time-independent, while the other is quasi-time-dependent. Compared to the former, the latter has the potential to be less conservative. The validity of the proposed design strategies is demonstrated through an example.



    In 1878, Clifford algebra was defined in [1]. In 1982, Brackx et al. [2] generalized some results of the complex analysis to Clifford analysis. Malonek and Ren [3] studied the Almansi-type decomposition theorems for the k-order monogenic functions and k-order λ-weighted monogenic functions in 2002. In the unweighted case, the star-like condition of the domain is needed. This fact accounts for the greater generality of the decomposition in the weighted case, which indeed holds in any domain. When k=1, the origin of the notion of λ-weighted monogenic functions is given. In 2017, García et al. [4] studied an integral representation for the solution to the sandwich Dirac equation in Clifford analysis. Yang et al. [5] obtained the Cauchy theorem for the solution to the k-order Dirac equation with α-weight in 2018, where k>0 is an integer and α is a nonzero real number. In 2020, Blaya et al. [6] gave the integral representation for the solution of the bilateral higher-order Dirac equation and proved some properties for Cauchy and Teodorescu transforms. In 2022, Peláez et al. [7] took the sum of the left Dirac operator multiplied by α and the right Dirac operator multiplied by β as a new operator, and studied the integral representation of solutions to higher-order new operators, where α,β are real numbers. In 2023, Dinh [8] introduced (α,β)-monogenic functions and isotonic functions, where α,β are real numbers and αβ; they gave the integral representation formulae of these functions respectively by using the new proof method and proved the series representation of polynomial Dirac equations. In 2024, Gao et al. [9] got an integral representation for the solution of the bilateral higher order Dirac equation with α-weight, where α is a nonzero real number. Liu et al. [10] investigated some Riemann-Hilbert boundary value problems for perturbed Dirac operators in the Clifford algebra Cl(V3,3). D. A. Santiesteban et al.[11] examined well-posed boundary value problems for second-order elliptic systems of partial differential equations in bounded regular domains of Euclidean spaces.

    In 2008, Clifford algebras depending on parameters emerged as an extension of the classical Clifford algebra. Its applications in partial differential equations were introduced by Tutschke and Vanegas [12]. In 2012, Di Teodoro et al. [13] studied solutions for the first order homogeneous meta-Dirac equation and then gave a solution of the inhomogeneous equation by using Fubinis theorem. In 2013, the integral representations for the meta-Dirac operator of n-order and its conjugate operators of n-order are derived by Balderrama et al. [14]. In 2014, some achievements of hypercomplex analysis were expounded and some of its development trends were presented in reference [15]. Ariza et al. [16] gave the integral formulae to solutions for second order elliptic Dirac equation in 2015. In 2017, Ariza García et al. [17] obtained the correlation between first-order differential operators and q-Dirac operators, with the aim of studying initial value problems, where q is a n-dimensional vector. In 2021, Cuong et al. [18] studied the integral expression of monogenic functions in the Clifford algebra depending on three parameters and solved two boundary value problems related to this function.

    Based on the above work, we have conducted certain work with the aim of extending the results from the classical Clifford algebra to the framework of parameter dependent Clifford algebra. In Section 2, we investigate some important properties of functions valued in this Clifford algebra. In Section 3, integral representations for p-order λ-weighted monogenic functions and right q-order λ-weighted monogenic functions are derived. Furthermore, in Section 4, we present an integral representation for (p+q)-order λ-weighted monogenic functions. Finally, Section 5 contains the conclusion and discussion of this paper. This paper mainly generalizes some results of references [5,9].

    In this section, we present some basic results on the parameter dependent Clifford analysis, meanwhile, we prove some important properties of some functions valued in the parameter dependent Clifford algebra.

    Suppose that αj, γij=γji are nonnegative real numbers for i,j=1,2,,n,ij, the set of base element is {e0=1,e1,,en}, and the base element satisfies the following multiplication rule

    {e2j=αj,eiej+ejei=2γij. (2.1)

    From this, we obtain a parameter dependent Clifford algebra Bn(2,αj,γij) which is generated by the structural relationship (2.1). Every element of the algebra is of the form c=A1cA1eA1, cA1R, where A1:={j1,,jk}{1,,n}, j1<j2<<jk, eA1=ej1ejk, and e0=e=1. As indices we use the elements A1 of the set containing the ordered subsets of {1,2,,n}, with the empty subset corresponding to the index 0. The set A1 runs over all the possible ordered sets A1={1j1<<jkn}, or A1=. The dimension of this algebra is 2n.

    Let N be the set of positive integers. If 1jn and jN, the base element satisfies the involution ¯ej=ej. If eA=eh1hr=eh1ehr, then ¯eA=¯ehr¯eh1=(1)rehreh1. For any ξ=A1ξA1eA1Bn(2,αj,γij), we define ¯ξ=A1ξA1¯eA1, |ξ|2=A1ξ2A1, where ξA1R.

    The Euclidean Clifford algebra Bn(2,1,0) is one of the special cases of Bn(2,αj,γij).

    The function f:ΩBn(2,αj,γij) is denoted by f(x)=AfA1(x)eA1, where fA1(x) is a real-valued function and Ω is an open connected bounded domain in Rn. f is a r-times continuously differentiable function, which means fA1 is a r-times continuously differentiable function, where rN. The set consisting of the r-times continuously differentiable function is denoted by Fr(Ω,Bn(2,αj,γij)).

    When fF1(Ω,Bn(2,αj,γij)), Dirac operators and its conjugate operators acting on function f are defined respectively as follows:

    Dxf=nk=1ekfxk,fDx=nk=1fxkek,¯Dxf=nk=1¯ekfxk,f¯Dx=nk=1fxk¯ek.

    After a direct calculation, we have

    Dx¯Dx=¯DxDx=nj=1αj2j21i<jnγijij,

    the corresponding quadratic form is

    nj=1αjξ2j21i<jnγijξiξj, (2.2)

    which has a coefficient matrix

    B=(α1γ12γ1nγ12α2γ2nγ1nγ2nαn). (2.3)

    Denote

    B1=α1,B2=(α1γ12γ12α2),B3=(α1γ12γ13γ12α2γ12γ13γ12α3),,Bn=B.

    See references [19,20]. By using the Sylvesters criterion, (2.2) is a positive definite quadratic form if and only if the determinant of each Bj is a positive number for all j=1,2,,n, i.e.,

    det(Bj)>0. (2.4)

    In this situation, Dx¯Dx=¯DxDx becomes an elliptic Dirac operator, so we denote Dx¯Dx=¯DxDx by ˜Δn.

    Suppose that (2.4) holds in this paper, then the inverse matrix of matrix B exists and can be represented by

    A=(a11a12a1na12a22a2na1na2nann), (2.5)

    where aij=aji, i,j=1,2,,n.

    See reference [12]. For two points x=(x1,,xn) and ζ=(ζ1,,ζn) in Rn, xζ, the representation of the non-Euclidean distance ρ as follows:

    ρ2:=ρ2(x,ζ)=ni,j=1aij(xiζi)(xjζj), (2.6)

    the representation of the Euclidean distance is ι=|xζ|.

    See reference [14]. Suppose that for some YRn and Y satisfying |Y|=1, we denote xξ=ιY, then the infimum of ρ(Y,0) for all Y is positive, i.e., ρ2(Y,0)c0>0, where c0 is a constant, so ρ2(x,ξ)c0ι2.

    For fF1(Ω,Bn(2,αj,γij)), the first-order λ-weighted Dirac operators acting on the function f are defined as follows:

    Dλxf=ρλxH(x)(Dxf),fDλx=(fDx)ρλxH(x),

    where ρx=(ni,j=1aijxixj)12, H(x)=ni,j=1¯eiaijxj, and λ is a fixed nonzero real number.

    Definition 2.1. [12] Suppose fF1(Ω,Bn(2,αj,γij)), then a solution f of the Dirac equation Dxf(x)=0 (f(x)Dx=0) is called a left (right) monogenic function.

    See reference [12]. We know that ρnxH(x) is not only a left monogenic function but also a right monogenic function.

    Definition 2.2. Suppose fFp+q(Ω,Bn(2,αj,γij)), p,q are positive integers.

    (i) A solution f of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0 is called a left p-order λ-weighted monogenic function, where (Dλx)p=DλxDλx (p-times), is a composite operation of operators.

    (ii) A solution f of the right q-order λ-weighted equation f(x)(Dλx)q=0 is called a right q-order λ-weighted monogenic function, where (Dλx)q=DλxDλx (q-times).

    Remark 2.1. (i) When p=1(q=1) in Definition 2.2, a solution f of the λ-weighted Dirac equation Dλxf(x)=0(f(x)Dλx=0) is called a left (right) λ-weighted monogenic function.

    (ii) A left p-order λ-weighted monogenic function can be called a p-order λ-weighted monogenic function for short. A left λ-weighted monogenic function can be called a λ-weighted monogenic function for short.

    Definition 2.3. Suppose fFp+q(Ω,Bn(2,αj,γij)), p and q are positive integers, then the solution f of equation ((Dλx)pf(x))(Dλx)q=0 is called a (p+q)-order λ-weighted monogenic function.

    If f is a left p-order λ-weighted monogenic function, then f is a (p+q)-order monogenic λ-weighted function.

    Remark 2.2. ρnxH(x), ρn+(p1)λxH(x), and ρn+(p+q1)λxH(x) are (p+q)-order λ-weighted monogenic functions, where λ is a fixed nonzero real number.

    For xΩ, its outer unit normal vector is N(x)=(N(x1),,N(xn))=(N1,,Nn), dσx=ni=1Nieidμ is the Clifford-algebra-valued measure element of Ω, dμ represents the scalar measure element of Ω, and Ω is a sufficiently smooth boundary.

    Lemma 2.1. [12] Suppose f,gF1(Ω,Bn(2,αj,γij)), then

    Ωf(x)dσxg(x)=Ω[(f(x)Dx)g(x)+f(x)(Dxg(x))]dx,

    where dx=dx1dx2dxn.

    Similar to the proof of the theorem in reference [21], we can prove that Lemma 2.2 holds.

    Lemma 2.2. Suppose f,gF1(Ω,Bn(2,αj,γij)), then

    Dx(f(x)g(x))=(Dxf(x))g(x)+nk=1ekf(x)g(x)xk,(f(x)g(x))Dx=nk=1f(x)xkg(x)ek+f(x)(g(x)Dx).

    Proof. We suppose that f(x)=A1fA1(x)eA1, g(x)=A2gA2(x)eA2, where fA1(x) and gA2(x) are real-valued functions, then

    Dx(f(x)g(x))=nk=1ek(f(x)g(x))xk=nk=1ek[(A1fA1(x)eA1)(A2gA2(x)eA2)]xk=nk=1ekA1A2(fA1(x)gA2(x))xkeA1eA2=nk=1ekA1A2[fA1(x)xkgA2(x)+fA1(x)gA2(x)xk]eA1eA2=nk=1ekA1fA1(x)eA1xkA2gA2(x)eA2+nk=1ekA1fA1(x)eA1A2gA2(x)eA2xk=(Dxf(x))g(x)+nk=1ekf(x)g(x)xk.

    Similarly, we can prove the other equality.

    Suppose that Mλs(x)=Es(x)ρλxH(x), where Es(x)=Csρnsλx, Cs=1ωnλs1(s1)!, sN, ωn represents the Euclidean surface measure of the unit sphere.

    Proposition 2.1. When s>1, we have

    DxMλs(x)=Mλs(x)Dx=Es1(x).

    Proof. Since AB=E and E is the identity matrix, we obtain that for m,k=1,2,,n,

    αkakmni=1,ikγikaim={0,mk,1,m=k,

    then

    ni,k=1ek¯eiamkaim=nk=1ek¯ekamkakm+ni,k=1,k<iek¯eiamkaim+ni,k=1,k>iek¯eiamkaim=nk=1ek¯ekamkakm+ni,k=1,k<iek¯eiamkaim+nj,l=1,j<lel¯ejamlajm=nk=1ek¯ekamkakm+ni,k=1,k<i(ek¯ei+ei¯ek)amkaim=nk=1αkamkakm2ni,k=1,k<iγikamkaim=nk=1αkamkakmni,k=1,kiγikamkaim=nk=1(αkamkni=1,kiγikaim)akm=nk=1δkmakm=amm,

    therefore,

    ni,k,m=1ek¯eiamkaimx2m=nm=1ammx2m.

    Also,

    nm,i,j,k=1,jmek¯eiamkaijxmxj=nm,i,j,k=1,j<mek¯eiamkaijxmxj+nm,i,j,k=1,j<mek¯eiajkaimxjxm=nm,j,k=1,j<mek¯ek(amkakj+ajkakm)xmxj+nm,i,j,k=1,i<k,j<mek¯ei(amkaij+ajkaim)xmxj+nm,i,j,k=1,i<k,j<mei¯ek(amkaij+ajkaim)xmxj=nm,j,k=1,j<mαk(amkakj+ajkakm)xmxj2nm,i,j,k=1,i<k,j<mγik(amkaij+ajkaim)xmxj=nm,j,k=1,j<mαk(amkakj+ajkakm)xmxjnm,i,j,k=1,ik,j<mγik(amkaij+ajkaim)xmxj=nm,k,j=1,j<m(αkamkni=1,ikγikaim)akjxmxj+nm,k,j=1,j<m(αkajkni=1,ikγikaij)akmxmxj=nm,k,j=1,j<mδkmakjxmxj+nm,k,j=1,j<mδkjakmxmxj=nm,j=1,jmamjxmxj.

    Consequently,

    ¯H(x)H(x)=(ni,j=1eiaijxj)(nk,m=1¯ekakmxm)=(ni,k,m=1ek¯eiamkaimx2m)+(nm,i,j,k=1,mjek¯eiamkaijxmxj)=nm=1ammx2m+nj,m=1,mjamjxmxj=ρ2x.

    By ¯H(x)=H(x), we can conclude that H(x)¯H(x)=H2(x)=ρ2x.

    By AB=E, we have

    DxH(x)=ni,j=1eiaji¯ej=ni=1aiiei¯ei+ni,j=1,i<jaij(ei¯ej+ej¯ei)=nj=1ajjαjni,j=1,ijaijγij=nj=1(ajjαjni=1,ijaijγij)=n.

    Similarly, we can prove that H(x)D=n.

    By equalities ¯H(x)H(x)=ρ2x and DxH(x)=n, we can conclude that

    DxMλs(x)=Cs[(Dxρn+(s1)λx)H(x)+ρn+(s1)λx(DxH(x))]=Cs[nk=1ek(ni,j=1aijxixj)n+(s1)λ2xkH(x)+nρn+(s1)λx]=Cs[nk=1ekn+(s1)λ2(ni,j=1aijxixj)n+(s1)λ21(ni=1aikxi+nj=1akjxj)H(x)+nρn+(s1)λx]=Cs[nk=1ek(n+(s1)λ)ρn+(s1)λ2xni=1aikxiH(x)+nρn+(s1)λx]=Cs[(n+(s1)λ)ρn+(s1)λ2xni,k=1aikxiekH(x)+nρn+(s1)λx]=Cs[(n+(s1)λ)ρn+(s1)λ2x¯H(x)H(x)+nρn+(s1)λx]=Cs(s1)λρn+(s1)λx=Es1(x).

    Similarly, we have Mλs(x)Dx=Es1(x).

    Proposition 2.2. Let fFk(Ω,Bn(2,αj,γij)), kN, s=1,2,,k.

    (1) Suppose that f is a solution of the Dirac equation Dxf=0, then

    (Dλx)s(ρkλxf(x))=k!(ks)!λsρ(ks)λxf(x).

    (2) Suppose that f is a solution of the Dirac equation fDx=0, then

    (ρkλxf(x))(Dλx)s=k!(ks)!λsρ(ks)λxf(x).

    Proof. (1) When s=1, by using the equality H(x)¯H(x)=ρ2x, it is easy to deduce that

    Dx(ρkλxf(x))=(Dρkλx)f(x)+nm=1emρkλxf(x)xm=nm=1em(ni,j=1aijxixj)kλ2xmf(x)+ρkλx(Df(x))=nm=1emkλ2ρkλ2x(ni=1aimxi+nj=1amjxj)f(x)=kλρkλ2x(nm,i=1aimxiem)f(x)=kλρkλ2x¯H(x)f(x),

    and

    Dλx(ρkλxf(x))=ρλxH(x)[Dx(ρkλxf(x))]=kλρ(k1)λxf(x).

    We suppose that (Dλx)s1(ρkλxf(x))=k!(ks+1)!λs1ρ(ks+1)λxf(x) holds, then

    (Dλx)s(ρkλxf(x))=Dλx(k!(ks+1)!λs1ρ(ks+1)λxf(x))=k!(ks+1)!λs1ρλxH(x)[Dx(ρ(ks+1)λxf(x))]=k!(ks+1)!λs1ρλxH(x)[(ks+1)λρ(ks+1)λ2x¯H(x)f(x)]=k!(ks)!λsρ(ks)λxf(x).

    According to the mathematical induction, we get the conclusion.

    Similarly, we can prove that (2) holds

    Proposition 2.3. Suppose 1sp, 1tq, and 1kp+q, where s,t,k,p,qN.

    (1) Let fFp(Ω,Bn(2,αj,γij)) be a solution of the equation Dxf=0. Then, ρ(ps)λxf(x) is a solution of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0.

    (2) Let fFq(Ω,Bn(2,αj,γij)) be a solution of the right equation fDx=0. Then, ρ(qt)λxf(x) is a solution of the right q-order λ-weighted Dirac equation f(x)(Dλx)q=0.

    (3) Let fFp+q(Ω,Bn(2,αj,γij)) be a solution of the equation system Dxf=0 and fDx=0. Then, ρ(p+qk)λxf(x) is a solution of the (p+q)-order λ-weighted Dirac equation ((Dλx)pf(x))(Dλx)q=0.

    Proof. By Proposition 2.2, (1) and (2) hold.

    (3) (i) When qkp+q, i.e., 1kqp, by (1) in Proposition 2.3, we conclude that ρ(p(kq))λxf(x) satisfies equation (Dλx)p(ρ(p(kq))λxf(x))=0. Therefore, (3) is clearly valid.

    (ii) When 1<kq, as f satisfies condition Dxf=0 and based on (1) in Proposition 2.2, we can deduce that

    (Dλx)p(ρ(p+qk)λxf(x))=(p+qk)!(qk)!λpρ(qk)λxf(x).

    As f satisfies condition fDx=0 and based on (2) in Proposition 2.3, we obtain

    [(Dλx)p(ρ(p+qk)λxf(x))](Dλx)q=(p+qk)!(qk)!λp[(ρ(qk)λxf(x))(Dλx)q]=0,

    therefore, (3) is established.

    Theorem 2.1. Let 1sp, 1tq, 1kp+q, where s,t,k,p,qN.

    (1)Ep(x)ρsλxH(x) is a solution of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0.

    (2)Eq(x)ρtλxH(x) is a solution of the right q-order λ-weighted Dirac equation f(x)(Dλx)q=0.

    (3)Ep+q(x)ρkλxH(x) is a solution of the (p+q)-order λ-weighted Dirac equation ((Dλx)pf(x))(Dλx)q=0.

    Proof. By Proposition 2.3, (1) and (2) hold.

    (3) It is obvious that

    Ep+q(x)ρkλxH(x)=Cp+qρn(p+q)λxρkλxH(x)=ρ(p+qk)λxCp+qH(x)ρnx.

    By Proposition 2.3 and the equality Dx(ρnxH(x))=(ρnxH(x))Dx=0, we conclude that (3) in Theorem 2.1 is established.

    In this section, we prove two Cauchy-Pompeiu integral formulae for functions valued in Bn(2,αj,γij), and obtain the Cauchy integral formulae for the null solution to higher order λ-weighted Dirac operators as their corollary, respectively.

    In this paper, we denote {x|y0=x+x0Ω} as Ωx0, for any x0Ω.

    Theorem 3.1. Let p,qN, s=0,1,,p; r=0,1,,q.

    (1) If fFp(¯Ω,Bn(2,αj,γij)), then for any x0¯Ω, when 0<λ<1p, (Dλx)sf(y0) is a bounded function in ¯Ωx0.

    (2) If fFq(¯Ω,Bn(2,αj,γij)), then for any x0¯Ω, when 0<λ<1q, f(y0)(Dλx)r is a bounded function in ¯Ωx0.

    Proof. (1) When s=0, as fFp(¯Ω,Bn(2,αj,γij)), (Dλx)0f(y0) is a bounded function in ¯Ωx0.

    When s=1,2,,p, we denote H(x)fs(x) by gs(x), and let

    f1(x)=Dxf(y0),f2(x)=λf1(x)+Dxg1(x),f3(x)=2λf2(x)+Dxg2(x),fp1(x)=(p2)λfp2(x)+Dxgp2(x),fp(x)=(p1)λfp1(x)+Dxgp1(x).

    As fFp(¯Ω,Bn(2,αj,γij)), f1,f2,...,fp are bounded functions in ¯Ωx0.

    When s=1, we have Dλxf(y0)=ρλxH(x)(Dxf(y0))=ρλxg1(x).

    We suppose that t<p, tN, and (Dλx)tf(y0)=ρtλxgt(x), then

    (Dλx)t+1f(y0)=ρλxH(x)[Dx(ρtλxgt(x))]=ρλxH(x)[((tλ)ρtλ2x¯H(x))gt(x)+ρtλx(Dxgt(x))]=ρ(t+1)λxH(x)[tλft(x)+Dx(gt(x))]=ρ(t+1)λxgt+1(x).

    According to the mathematical induction, we get

    (Dλx)sf(y0)=ρsλxgs(x).

    So for any x0¯Ω, if 0<λ<1s, then we conclude that (Dλx)sf(y0) is bounded in ¯Ωx0.

    Hence, for any x0¯Ω, when λps=1(0,1s)=(0,1p), we conclude that (Dλx)sf(y0) is bounded in ¯Ωx0, where s=1,2,,p.

    Similarly, we can prove that (2) holds.

    Theorem 3.2. Suppose that fFp(¯Ω,Bn(2,αj,γij)), pn,0<λ<1p,pN, for arbitrary x0Ω, then we have

    c1(αj,γij)f(x0)=ps=1(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0))(1)pΩx0Ep(x)((Dλx)pf(y0))dx, (3.1)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function fFp(¯Ω,Bn(2,αj,γij)).

    Proof. For any x0Ω, we have 0+x0Ω, so 0Ωx0.

    We can choose an arbitrarily small positive number δ, and make a small ball Bδ={x:|x|<δ} such that ¯Bδ is a subset of Ωx0.

    For any s=2,3,,p, by Lemma 2.1, Proposition 2.1, and Theorem 3.1, we have

    Ωx0Mλs(x)dσx((Dλx)s1f(y0))limδ0BδMλs(x)dσx((Dλx)s1f(y0))=limδ0Ωx0Bδ(Mλs(x)Dx)((Dλx)s1f(y0))dx+limδ0Ωx0BδMλs(x)[Dx((Dλx)s1f(y0))]dx=limδ0Ωx0BδEs1(x)((Dλx)s1f(y0))dx+limδ0Ωx0BδEs(x)((Dλx)sf(y0))dx=Ωx0Es1(x)((Dλx)s1f(y0))dx+Ωx0Es(x)((Dλx)sf(y0))dx.

    From Theorem 3.1, it can be derived that (Dλx)s1f(y0) is a bounded function in ¯Ωx0, then |(Dλx)s1f(y0)|M1.

    For xBδ, suppose that x=δX, where XB1={X:|X|=1}, dμ=δn1dμ1, dμ1 is the surface element of the unit sphere B1, and since ρ2xc0δ2, we can obtain

    |BδMλs(x)dσx((Dλx)s1f(y0))|M1Bδ|Es(x)|ρ1λx|dσx|=M1Bδ|Cs|ωnρnsλxρ1λxdμ=M1Bδ|Cs|ωnρn1(s1)λxδn1dμ1M2Bδ1δn1(s1)λδn1dμ1=M2Bδ1δ(s1)λdμ1M3δ(s1)λ+1M3δ2,

    where Mi>0 are constants, i=1,2,3, then we can conclude that

    limδ0BδMλs(x)dσx((Dλx)s1f(y0))=0.

    Hence,

    Ωx0Mλs(x)dσx((Dλx)s1f(y0))=Ωx0Es1(x)(f(y0)(Dλx)s1)dx+Ωx0Es(x)((Dλx)sf(y0))dx, (3.2)

    where s=2,3,,p.

    For s=1, by Lemma 2.1 and the equality (ρnxH(x))D=0, we have

    Ωx0Mλ1(x)dσxf(y0)limδ0BδMλ1(x)dσxf(y0)=limδ0Ωx0Bδ(Mλ1(x)Dx)f(y0)dx+limδ0Ωx0BδMλ1(x)(Dxf(y0))dx=limδ0Ωx0Bδ[(H(x)ωnρnx)Dx]f(y0)dx+limδ0Ωx0BδE1(x)(Dλxf(y0))dx=Ωx0E1(x)(Dλxf(y0))dx.

    We can calculate that

    limδ0Bδ1ωnρn1xdμ=limδ0B11ωnδn1(ni,j=1aijXiXj)n12δn1dμ1=B11ωn(ni,j=1aijXiXj)n12dμ1=c1(αj,γij), (3.3)

    we can conclude that c1(αj,γij) is a Clifford constant, and c1(αj,γij) does not depend on δ but only on the values of the parameters αj and γij; see Remark 2.6 in reference [14].

    Hence,

    limδ0BδMλ1(x)dσxf(y0)=limδ0BδH(x)ωnρnxH(x)ρxf(y0)dμ=limδ0Bδ1ωnρn1x(f(y0)f(x0))dμ+limδ0Bδ1ωnρn1xf(x0)dμ=[limδ0Bδ1ωnρn1xdμ1]f(x0)=c1(αj,γij)f(x0),

    therefore,

    Ωx0Mλ1(x)dσxf(y0)+c1(αj,γij)f(x0)=Ωx0E1(x)(Dλxf(y0))dx. (3.4)

    By Equalities (3.2) and (3.4), we have

    ps=2(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0))Ωx0Mλ1(x)dσxf(y0)c1(αj,γij)f(x0)=(1)pΩx0Ep(x)((Dλx)pf(y0))dx+(1)pΩx0Ep1(x)((Dλx)p1f(y0))dx+(1)p1Ωx0Ep1(x)((Dλx)p1f(y0))dx+(1)p1Ωx0Ep2(x)((Dλx)p2f(y0))dx++Ωx0E2(x)((Dλx)2f(y0))dx+Ωx0E1(x)(Dλxf(y0))dxΩx0E1(x)(Dλxf(y0))dx=(1)pΩx0Ep(x)((Dλx)pf(y0))dx.

    Consequently, we prove that the conclusion holds.

    Remark 3.1. When c1(αj,γij) is not required to be invertible, the value of f(x0) is not uniquely determined by the integral transform.

    Corollary 3.1. Suppose that fFp(¯Ω,Bn(2,αj,γij)) is a solution of the equation (Dλx)pf(y0)=0 in ¯Ωx0, pn,0<λ<1p, pN, for arbitrary x0Ω, then we have

    c1(αj,γij)f(x0)=ps=1(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0)), (3.5)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the p-order λ-weighted monogenic function.

    Theorem 3.3. Suppose that fFq(¯Ω,Bn(2,αj,γij)), qn,0<λ<1q,qN, for arbitrary x0Ω, then we have

    f(x0)c1(αj,γij)=qr=1(1)rΩx0(f(y0)(Dλx)r1)dσxMλr(x)(1)qΩx0Eq(x)(f(y0)(Dλx)q)dx, (3.6)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function fFq(¯Ω,Bn(2,αj,γij)).

    Proof. Similar to the proof of Theorem 3.2, we can prove Theorem 3.3.

    Corollary 3.2. Suppose that fFq(¯Ω,Bn(2,αj,γij)) is a solution of right q-order λ-weighted Dirac equation f(y0)(Dλx)q=0 in ¯Ωx0, qn,0<λ<1q, qN, for arbitrary x0Ω, then we have

    f(x0)c1(αj,γij)=qr=1(1)rΩx0(f(y0)(Dλx)r1)dσxMλr(x), (3.7)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the right q-order λ-weighted monogenic function.

    In this section, we obtain the integral representation for the (p+q)-order λ-weighted monogenic function.

    Theorem 4.1. Let p,qN, s=0,1,,p; r=0,1,,q.

    Suppose that fFp+q(¯Ω,Bn(2,αj,γij)), when 0<λ<1p+q, then for arbitrary x0¯Ω, ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ωx0.

    Proof. (i) For arbitrary x0¯Ω, when s=0 and r=0,1,,q, from Theorem 3.1 and the inequality 0<λ<1p+q<1q, it follows that f(y0)(Dλx)r is a bounded function in ¯Ωx0.

    (ii) When s=1,2,,p, and r=1,,q, we denote H(x)fs,0(x) by gs,0(x), we denote fs,r(x)H(x) by gs,r(x), and let

    f1,0(x)=Dxf(y0),f2,0(x)=λf1,0(x)+Dxg1,0(x),f3,0(x)=2λf2,0(x)+Dxg2,0(x),fs,0(x)=(s1)λfs1,0(x)+Dxgs1,0(x),fs,1(x)=sλρ2xgs,0(x)¯H(x)+gs,0(x)Dx,fs,2(x)=(s+1)λfs,1(x)+gs,1(x)Dx,fs,3(x)=(s+2)λfs,2(x)+gs,2(x)Dx,fs,r(x)=(s+r1)λfs,r1(x)+gs,r1(x)Dx.

    As fFp+q(¯Ω,Bn(2,αj,γij)), f1,0,,fs,0,fs,1,,fs,r are bounded functions in ¯Ωx0.

    (a) When s=1 and r=0, by directly calculating, we can obtain

    Dλxf(y0)=ρλxH(x)(Dxf(y0))=ρλxg1,0(x).

    When s=2,,p and r=0, we suppose that s=t, where t<p,tN, and

    (Dλx)tf(y0)=ρtλxgt,0(x),

    then

    (Dλx)t+1f(y0)=Dλx(ρtλxgt,0(x))=ρλxH(x)[Dx(ρtλxgt,0(x))]=ρλxH(x)[(tλρtλ2x¯H(x))H(x)ft,0(x)+ρtλx(Dxgt,0(x))]=ρ(t+1)λxH(x)(tλft,0(x)+Dxgt,0(x))=ρ(t+1)λxgt+1,0(x).

    According to the mathematical induction, we have

    (Dλx)sf(y0)=ρsλxgs,0(x). (4.1)

    For any x0¯Ω, when 0<λ<1p+q, we conclude that 0<λ1s, so (Dλ)sf(y0) is a bounded function in ¯Ωx0.

    (b) When s=1,,p and r=1, by Equality (4.1), we have

    ((Dλx)sf(y0))Dλx=[(ρsλxgs,0(x))Dx]ρλxH(x)=[sλρsλ2xgs,0(x)¯H(x)+ρsλx(gs,0(x)Dx)]ρλxH(x)=(sλρ2xgs,0(x)¯H(x)+gs,0(x)Dx)ρ(s+1)λxH(x)=fs,1(x)ρ(s+1)λxH(x)=gs,1(x)ρ(s+1)λx.

    When s=1,,p and r=2,,q, we suppose that r=l, where l<q,lN, and

    ((Dλx)sf(y0))(Dλx)l=gs,l(x)ρ(s+l)λx,

    then

    ((Dλx)sf(y0))(Dλx)l+1=[(gs,l(x)ρ(s+l)λx)Dx]ρλxH(x)=[(s+l)λgs,l(x)ρ(s+l)λ2x¯H(x)+ρ(s+l)λx(gs,l(x)Dx)]ρλxH(x)=((s+l)λfs,l(x)+gs,l(x)Dx)ρ(s+l+1)λxH(x)=fs,l+1(x)ρ(s+l+1)λxH(x)=gs,l+1(x)ρ(s+l+1)λx.

    According to the mathematical induction, we have

    ((Dλx)sf(y0))(Dλx)r=gs,r(x)ρ(s+r)λx.

    For arbitrary x0¯Ω, when 0<λ<1p+q, we conclude that 0<λ<1s+r, so ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ωx0, where s=1,2,,p; r=1,,q.

    From the above, for any x0¯Ω, when 0<λ<1p+q, we conclude that 0<λ<1s+r, it can be concluded that ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ωx0, where s=0,1,,p; r=0,1,,q.

    Theorem 4.2. Suppose that fFp+q(¯Ω,Bn(2,αj,γij)),p+qn,0<λ<1p+q,p,qN, for arbitrary x0Ω, then we have

    c1(αj,γij)f(x0)=qr=1(1)p+rΩx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)+ps=1(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0))(1)p+qΩx0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx, (4.2)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function fFp+q(¯Ω,Bn(2,αj,γij)).

    Proof. We can conclude that Theorem 4.2 holds by applying Theorem 3.2, once we prove that the following equality holds, that is,

    qr=1(1)p+rΩx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)(1)p+qΩx0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx=(1)pΩx0Ep(x)((Dλx)pf(y0))dx.

    For any x0Ω, we know that 0+x0Ω, so 0Ωx0. We can choose an arbitrarily small positive number δ and make a small ball Bδ={x:|x|<δ} such that ¯Bδ is a subset of Ωx0.

    When r=1,2,3,,q, by Lemma 2.1 and Proposition 2.1, we have

    Ωx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)limδ0Bδ[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)=limδ0Ωx0Bδ[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+limδ0Ωx0Bδ[((Dλx)pf(y0))(Dλx)r1]Ep+r1(x)dx=Ωx0[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+Ωx0[((Dλx)pf(y0))(Dλx)r1]Ep+r1(x)dx.

    By Theorem 4.1, it follows that ((Dλx)pf(y0))(Dλx)r1 is a bounded function in ¯Ωx0, then |((Dλx)pf(y0))(Dλx)r1|M4, hence,

    |Bδ[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)|M4Bδ|Ep+r(x)|ρ1λx|dσx|=M4Bδ|Cp+r|ρn(p+r)λxρ1λxdμM5Bδ1δ(p+r1)λdμ1M6δ(p+r1)λ+1M6δ2,

    where Mi>0 are positive constants, i=4,5,6, and we can conclude that

    limδ0Bδ[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)=0.

    Hence,

    Ωx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)=Ωx0[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+Ωx0[((Dλx)pf(y0))(Dλx)r1]Ep+r1(x)dx. (4.3)

    By Equality (4.3), we can deduce that

    qr=1(1)p+rΩx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)=(1)p+qΩx0[((Dλx)pf(y0))(Dλx)q]Ep+q(x)dx+(1)p+qΩx0[((Dλx)pf(y0))(Dλx)q1]Ep+q1(x)dx+(1)p+q1Ωx0[((Dλx)pf(y0))(Dλx)q1]Ep+q1(x)dx+(1)p+q1Ωx0[((Dλx)pf(y0))(Dλx)q2]Ep+q2(x)dx++(1)p+1Ωx0[((Dλx)pf(y0))Dλx]Ep+1(x)dx+(1)p+1Ωx0((Dλx)pf(y0))Ep(x)dx=(1)p+qΩx0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx(1)pΩx0Ep(x)((Dλx)pf(y0))dx.

    We complete the proof.

    Corollary 4.1. Suppose that fFp+q(¯Ω,Bn(2,αj,γij)) is a solution of the equation ((Dλ)pf(y0))(Dλ)q=0 in ¯Ωx0, p+qn,0<λ<1p+q,p,qN, for arbitrary x0Ω, then we have

    c1(αj,γij)f(x0)=qr=1(1)p+rΩx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)+ps=1(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0)), (4.4)

    where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the (p+q)-order λ-weighted monogenic function.

    Remark 4.1. Theorem 4.1 is used to prove Theorem 4.2. As pN, where N is a set of positive integers, there is no direct relationship between Theorems 3.3 and 4.2. However, when p=0 in Theorem 4.2, if ps=1(1)sΩx0Mλs(x)dσx((Dλx)s1f(y0))=0 in Equality (4.2), then the right end of the equality in Theorem 4.2 is reduced to the right end of the equality in Theorem 3.3. When q=0 in Theorem 4.2, if qr=1(1)p+rΩx0[((Dλx)pf(y0))(Dλx)r1]dσxMλp+r(x)=0 in Equality (4.2), then the equality in Theorem 4.2 is reduced to the equality in Theorem 3.2.

    In recent years, the integral representations for the solution to the higher order Dirac equation in Bn(2,αj,γij) have been studied, which generalize the integral representation in the classical Clifford algebra. In this paper, we not only prove three Cauchy-Pompeiu integral formulae for functions valued in the dependent parameter Clifford algebra, but also obtain integral representations for three different higher order λ-weighted monogenic functions.

    If Bn(2,αj,γij)=Bn(2,1,0), then Corollary 3.1 in this paper is reduced to one result of Theorem 3.7 in reference [5], that is,

    Theorem 5.1. [5] Suppose that ΩRn is a domain, Ω:={x|y0=x+x0Ω}, Hj(x)=Aj|x|njα, Aj=(1)j1ωnαj1(j1)!, 0<α<1k. If f(x+x0) is a k-monogenic function with α-weight in Ω, for arbitrary x0Ω, then we have

    f(x0)=kj=1(1)j1ΩHj(x)|x|αxdσx((Dαx)j1f(x+x0)). (5.1)

    If Bn(2,αj,γij)=Bn(2,1,0), Corollary 4.1 in this paper is reduced to Corollary 3.5 in [9], that is,

    Theorem 5.2. [9] Suppose fCr(Ω,Cl0,n(R)), where rp+q, np+q, ΩRn is a domain, Ω:={x|y0=x+x0Ω}, Hp+j(x)=Ap+j|x|n(p+j)α, Ap+j=(1)p+j1ωnαp+j1(p+j1)!, 0<α<1p+q. If f(x+x0) is a (p,q)-monogenic function with α-weight in Ω, then for any x0Ω, we have

    f(x0)=qj=1(1)p+jΩ((Dαx)pf(x+x0))(Dαx)j1dσx(x|x|αHp+j(x))+pj=1(1)jΩHj(x)|x|αxdσx((Dαx)j1f(x+x0)). (5.2)

    With the method of the Clifford analytic approach and Newton embedding method, reference [10] proved the existence and uniqueness of solutions of the nonlinear Riemann-Hilbert problems. For a k-vector field Fk, reference [11] obtained the solution of boundary value problems for the associated with the equations (Dx)2s1(Fk)Dx=fk, where fkF(Ω,B(k)m(2,1,0)), B(k)m(2,1,0) is the space of pseudo-scalars in the classical Clifford algebra Bm(2,1,0). We hope to solve the boundary value problem related to the equation (Dx)2s1(Fk)Dx=fk in the dependent parameter Clifford algebra in our future work.

    Xiaojing Du: Conceptualization, Writing-original draft, Writing-review and editing; Xiaotong Liang: Validation and Writing-review; Yonghong Xie: Supervision, Validation and Funding acquisition. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The work was supported by the Natural Science Foundation of Hebei Province (Nos. A2023205006, A2023205045, A2022208007 and A2024208005), the Key Development Foundation of Hebei Normal University (No. L2024ZD08), the National Natural Science Foundation of China (No. 12431005), and the Funding Project of Central Guidance for Local Scientific and Technological Development (No. 246Z7608G).

    The authors state that there is no conflicts of interest in this paper.



    [1] D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. Mag., 19 (1999), 59–70. https://doi.org/10.1109/37.793443 doi: 10.1109/37.793443
    [2] L. Zhang, X. Lou, Z. Wang, Output-based robust switching rule design for uncertain switched affine systems: Application to DC–DC converters, IEEE Trans. Circuits Syst. II, Exp. Briefs, 69 (2022), 4493–4497. https://doi.org/10.1109/TCSII.2022.3183192 doi: 10.1109/TCSII.2022.3183192
    [3] T. Sun, R. Wang, L. Zhang, X. Zhao, A fastly and slowly cyclic switching strategy for discrete-time cyclic switched systems and its application to inverter circuits, IEEE Trans. Circuits Syst. II, Exp. Briefs, 69 (2022), 1173–1177. https://doi.org/10.1109/TCSII.2021.3099160 doi: 10.1109/TCSII.2021.3099160
    [4] Z. Ye, D. Zhang, Z. G. Wu, H. Yan, A3C-based intelligent event-triggering control of networked nonlinear unmanned marine vehicles subject to hybrid attacks, IEEE Trans. Intell. Transp. Syst., 23 (2022), 12921–12934. https://doi.org/10.1109/TITS.2021.3118648 doi: 10.1109/TITS.2021.3118648
    [5] F. Zhu, F. Wang, L. Ye, Artificial switched chaotic system used as transmitter in chaos-based secure communication, J. Franklin Inst., 357 (2020), 10997–11020. https://doi.org/10.1016/j.jfranklin.2020.07.043 doi: 10.1016/j.jfranklin.2020.07.043
    [6] Y. Garbouj, T. N. Dinh, T. Raissi, T. Zouari, M. Ksouri, Optimal interval observer for switched Takagi–Sugeno systems: An application to interval fault estimation, IEEE Trans. Fuzzy Syst., 29 (2021), 2296–2309. https://doi.org/10.1109/TFUZZ.2020.2997333 doi: 10.1109/TFUZZ.2020.2997333
    [7] H. Wang, X. Yang, Z. Xiang, R. Tang, Q. Ning, Synchronization of switched neural networks via attacked mode-dependent event-triggered control and its application in image encryption, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3227021
    [8] L. Zhang, X. Zhang, Y. Xue, X. Zhang, New method to global exponential stability analysis for switched genetic regulatory networks with mixed delays, IEEE Trans. Nanobiosci., 19 (2020), 308–314. https://doi.org/10.1109/TNB.2020.2971548 doi: 10.1109/TNB.2020.2971548
    [9] M. Sathishkumar, Y. C. Liu, Resilient annular finite-time bounded and adaptive event-triggered control for networked switched systems with deception attacks, IEEE Access, 9 (2021), 92288–92299. https://doi.org/10.1109/ACCESS.2021.3092402 doi: 10.1109/ACCESS.2021.3092402
    [10] R. Vadivel, S. Sabarathinam, Y. Wu, K. Chaisena, N. Gunasekaran, New results on T-S fuzzy sampled-data stabilization for switched chaotic systems with its applications, Chaos, Solitons & Fractals, 164 (2022), 112741. https://doi.org/10.1016/j.chaos.2022.112741 doi: 10.1016/j.chaos.2022.112741
    [11] H. Ji, Y. Li, X. Ding, J. Lu, Stability analysis of Boolean networks with Markov jump disturbances and their application in apoptosis networks, Electron. Res. Arch., 30 (2022), 3422–3434. https://doi.org/10.3934/era.2022174 doi: 10.3934/era.2022174
    [12] N. Gunasekaran, M. S. Ali, S. Arik, H. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
    [13] W. Tai, X. Li, J. Zhou, S. Arik, Asynchronous dissipative stabilization for stochastic Markov-switching neural networks with completely-and incompletely-known transition rates, Neural Networks, 161 (2023), 55–64. https://doi.org/10.1016/j.neunet.2023.01.039 doi: 10.1016/j.neunet.2023.01.039
    [14] J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered H security control for networked systems vulnerable to aperiodic DoS attacks, IEEE Trans. Network Sci. Eng., 10 (2023), 2109–2123. https://doi.org/10.1109/TNSE.2023.3243095 doi: 10.1109/TNSE.2023.3243095
    [15] R. Sakthivel, S. Harshavarthini, S. Mohanapriya, O. Kwon, Disturbance rejection based tracking control design for fuzzy switched systems with time-varying delays and disturbances, Int. J. Robust Nonlinear Control, 33 (2023), 1184–1202. https://doi.org/10.1002/rnc.6419 doi: 10.1002/rnc.6419
    [16] S. Cong, Mode-independent switching stabilizing control for continuous-time linear Markovian switching systems, IEEE Trans. Autom. Control, 2023 (2023). https://doi.org/10.1109/TAC.2023.3255139
    [17] H. Lin, P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Autom. Control, 54 (2009), 308–322. https://doi.org/10.1109/TAC.2008.2012009 doi: 10.1109/TAC.2008.2012009
    [18] A. S. Morse, Supervisory control of families of linear set-point controllers-Part I. exact matching, IEEE Trans. Autom. Control, 41 (1996), 413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [19] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time, in Proceedings of the 38th IEEE conference on decision and control (Cat. No. 99CH36304), 3 (1999), 2655–2660. https://doi.org/10.1109/CDC.1999.831330
    [20] J. P. Hespanha, Uniform stability of switched linear systems: Extensions of Lasalle's invariance principle, IEEE Trans. Autom. Control, 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [21] L. Zhang, S. Zhuang, P. Shi, Y. Zhu, Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time, IEEE Trans. Autom. Control, 60 (2015), 2994–2999. https://doi.org/10.1109/TAC.2015.2414813 doi: 10.1109/TAC.2015.2414813
    [22] H. Shen, M. Xing, Z. G. Wu, J. H. Park, Fault-tolerant control for fuzzy switched singular systems with persistent dwell-time subject to actuator fault, Fuzzy Sets Syst., 392 (2020), 60–76. https://doi.org/10.1016/j.fss.2019.08.011 doi: 10.1016/j.fss.2019.08.011
    [23] Y. Zhu, W. Zheng, D. Zhou, Quasi-synchronization of discrete-time Lur'e-type switched systems with parameter mismatches and relaxed PDT constraint, IEEE Trans. Cybern., 50 (2020), 2026–2037. https://doi.org/10.1109/TCYB.2019.2930945 doi: 10.1109/TCYB.2019.2930945
    [24] J. Wang, X. Liu, J. Xia, H. Shen, J. H. Park, Quantized interval type-2 fuzzy control for persistent dwell-time switched nonlinear systems with singular perturbations, IEEE Trans. Cybern., 52 (2022), 6638–6648. https://doi.org/10.1109/TCYB.2021.3049459 doi: 10.1109/TCYB.2021.3049459
    [25] N. Zhang, G. Chen, L1 finite-time control of discrete-time switched positive linear systems with mode-dependent persistent dwell-time switching, Optim. Control Appl. Methods, 43 (2022), 1778–1794. https://doi.org/10.1002/oca.2928 doi: 10.1002/oca.2928
    [26] X. Q. Zhao, S. Guo, Y. Long, G. X. Zhong, Simultaneous fault detection and control for discretetime switched systems under relaxed persistent dwell time switching, Appl. Math. Comput., 412 (2022), 126585. https://doi.org/10.1016/j.amc.2021.126585
    [27] T. Yu, Y. Zhao, J. Wang, J. Liu, Event-triggered sliding mode control for switched genetic regulatory networks with persistent dwell time, Nonlinear Anal. Hybrid Syst., 44 (2022), 101135. https://doi.org/10.1016/j.nahs.2021.101135
    [28] S. Zhuang, H. Gao, Y. Shi, Model predictive control of switched linear systems with persistent dwell-time constraints: Recursive feasibility and stability, IEEE Trans. Autom. Control, 2023 (2023). https://doi.org/10.1109/TAC.2023.3248279
    [29] H. Zhang, X. Zhang, J. Wang, Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation, Veh. Syst. Dyn., 52 (2014), 309–340. https://doi.org/10.1080/00423114.2013.879190 doi: 10.1080/00423114.2013.879190
    [30] L. Wu, Z. Wang, Robust L2L control of uncertain differential linear repetitive processes, Syst. Control Lett., 57 (2008), 425–435. https://doi.org/10.1016/j.sysconle.2007.10.005 doi: 10.1016/j.sysconle.2007.10.005
    [31] Y. Li, M. Chen, T. Li, H. Wang, Robust resilient control based on multi-approximator for the uncertain turbofan system with unmeasured states and disturbances, IEEE Trans. Syst., Man Cybern.: Syst., 51 (2021), 6040–6049. https://doi.org/10.1109/TSMC.2019.2958861 doi: 10.1109/TSMC.2019.2958861
    [32] J. Zhou, J. Dong, S. Xu, Asynchronous dissipative control of discrete-time fuzzy Markov jump systems with dynamic state and input quantization, IEEE Trans. Fuzzy Syst., 2023 (2023). https://doi.org/10.1109/TFUZZ.2023.3271348
    [33] S. Shi, Z. Shi, Z. Fei, Asynchronous control for switched systems by using persistent dwell time modeling, Syst. Control Lett., 133 (2019), 104523. https://doi.org/10.1016/j.sysconle.2019.104523 doi: 10.1016/j.sysconle.2019.104523
    [34] Y. Tong, W. Sun, X. Li, Discretized quasi-time-dependent H control for continuous-time switched linear systems with persistent dwell-time, Int. J. Robust Nonlinear Control, 31 (2021), 3195–3211. https://doi.org/10.1002/rnc.5444 doi: 10.1002/rnc.5444
    [35] X. H. Chang, J. H. Park, P. Shi, Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems, IEEE Trans. Fuzzy Syst., 25 (2017), 1576–1588. https://doi.org/10.1109/TFUZZ.2016.2612302 doi: 10.1109/TFUZZ.2016.2612302
    [36] L. Zhang, S. Zhuang, P. Shi, Non-weighted quasi-time-dependent H filtering for switched linear systems with persistent dwell-time, Automatica, 54 (2015), 201–209. https://doi.org/10.1016/j.automatica.2015.02.010 doi: 10.1016/j.automatica.2015.02.010
    [37] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, USA, 2015. https://doi.org/10.1007/978-1-4684-0313-8
    [38] J. Zhou, J. H. Park, H. Shen, Non-fragile reduced-order dynamic output feedback H control for switched systems with average dwell-time switching, Int. J. Control, 89 (2016), 281–296. https://doi.org/10.1080/00207179.2015.1075175 doi: 10.1080/00207179.2015.1075175
    [39] S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, USA, 1994. https://doi.org/10.1137/1.9781611970777
    [40] B. Kaviarasan, O. M. Kwon, M. J. Park, R. Sakthivel, Dissipative constraint-based control design for singular semi-Markovian jump systems using state decomposition approach, Nonlinear Anal. Hybrid Syst., 47 (2023), 101302. https://doi.org/10.1016/j.nahs.2022.101302 doi: 10.1016/j.nahs.2022.101302
    [41] X. Liu, K. Shi, Y. Tang, L. Tang, Y. Wei, Y. Han, A novel adaptive event-triggered reliable H control approach for networked control systems with actuator faults, Electron. Res. Arch., 31 (2023), 1840–1862. https://doi.org/10.3934/era.2023095 doi: 10.3934/era.2023095
    [42] V. B. Falchetto, M. Souza, A. R. Fioravanti, R. N. Shorten, H2 and H analysis and state feedback control design for discrete-time constrained switched linear systems, Int. J. Control, 94 (2021), 2834–2845. https://doi.org/10.1080/00207179.2020.1737331 doi: 10.1080/00207179.2020.1737331
    [43] Y. Guo, J. Li, X. Qi, Fault-tolerant H control for T–S fuzzy persistent dwell-time switched singularly perturbed systems with time-varying delays, Int. J. Fuzzy Syst., 24 (2022), 247–264. https://doi.org/10.1007/s40815-021-01133-7 doi: 10.1007/s40815-021-01133-7
    [44] H. Shen, Z. Huang, X. Yang, Z. Wang, Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts, Nonlinear Dyn., 93 (2018), 2249–2262. https://doi.org/10.1007/s11071-018-4322-y doi: 10.1007/s11071-018-4322-y
    [45] H. Shen, X. Liu, J. Xia, X. Chen, J. Wang, Finite-time energy-to-peak fuzzy filtering for persistent dwell-time switched nonlinear systems with unreliable links, Inf. Sci., 579 (2021), 293–309. https://doi.org/10.1016/j.ins.2021.07.081 doi: 10.1016/j.ins.2021.07.081
    [46] S. Dong, Z. G. Wu, P. Shi, Control and Filtering of Fuzzy Systems with Switched Parameters, Springer, New York, USA, 2020. https://doi.org/10.1007/978-3-030-35566-1
  • This article has been cited by:

    1. Hyun-Wook Lee, Sung-Hyun Park, Mao-wen Weng, Hsiang-Tsui Wang, William C. Huang, Herbert Lepor, Xue-Ru Wu, Lung-Chi Chen, Moon-shong Tang, E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells, 2018, 115, 0027-8424, 10.1073/pnas.1718185115
    2. M. Boulanouar, O. Aouacheri, S. Saka, Potential Protective Effects of Turmeric (Curcuma longa) Supplementation on Cadmium-Induced Toxicity in Albinos Wistar Rat, 2023, 1624-8597, 10.3166/phyto-2022-0363
    3. Daniel Andrew M. Gideon, Joel James, 2022, Chapter 185, 978-981-15-9410-6, 805, 10.1007/978-981-15-9411-3_185
    4. Ashly Hindle, Sharda P. Singh, Jangampalli Adi Pradeepkiran, Chhanda Bose, Murali Vijayan, Sudhir Kshirsagar, Neha A. Sawant, P. Hemachandra Reddy, Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer’s Disease?, 2022, 23, 1422-0067, 6098, 10.3390/ijms23116098
    5. Francisco Bosch-Morell, Enrique García-Gen, Salvador Mérida, Mariola Penadés, Carmen Desco, Amparo Navea, Lipid Peroxidation in Subretinal Fluid: Some Light on the Prognosis Factors, 2021, 11, 2218-273X, 514, 10.3390/biom11040514
    6. Livier Sánchez-Aceves, Itzayana Pérez-Alvarez, Leobardo Manuel Gómez-Oliván, Hariz Islas-Flores, Damià Barceló, Long-term exposure to environmentally relevant concentrations of ibuprofen and aluminum alters oxidative stress status on Danio rerio, 2021, 248, 15320456, 109071, 10.1016/j.cbpc.2021.109071
    7. Rory P. Conolly, Harvey J. Clewell, Martha M. Moore, Jerry L. Campbell, Wanyun Cheng, R. Robinan Gentry, PBPK modeling to evaluate maximum tolerated doses: A case study with 3-chloroallyl alcohol, 2023, 14, 1663-9812, 10.3389/fphar.2023.1088011
    8. Arash Rafeeinia, Gholamreza Asadikaram, Mehrnaz Karimi Darabi, Moslem Abolhassani, Vahid Moazed, Mojtaba Abbasi-Jorjandi, Organochlorine pesticides, oxidative stress biomarkers, and leukemia: a case–control study, 2023, 71, 1081-5589, 295, 10.1177/10815589221145043
    9. Wen-hui Tao, Xi-sheng Shan, Jia-xin Zhang, Hua-yue Liu, Bi-ying Wang, Xiang Wei, Mian Zhang, Ke Peng, Jun Ding, Shang-xian Xu, Lin-gui Li, Jun-kai Hu, Xiao-wen Meng, Fu-hai Ji, Dexmedetomidine Attenuates Ferroptosis-Mediated Renal Ischemia/Reperfusion Injury and Inflammation by Inhibiting ACSL4 via α2-AR, 2022, 13, 1663-9812, 10.3389/fphar.2022.782466
    10. Carla Iacobini, Martina Vitale, Jonida Haxhi, Carlo Pesce, Giuseppe Pugliese, Stefano Menini, Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet, 2022, 14, 2072-6643, 1061, 10.3390/nu14051061
    11. Sabiha Fatima, Syed Shams Zaidi, Ashwag Saleh Alsharidah, Feda S. Aljaser, Naheed Banu, Possible Prophylactic Approach for SARS-CoV-2 Infection by Combination of Melatonin, Vitamin C and Zinc in Animals, 2020, 7, 2297-1769, 10.3389/fvets.2020.585789
    12. Alessandra Peres, Igor M. Da Silva, Maeli Santos, Ângela Beretta, Vanessa Moraes Andrade, Pedro R. T. RomãO, Gilson P. Dorneles, DNA damage in mononuclear cells following maximal exercise in sedentary and physically active lean and obese men, 2021, 21, 1746-1391, 1073, 10.1080/17461391.2020.1801850
    13. Meenakshi Bhardwaj, Padmavathy T.K., Sugumar Mani, Malarvizhi R, Veeresh Kumar Sali, Hannah R Vasanthi, Sulfated polysaccharide from Turbinaria ornata suppress lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages, 2020, 164, 01418130, 4299, 10.1016/j.ijbiomac.2020.09.036
    14. Taye J. Lasisi, Shehu-Tijani T. Shittu, Jude I. Abeje, Kehinde J. Ogunremi, Seyyid A. Shittu, Paradoxical sleep deprivation induces oxidative stress in the submandibular glands of Wistar rats, 2022, 33, 0792-6855, 399, 10.1515/jbcpp-2020-0178
    15. Alain Menzel, Hanen Samouda, Francois Dohet, Suva Loap, Mohammed S. Ellulu, Torsten Bohn, Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice—Which to Use Regarding Disease Outcomes?, 2021, 10, 2076-3921, 414, 10.3390/antiox10030414
    16. Ofem E. Eteng, Ceaser A. Moses, Emmanuel I. Ugwor, Joe E. Enobong, Adio J. Akamo, Dorcas I. Akinloye, Irene O. Sadiku, Arikpo Iwara, Eyong Ubana, Sub-acute exposure to Sudan IV-adulterated palm oil induces oxidative stress and represses the expression of Nrf2 and antioxidant genes in male albino rats, 2021, 39, 2689-6583, 400, 10.1080/26896583.2021.1965851
    17. Paul R J Ames, Tommaso Bucci, Mira Merashli, Alessia Arcaro, Fabrizio Gentile, Thrombocytopaenia in antiphospholipid syndrome: a free radical perspective, 2022, 1462-0324, 10.1093/rheumatology/keac650
    18. Masoud Soheili, Azam Alinaghipour, Mahmoud Salami, Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations, 2022, 301, 00243205, 120605, 10.1016/j.lfs.2022.120605
    19. Ninoslav Djelić, Sunčica Borozan, Vesna Dimitrijević-Srećković, Nevena Pajović, Milorad Mirilović, Helga Stopper, Zoran Stanimirović, Oxidative Stress and DNA Damage in Peripheral Blood Mononuclear Cells from Normal, Obese, Prediabetic and Diabetic Persons Exposed to Thyroid Hormone In Vitro, 2022, 23, 1422-0067, 9072, 10.3390/ijms23169072
    20. Jan Spaas, Lieve van Veggel, Melissa Schepers, Assia Tiane, Jack van Horssen, David M. Wilson, Pablo R. Moya, Elisabeth Piccart, Niels Hellings, Bert O. Eijnde, Wim Derave, Rudy Schreiber, Tim Vanmierlo, Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders, 2021, 78, 1420-682X, 4615, 10.1007/s00018-021-03802-0
    21. Debasish Basak, Mohammad Nasir Uddin, Jake Hancock, The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC), 2020, 12, 2072-6694, 3336, 10.3390/cancers12113336
    22. Jaqueline Ferreira Campos, Helder Freitas dos Santos, Thaliny Bonamigo, Nelson Luís de Campos Domingues, Kely de Picoli Souza, Edson Lucas dos Santos, Cinzia Domenicotti, Stingless Bee Propolis: New Insights for Anticancer Drugs, 2021, 2021, 1942-0994, 1, 10.1155/2021/2169017
    23. Arnold N. Onyango, Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance, 2018, 2018, 1942-0900, 1, 10.1155/2018/4321714
    24. John Oludele Olanlokun, Mercy Toluwase Ekundayo, Neil Anthony Koorbanally, Olufunso Olabode Olorunsogo, Hexane fraction of Globimetula braunii induces mitochondria-mediated apoptosis in Plasmodium berghei-infected mice, 2022, 9, 22147500, 769, 10.1016/j.toxrep.2022.04.002
    25. Călin Jianu, Laura-Cristina Rusu, Iulia Muntean, Ileana Cocan, Alexandra Teodora Lukinich-Gruia, Ionuț Goleț, Delia Horhat, Marius Mioc, Alexandra Mioc, Codruța Șoica, Gabriel Bujancă, Adrian Cosmin Ilie, Delia Muntean, In Vitro and In Silico Evaluation of the Antimicrobial and Antioxidant Potential of Thymus pulegioides Essential Oil, 2022, 11, 2076-3921, 2472, 10.3390/antiox11122472
    26. Stefania Pizzimenti, Simone Ribero, Marie Angele Cucci, Margherita Grattarola, Chiara Monge, Chiara Dianzani, Giuseppina Barrera, Giuliana Muzio, Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies, 2021, 10, 2076-3921, 1942, 10.3390/antiox10121942
    27. Hongyan Zhang, Yujiao Liu, Xuxiao Zong, Changcai Teng, Wanwei Hou, Ping Li, Dezhi Du, Genetic Diversity of Global Faba Bean Germplasm Resources Based on the 130K TNGS Genotyping Platform, 2023, 13, 2073-4395, 811, 10.3390/agronomy13030811
    28. Noreddine Benkerroum, Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action, 2020, 17, 1660-4601, 423, 10.3390/ijerph17020423
    29. Sangiliyandi Gurunathan, Muniyandi Jeyaraj, Min-Hee Kang, Jin-Hoi Kim, Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer, 2020, 21, 1422-0067, 6792, 10.3390/ijms21186792
    30. Yue Guo, Lei Wang, Andrea Hanson, Pedro E. Urriola, Gerald C. Shurson, Chi Chen, Identification of Protective Amino Acid Metabolism Events in Nursery Pigs Fed Thermally Oxidized Corn Oil, 2023, 13, 2218-1989, 103, 10.3390/metabo13010103
    31. Stefano Menini, Carla Iacobini, Martina Vitale, Carlo Pesce, Giuseppe Pugliese, Diabetes and Pancreatic Cancer—A Dangerous Liaison Relying on Carbonyl Stress, 2021, 13, 2072-6694, 313, 10.3390/cancers13020313
    32. Saurin R. Sutaria, Sadakatali S. Gori, James D. Morris, Zhenzhen Xie, Xiao-An Fu, Michael H. Nantz, Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer—A Review, 2022, 12, 2218-1989, 561, 10.3390/metabo12060561
    33. Amandine Moretton, Joanna I. Loizou, Interplay between Cellular Metabolism and the DNA Damage Response in Cancer, 2020, 12, 2072-6694, 2051, 10.3390/cancers12082051
    34. Morana Jaganjac, Lidija Milkovic, Suzana Borovic Sunjic, Neven Zarkovic, The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies, 2020, 9, 2076-3921, 1151, 10.3390/antiox9111151
    35. Sungshim L. Park, Loic Le Marchand, Guang Cheng, Silvia Balbo, Menglan Chen, Steven G. Carmella, Nicole M. Thomson, Younghan Lee, Yesha M. Patel, Daniel O. Stram, Joni Jensen, Dorothy K. Hatsukami, Sharon E. Murphy, Stephen S. Hecht, Quantitation of DNA Adducts Resulting from Acrolein Exposure and Lipid Peroxidation in Oral Cells of Cigarette Smokers from Three Racial/Ethnic Groups with Differing Risks for Lung Cancer, 2022, 35, 0893-228X, 1914, 10.1021/acs.chemrestox.2c00171
    36. Camille Audousset, Toby McGovern, James G. Martin, Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches – Pulmonary Disease/Asthma, 2021, 12, 1664-042X, 10.3389/fphys.2021.727806
    37. Andriy Cherkas, Neven Zarkovic, 4-Hydroxynonenal in Redox Homeostasis of Gastrointestinal Mucosa: Implications for the Stomach in Health and Diseases, 2018, 7, 2076-3921, 118, 10.3390/antiox7090118
    38. Padmanabh Singh, Bhabotosh Barman, Mahendra Kumar Thakur, Oxidative stress-mediated memory impairment during aging and its therapeutic intervention by natural bioactive compounds, 2022, 14, 1663-4365, 10.3389/fnagi.2022.944697
    39. Elena E. Pohl, Olga Jovanovic, The Role of Phosphatidylethanolamine Adducts in Modification of the Activity of Membrane Proteins under Oxidative Stress, 2019, 24, 1420-3049, 4545, 10.3390/molecules24244545
    40. Daniel Andrew M. Gideon, Joel James, 2021, Chapter 185-1, 978-981-15-4501-6, 1, 10.1007/978-981-15-4501-6_185-1
    41. Scott J. Walmsley, Jingshu Guo, Paari Murugan, Christopher J. Weight, Jinhua Wang, Peter W. Villalta, Robert J. Turesky, Comprehensive Analysis of DNA Adducts Using Data-Independent wSIM/MS2 Acquisition and wSIM-City, 2021, 93, 0003-2700, 6491, 10.1021/acs.analchem.1c00362
    42. Shunji Kato, Naoki Shimizu, Yurika Otoki, Junya Ito, Masayoshi Sakaino, Takashi Sano, Shigeo Takeuchi, Jun Imagi, Kiyotaka Nakagawa, Determination of acrolein generation pathways from linoleic acid and linolenic acid: increment by photo irradiation, 2022, 6, 2396-8370, 10.1038/s41538-022-00138-2
    43. Federica Papaccio, Andrea D′Arino, Silvia Caputo, Barbara Bellei, Focus on the Contribution of Oxidative Stress in Skin Aging, 2022, 11, 2076-3921, 1121, 10.3390/antiox11061121
    44. Iliana Ivanova, Radostina Toshkovska, Lyubomira Yocheva, Dayana Benkova, Vesela Yordanova, Alexandrina Nesheva, Rusina Hazarosova, Galya Staneva, Aneliya Kostadinova, 2023, Chapter 15, 978-3-031-31068-3, 147, 10.1007/978-3-031-31069-0_15
    45. Mohsen Sisakht, Maryam Darabian, Amir Mahmoodzadeh, Ali Bazi, Sayed Mohammad Shafiee, Pooneh Mokarram, Zahra Khoshdel, The role of radiation induced oxidative stress as a regulator of radio-adaptive responses, 2020, 96, 0955-3002, 561, 10.1080/09553002.2020.1721597
    46. Agata Los, Dana Ziuzina, Robin Van Cleynenbreugel, Daniela Boehm, Paula Bourke, Assessing the Biological Safety of Atmospheric Cold Plasma Treated Wheat Using Cell and Insect Models, 2020, 9, 2304-8158, 898, 10.3390/foods9070898
    47. Ariane Schröter, Hanns-Christian Mahler, Nadia Ben Sayed, Atanas V. Koulov, Jörg Huwyler, Michael Jahn, 4-Hydroxynonenal – A Toxic Leachable from Clinically Used Administration Materials, 2021, 110, 00223549, 3268, 10.1016/j.xphs.2021.05.014
    48. Tauseef Alam, Sana Rizwan, Zeba Farooqui, Subuhi Abidi, Iqbal Parwez, Farah Khan, Oral Nigella sativa oil administration alleviates arsenic-induced redox imbalance, DNA damage, and metabolic and histological alterations in rat liver, 2021, 28, 0944-1344, 41464, 10.1007/s11356-021-13493-6
    49. Reyhaneh Moradi‐Marjaneh, Seyed Mahdi Hassanian, Mehraneh Mehramiz, Majid Rezayi, Gordon A. Ferns, Majid Khazaei, Amir Avan, Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways, 2019, 234, 0021-9541, 10072, 10.1002/jcp.27881
    50. Kun Lu, Yun-Chung Hsiao, Chih-Wei Liu, Rita Schoeny, Robinan Gentry, Thomas B. Starr, A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose–Response Assessments, 2022, 35, 0893-228X, 7, 10.1021/acs.chemrestox.1c00212
    51. Alessandro Attanzio, Ignazio Restivo, Marco Tutone, Luisa Tesoriere, Mario Allegra, Maria A. Livrea, Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives, 2022, 11, 2076-3921, 2364, 10.3390/antiox11122364
    52. Nadeem G Khan, Sangavi Eswaran, Divya Adiga, S. Sriharikrishnaa, Sanjiban Chakrabarty, Padmalatha S. Rai, Shama Prasada Kabekkodu, Integrated bioinformatic analysis to understand the association between phthalate exposure and breast cancer progression, 2022, 457, 0041008X, 116296, 10.1016/j.taap.2022.116296
    53. Georg Wultsch, Tahereh Setayesh, Michael Kundi, Michael Kment, Armen Nersesyan, Michael Fenech, Siegfried Knasmüller, Induction of DNA damage as a consequence of occupational exposure to crystalline silica: A review and meta-analysis, 2021, 787, 13835742, 108349, 10.1016/j.mrrev.2020.108349
    54. Caroline Molinaro, Alain Martoriati, Katia Cailliau, Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies, 2021, 13, 2072-6694, 3819, 10.3390/cancers13153819
    55. Morana Jaganjac, Lidija Milkovic, Agnieszka Gegotek, Marina Cindric, Kamelija Zarkovic, Elzbieta Skrzydlewska, Neven Zarkovic, The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases, 2020, 157, 08915849, 128, 10.1016/j.freeradbiomed.2019.11.023
    56. Jacob L. Brown, Fredrick F. Peelor, Constantin Georgescu, Jonathan D. Wren, Michael Kinter, Victoria J. Tyrrell, Valerie B. O'Donnell, Benjamin F. Miller, Holly Van Remmen, Lipid hydroperoxides and oxylipins are mediators of denervation induced muscle atrophy, 2022, 57, 22132317, 102518, 10.1016/j.redox.2022.102518
    57. Ruofei Du, Li Luo, Laurie G. Hudson, Sara Nozadi, Johnnye Lewis, An adjusted partial least squares regression framework to utilize additional exposure information in environmental mixture data analysis, 2022, 0266-4763, 1, 10.1080/02664763.2022.2043254
    58. Rory B Conolly, Jeffry Schroeter, Julia S Kimbell, Harvey Clewell, Melvin E Andersen, P Robinan Gentry, Updating the biologically based dose-response model for the nasal carcinogenicity of inhaled formaldehyde in the F344 rat, 2023, 193, 1096-6080, 1, 10.1093/toxsci/kfad028
    59. Analía Alejandra Lu-Martínez, Juan Gabriel Báez-González, Sandra Castillo-Hernández, Carlos Amaya-Guerra, José Rodríguez-Rodríguez, Eristeo García-Márquez, Studied of Prunus serotine oil extracted by cold pressing and antioxidant effect of P. longiflora essential oil, 2021, 58, 0022-1155, 1420, 10.1007/s13197-020-04653-6
    60. Agnieszka Gęgotek, Anna Jastrząb, Marta Dobrzyńska, Michał Biernacki, Elżbieta Skrzydlewska, Exogenous Antioxidants Impact on UV-Induced Changes in Membrane Phospholipids and the Effectiveness of the Endocannabinoid System in Human Skin Cells, 2021, 10, 2076-3921, 1260, 10.3390/antiox10081260
    61. Robert Nilsson, Ning-Ang Liu, Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects, 2020, 1, 26665557, 140, 10.1016/j.radmp.2020.09.002
    62. Ariane Schröter, Atanas V. Koulov, Jörg Huwyler, Hanns-Christian Mahler, Michael Jahn, 4-Hydroxynonenal is An Oxidative Degradation Product of Polysorbate 80, 2021, 110, 00223549, 2524, 10.1016/j.xphs.2021.01.027
    63. Shimaa I. Rakha, Mohammed A. Elmetwally, Hossam El-Sheikh Ali, Ahmed Zaky Balboula, Abdelmonem Montaser Mahmoud, Samy M. Zaabel, Lycopene Reduces the In Vitro Aging Phenotypes of Mouse Oocytes by Improving Their Oxidative Status, 2022, 9, 2306-7381, 336, 10.3390/vetsci9070336
    64. Rajesh Singh Jadon, Gajanand Sharma, Neeraj K. Garg, Nikunj Tandel, Kavita R. Gajbhiye, Rajesh Salve, Virendra Gajbhiye, Ujjawal Sharma, Om Prakash Katare, Manoj Sharma, Rajeev K. Tyagi, Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy, 2021, 203, 09277765, 111760, 10.1016/j.colsurfb.2021.111760
    65. Koraljka Gall Trošelj, Marko Tomljanović, Morana Jaganjac, Tanja Matijević Glavan, Ana Čipak Gašparović, Lidija Milković, Suzana Borović Šunjić, Brigitta Buttari, Elisabetta Profumo, Sarmistha Saha, Luciano Saso, Neven Žarković, Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response, 2022, 27, 1420-3049, 1468, 10.3390/molecules27051468
    66. Arash Rafeeinia, Gholamreza Asadikaram, Mehrnaz Karimi-Darabi, Moslem Abolhassani, Mojtaba Abbasi-Jorjandi, Vahid Moazed, Organochlorine Pesticides, Oxidative Stress Biomarkers, and Leukemia: A Case-Control Study, 2022, 70, 1081-5589, 1736, 10.1136/jim-2021-002289
    67. Nouf M. Alyami, Rafa Almeer, Hanadi M. Alyami, Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116), 2022, 8, 24058440, e11917, 10.1016/j.heliyon.2022.e11917
    68. Jingshu Guo, Joseph S. Koopmeiners, Scott J. Walmsley, Peter W. Villalta, Lihua Yao, Paari Murugan, Resha Tejpaul, Christopher J. Weight, Robert J. Turesky, The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers, 2022, 35, 0893-228X, 703, 10.1021/acs.chemrestox.2c00012
    69. Vladislav Vladimirovich Tsukanov, Olga Valentinovna Smirnova, Edward Vilyamovich Kasparov, Alexander Alexandrovich Sinyakov, Alexander Viktorovich Vasyutin, Julia Leongardovna Tonkikh, Mikhail Alexandrovich Cherepnin, Dynamics of Oxidative Stress in Helicobacter pylori-Positive Patients with Atrophic Body Gastritis and Various Stages of Gastric Cancer, 2022, 12, 2075-4418, 1203, 10.3390/diagnostics12051203
    70. Hong-Min Qin, Denise Herrera, Dian-Feng Liu, Chao-Qian Chen, Armen Nersesyan, Miroslav Mišík, Siegfried Knasmueller, Genotoxic properties of materials used for endoprostheses: Experimental and human data, 2020, 145, 02786915, 111707, 10.1016/j.fct.2020.111707
    71. Deema Islayem, Fatima Ba Fakih, Sungmun Lee, Comparison of Colorimetric Methods to Detect Malondialdehyde, A Biomarker of Reactive Oxygen Species, 2022, 7, 2365-6549, 10.1002/slct.202103627
    72. Balázs Olasz, Béla Fiser, Milán Szőri, Béla Viskolcz, Michael C. Owen, Computational Elucidation of the Solvent-Dependent Addition of 4-Hydroxy-2-nonenal (HNE) to Cysteine and Cysteinate Residues, 2022, 87, 0022-3263, 12909, 10.1021/acs.joc.2c01487
    73. Josh Williamson, Gareth Davison, Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage, 2020, 9, 2076-3921, 1142, 10.3390/antiox9111142
    74. Eunnara Cho, Ashley Allemang, Marc Audebert, Vinita Chauhan, Stephen Dertinger, Giel Hendriks, Mirjam Luijten, Francesco Marchetti, Sheroy Minocherhomji, Stefan Pfuhler, Daniel J. Roberts, Kristina Trenz, Carole L. Yauk, AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations , 2022, 63, 0893-6692, 118, 10.1002/em.22479
    75. Ion Alexandru Bobulescu, Laurentiu M. Pop, Chinnadurai Mani, Kala Turner, Christian Rivera, Sabiha Khatoon, Subash Kairamkonda, Raquibul Hannan, Komaraiah Palle, Renal Lipid Metabolism Abnormalities in Obesity and Clear Cell Renal Cell Carcinoma, 2021, 11, 2218-1989, 608, 10.3390/metabo11090608
    76. Sarmistha Saha, Luciano Saso, Guliz Armagan, Cancer Prevention and Therapy by Targeting Oxidative Stress Pathways, 2023, 28, 1420-3049, 4293, 10.3390/molecules28114293
    77. Anna Chiaramonte, Serena Testi, Caterina Pelosini, Consuelo Micheli, Aurora Falaschi, Giovanni Ceccarini, Ferruccio Santini, Roberto Scarpato, Oxidative and DNA damage in obese patients undergoing bariatric surgery: a one-year follow-up study, 2023, 00275107, 111827, 10.1016/j.mrfmmm.2023.111827
    78. Amelia Rojas‐Gómez, Sara G. Dosil, Francisco J. Chichón, Nieves Fernández‐Gallego, Alessia Ferrarini, Enrique Calvo, Diego Calzada‐Fraile, Silvia Requena, Joaquin Otón, Alvaro Serrano, Rocio Tarifa, Montserrat Arroyo, Andrea Sorrentino, Eva Pereiro, Jesus Vázquez, José M. Valpuesta, Francisco Sánchez‐Madrid, Noa B. Martín‐Cófreces, Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics, 2023, 12, 2001-3078, 10.1002/jev2.12333
    79. Yulemni Morel, Jace W. Jones, Utilization of LC–MS/MS and Drift Tube Ion Mobility for Characterizing Intact Oxidized Arachidonate-Containing Glycerophosphatidylethanolamine, 2023, 1044-0305, 10.1021/jasms.3c00083
    80. Karoline Felisbino, Nathalia Kirsten, Shayane da Silva Milhorini, Isabela Saragioto Marçal, Karina Bernert, Rafaela Schiessl, Leticia Nominato-Oliveira, Izonete Cristina Guiloski, Teratogenic effects of the dicamba herbicide in Zebrafish (Danio rerio) embryos, 2023, 02697491, 122187, 10.1016/j.envpol.2023.122187
    81. Renan Muniz-Santos, Giovanna Lucieri-Costa, Matheus Augusto P. de Almeida, Isabelle Moraes-de-Souza, Maria Alice Dos Santos Mascarenhas Brito, Adriana Ribeiro Silva, Cassiano Felippe Gonçalves-de-Albuquerque, Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis, 2023, 14, 1664-3224, 10.3389/fimmu.2023.1224335
    82. Adam Wroński, Izabela Dobrzyńska, Szymon Sękowski, Wojciech Łuczaj, Ewa Olchowik-Grabarek, Elżbieta Skrzydlewska, Cannabidiol and Cannabigerol Modify the Composition and Physicochemical Properties of Keratinocyte Membranes Exposed to UVA, 2023, 24, 1422-0067, 12424, 10.3390/ijms241512424
    83. Tao Shen, Haiyang Wang, Rongkang Hu, Yanni Lv, Developing neural network diagnostic models and potential drugs based on novel identified immune-related biomarkers for celiac disease, 2023, 17, 1479-7364, 10.1186/s40246-023-00526-z
    84. Krystal D. Kao, Helmut Grasberger, Mohamad El-Zaatari, The Cxcr2+ subset of the S100a8+ gastric granylocytic myeloid-derived suppressor cell population (G-MDSC) regulates gastric pathology, 2023, 14, 1664-3224, 10.3389/fimmu.2023.1147695
    85. Nurbubu T. Moldogazieva, Sergey P. Zavadskiy, Dmitry V. Astakhov, Alexander A. Terentiev, Lipid peroxidation: Reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer, 2023, 0006291X, 149167, 10.1016/j.bbrc.2023.149167
    86. Rohit Sharma, Bhawna Diwan, Lipids and the hallmarks of ageing: From pathology to interventions, 2023, 215, 00476374, 111858, 10.1016/j.mad.2023.111858
    87. Nahed Nasser Eid El-Sayed, Taghreed M. Al-Otaibi, Assem Barakat, Zainab M. Almarhoon, Mohd. Zaheen Hassan, Maha I. Al-Zaben, Najeh Krayem, Vijay H. Masand, Abir Ben Bacha, Synthesis and Biological Evaluation of Some New 3-Aryl-2-thioxo-2,3-dihydroquinazolin-4(1H)-ones and 3-Aryl-2-(benzylthio)quinazolin-4(3H)-ones as Antioxidants; COX-2, LDHA, α-Glucosidase and α-Amylase Inhibitors; and Anti-Colon Carcinoma and Apoptosis-Inducing Agents, 2023, 16, 1424-8247, 1392, 10.3390/ph16101392
    88. Yangling Zhang, Yuxin Song, Jiao Zhang, Lanlan Li, Lin He, Jiahui Bo, Zhihua Gong, Wenjun Xiao, L-theanine regulates the immune function of SD rats fed high-protein diets through the FABP5/IL-6/STAT3/PPARα pathway, 2023, 181, 02786915, 114095, 10.1016/j.fct.2023.114095
    89. Dessislava Staneva, Neli Dimitrova, Borislav Popov, Albena Alexandrova, Milena Georgieva, George Miloshev, Haberlea rhodopensis Extract Tunes the Cellular Response to Stress by Modulating DNA Damage, Redox Components, and Gene Expression, 2023, 24, 1422-0067, 15964, 10.3390/ijms242115964
    90. Junying Yuan, Dimitry Ofengeim, A guide to cell death pathways, 2023, 1471-0072, 10.1038/s41580-023-00689-6
    91. Agnieszka Gęgotek, Elżbieta Skrzydlewska, Lipid peroxidation products’ role in autophagy regulation, 2024, 212, 08915849, 375, 10.1016/j.freeradbiomed.2024.01.001
    92. Liuling Xiao, Miao Xian, Chuanchao Zhang, Qi Guo, Qing Yi, Lipid peroxidation of immune cells in cancer, 2024, 14, 1664-3224, 10.3389/fimmu.2023.1322746
    93. Oleg M. Panasenko, Yury A. Vladimirov, Valery I. Sergienko, Free Radical Lipid Peroxidation Induced by Reactive Halogen Species, 2024, 89, 0006-2979, S148, 10.1134/S0006297924140098
    94. Sydney Bartman, Giuseppe Coppotelli, Jaime M. Ross, Mitochondrial Dysfunction: A Key Player in Brain Aging and Diseases, 2024, 46, 1467-3045, 1987, 10.3390/cimb46030130
    95. Adnan Moinuddin, Sophie M. Poznanski, Ana L. Portillo, Jonathan K. Monteiro, Ali A. Ashkar, Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment, 2024, 0105-2896, 10.1111/imr.13316
    96. Lindalva Maria de Meneses Costa Ferreira, Poliana Dimsan Queiroz de Souza, Rayanne Rocha Pereira, Edilene Oliveira da Silva, Wagner Luiz Ramos Barbosa, José Otávio Carréra Silva-Júnior, Attilio Converti, Roseane Maria Ribeiro-Costa, Preliminary Study on the Chemical and Biological Properties of Propolis Extract from Stingless Bees from the Northern Region of Brazil, 2024, 12, 2227-9717, 700, 10.3390/pr12040700
    97. Francesca Pagliari, Jeannette Jansen, Jan Knoll, Rachel Hanley, Joao Seco, Luca Tirinato, Cancer radioresistance is characterized by a differential lipid droplet content along the cell cycle, 2024, 19, 1747-1028, 10.1186/s13008-024-00116-y
    98. Alessandro Vacchini, Andrew Chancellor, Qinmei Yang, Rodrigo Colombo, Julian Spagnuolo, Giuliano Berloffa, Daniel Joss, Ove Øyås, Chiara Lecchi, Giulia De Simone, Aisha Beshirova, Vladimir Nosi, José Pedro Loureiro, Aurelia Morabito, Corinne De Gregorio, Michael Pfeffer, Verena Schaefer, Gennaro Prota, Alfred Zippelius, Jörg Stelling, Daniel Häussinger, Laura Brunelli, Peter Villalta, Marco Lepore, Enrico Davoli, Silvia Balbo, Lucia Mori, Gennaro De Libero, Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells, 2024, 9, 2470-9468, 10.1126/sciimmunol.adn0126
    99. Chenyang Fan, Xiangdong Yang, Lixiang Yan, Zhexin Shi, Oxidative stress is two‐sided in the treatment of acute myeloid leukemia, 2024, 13, 2045-7634, 10.1002/cam4.6806
    100. Jacques Dupuy, Edwin Fouché, Céline Noirot, Pierre Martin, Charline Buisson, Françoise Guéraud, Fabrice Pierre, Cécile Héliès-Toussaint, A dual model of normal vs isogenic Nrf2-depleted murine epithelial cells to explore oxidative stress involvement, 2024, 14, 2045-2322, 10.1038/s41598-024-60938-2
    101. Priya Borah, Hemen Deka, Polycyclic aromatic hydrocarbon (PAH) accumulation in selected medicinal plants: a mini review, 2024, 1614-7499, 10.1007/s11356-024-33548-8
    102. Adrian I. Abdo, Zlatko Kopecki, Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer, 2024, 46, 1467-3045, 4885, 10.3390/cimb46050294
    103. Dioni Arrieche, Andrés F. Olea, Carlos Jara-Gutiérrez, Joan Villena, Javier Pardo-Baeza, Sara García-Davis, Rafael Viteri, Lautaro Taborga, Héctor Carrasco, Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity, 2024, 13, 2223-7747, 1409, 10.3390/plants13101409
    104. Feiyi Sun, Yuyang Chen, Kristy W. K. Lam, Wutong Du, Qingqing Liu, Fei Han, Dan Li, Jacky W. Y. Lam, Jianwei Sun, Ryan T. K. Kwok, Ben Zhong Tang, Glutathione‐responsive Aggregation‐induced Emission Photosensitizers for Enhanced Photodynamic Therapy of Lung Cancer, 2024, 1613-6810, 10.1002/smll.202401334
    105. Adam Wroński, Iwona Jarocka-Karpowicz, Arkadiusz Surażyński, Agnieszka Gęgotek, Neven Zarkovic, Elżbieta Skrzydlewska, Modulation of Redox and Inflammatory Signaling in Human Skin Cells Using Phytocannabinoids Applied after UVA Irradiation: In Vitro Studies, 2024, 13, 2073-4409, 965, 10.3390/cells13110965
    106. Palma Fedele, Anna Natalizia Santoro, Francesca Pini, Marcello Pellegrino, Giuseppe Polito, Maria Chiara De Luca, Antonietta Pignatelli, Michele Tancredi, Valeria Lagattolla, Alessandro Anglani, Chiara Guarini, Antonello Pinto, Pietro Bracciale, Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside, 2024, 13, 2079-7737, 409, 10.3390/biology13060409
    107. Ana Valenta Šobot, Dunja Drakulić, Ana Todorović, Marijana Janić, Ana Božović, Lidija Todorović, Jelena Filipović Tričković, Gentiopicroside and swertiamarin induce non-selective oxidative stress-mediated cytotoxic effects in human peripheral blood mononuclear cells, 2024, 00092797, 111103, 10.1016/j.cbi.2024.111103
    108. Arno G. Siraki, Lars-Oliver Klotz, 2024, 9780128012383, 10.1016/B978-0-323-95488-4.00062-0
    109. Ismahane Abdelaziz, Abdelkader Bounaama, Bahia Djerdjouri, Zine-Charaf Amir-Tidadini, Low-dose dimethylfumarate attenuates colitis-associated cancer in mice through M2 macrophage polarization and blocking oxidative stress, 2024, 0041008X, 117018, 10.1016/j.taap.2024.117018
    110. Geou-Yarh Liou, Reauxqkwuanzyiia C’lay-Pettis, Sravankumar Kavuri, Involvement of Reactive Oxygen Species in Prostate Cancer and Its Disparity in African Descendants, 2024, 25, 1422-0067, 6665, 10.3390/ijms25126665
    111. Katarzyna Matusik, Katarzyna Kamińska, Aleksandra Sobiborowicz-Sadowska, Hubert Borzuta, Kasper Buczma, Agnieszka Cudnoch-Jędrzejewska, The significance of the apelinergic system in doxorubicin-induced cardiotoxicity, 2024, 1573-7322, 10.1007/s10741-024-10414-w
    112. Hengyu Jin, Jianxin Liu, Diming Wang, Antioxidant Potential of Exosomes in Animal Nutrition, 2024, 13, 2076-3921, 964, 10.3390/antiox13080964
    113. Farha Shahabuddin, Samina Naseem, Tauseef Alam, Aijaz Ahmed Khan, Farah Khan, Chronic aluminium chloride exposure induces redox imbalance, metabolic distress, DNA damage, and histopathologic alterations in Wistar rat liver, 2024, 0748-2337, 10.1177/07482337241269784
    114. Jayachithra Ramakrishna Pillai, Adil Farooq Wali, Pooja Shivappa, Sirajunisa Talath, Sabry M. Attia, Ahmed Nadeem, Muneeb U. Rehman, Evaluating the anti-cancer potential and pharmacological in-sights of Physalis angulata Root Extract as a strong candidate for future research, 2024, 22, 1687157X, 100410, 10.1016/j.jgeb.2024.100410
    115. Vilma Dembitz, Hannah Lawson, Richard Burt, Sirisha Natani, Céline Philippe, Sophie C. James, Samantha Atkinson, Jozef Durko, Lydia M. Wang, Joana Campos, Aoife M. S. Magee, Keith Woodley, Michael J. Austin, Ana Rio-Machin, Pedro Casado, Findlay Bewicke-Copley, Giovanny Rodriguez Blanco, Diego Pereira-Martins, Lieve Oudejans, Emeline Boet, Alex von Kriegsheim, Juerg Schwaller, Andrew J. Finch, Bela Patel, Jean-Emmanuel Sarry, Jerome Tamburini, Jan Jacob Schuringa, Lori Hazlehurst, John A. Copland III, Mariia Yuneva, Barrie Peck, Pedro Cutillas, Jude Fitzgibbon, Kevin Rouault-Pierre, Kamil Kranc, Paolo Gallipoli, Stearoyl-CoA desaturase inhibition is toxic to acute myeloid leukemia displaying high levels of the de novo fatty acid biosynthesis and desaturation, 2024, 0887-6924, 10.1038/s41375-024-02390-9
    116. Sinemyiz Atalay Ekiner, Agnieszka Gęgotek, Elżbieta Skrzydlewska, Inflammasome activity regulation by PUFA metabolites, 2024, 15, 1664-3224, 10.3389/fimmu.2024.1452749
    117. Giacomo G. Rossetti, Noëlle Dommann, Angeliki Karamichali, Vasilis S. Dionellis, Ainhoa Asensio Aldave, Tural Yarahmadov, Eddie Rodriguez-Carballo, Adrian Keogh, Daniel Candinas, Deborah Stroka, Thanos D. Halazonetis, In vivo DNA replication dynamics unveil aging-dependent replication stress, 2024, 00928674, 10.1016/j.cell.2024.08.034
    118. Natalia Kurhaluk, Piotr Kamiński, Halina Tkaczenko, 2024, Chapter 425, 2731-4561, 10.1007/16833_2024_425
    119. Jian Gao, Linjie Yuan, Huanyu Jiang, Ganggang Li, Yuwei Zhang, Ruijun Zhou, Wenjia Xian, Yutong Zou, Quanyu Du, Xianhua Zhou, Naringenin modulates oxidative stress and lipid metabolism: Insights from network pharmacology, mendelian randomization, and molecular docking, 2024, 15, 1663-9812, 10.3389/fphar.2024.1448308
    120. Ibrahim S Topiwala, Aparna Ramachandran, Meghana Shakthi. A, Ranjini Sengupta, Rajib Dhar, Arikketh Devi, Exosomes and Tumor Virus Interlink: A Complex Side of Cancer, 2024, 03440338, 155747, 10.1016/j.prp.2024.155747
    121. Andrew Chancellor, Daniel Constantin, Qinmei Yang, Vladimir Nosi, José Pedro Loureiro, Rodrigo Colombo, Roman P. Jakob, Daniel Joss, Michael Pfeffer, Giulia De Simone, Aurelia Morabito, Verena Schaefer, Alessandro Vacchini, Laura Brunelli, Daniela Montagna, Markus Heim, Alfred Zippelius, Enrico Davoli, Daniel Häussinger, Timm Maier, Lucia Mori, Gennaro De Libero, The carbonyl nucleobase adduct M3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells, 2024, 10747613, 10.1016/j.immuni.2024.11.019
    122. Boleslaw T. Karwowski, The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential, 2025, 15, 2076-3417, 437, 10.3390/app15010437
    123. Robert Andrew Brown, 2024, Chapter 8, 978-3-031-73060-3, 247, 10.1007/978-3-031-73061-0_8
    124. Çağla Zübeyde Köprü, Burcu Baba, Dilek Yonar, Zerumbone Induces Apoptosis in Non‐Small‐Cell Lung Cancer via Biomolecular Alterations: A Microscopic and Spectroscopic Study, 2025, 1864-063X, 10.1002/jbio.202400500
    125. ZhV Yavroyan, AG Hovhannisyan, NR Hakobyan, ES Gevorgyan, Effect of cisplatin on lipid peroxidation in the whole blood and plasma of female rats, 2025, 2453-6725, 10.2478/afpuc-2024-0014
    126. Saeed Alshahrani, Mohammad Ashafaq, Abdulmajeed M. Jali, Yosif Almoshari, Mohammad Intakhab Alam, Hamad Al Shahi, Ayed A. Alshamrani, Sohail Hussain, Nephrotoxic effect of cypermethrin ameliorated by nanocurcumin through antioxidative mechanism, 2025, 0028-1298, 10.1007/s00210-025-03825-5
    127. Sara Ilari, Stefania Proietti, Francesca Milani, Laura Vitiello, Carolina Muscoli, Patrizia Russo, Stefano Bonassi, Dietary Patterns, Oxidative Stress, and Early Inflammation: A Systematic Review and Meta-Analysis Comparing Mediterranean, Vegan, and Vegetarian Diets, 2025, 17, 2072-6643, 548, 10.3390/nu17030548
    128. Chonnikarn Jirasit, Panida Navasumrit, Krittinee Chaisatra, Chalida Chompoobut, Somchamai Waraprasit, Varabhorn Parnlob, Mathuros Ruchirawat, Genotoxicity and fibrosis in human hepatocytes in vitro from exposure to low doses of PBDE-47, arsenic, or both chemicals, 2025, 00092797, 111410, 10.1016/j.cbi.2025.111410
    129. Daniel A. Kasal, Viviane Sena, Grazielle Vilas Bôas Huguenin, Andrea De Lorenzo, Eduardo Tibirica, Microvascular endothelial dysfunction in vascular senescence and disease, 2025, 12, 2297-055X, 10.3389/fcvm.2025.1505516
    130. Teresa Catalano, Federico Selvaggi, Roberto Cotellese, Gitana Maria Aceto, The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches, 2025, 17, 2072-6694, 752, 10.3390/cancers17050752
    131. Nirmal Manhar, Sumeet Kumar Singh, Poonam Yadav, Manish Bishnolia, Amit Khurana, Jasvinder Singh Bhatti, Umashanker Navik, Methyl Donor Ameliorates CCl4‐Induced Nephrotoxicity by Inhibiting Oxidative Stress, Inflammation, and Fibrosis Through the Attenuation of Kidney Injury Molecule 1 and Neutrophil Gelatinase‐Associated Lipocalin Expression, 2025, 39, 1095-6670, 10.1002/jbt.70188
    132. B. Perez-Montero, M. L. Fermin-Rodriguez, M. Portero-Fuentes, J. Sarquis, S. Caceres, J. C. Illera del Portal, L. de Juan, G. Miro, F. Cruz-Lopez, Malondialdehyde (MDA) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels in canine serum: establishing reference intervals and influencing factors, 2025, 21, 1746-6148, 10.1186/s12917-025-04614-1
    133. Sathiyan Niranjana, Anantha Udupa Prarthana, Aiswarya Ganapathisankarakrishnan, Dhakshinamoorthy Sundaramurthi, Vellingiri Vadivel, Comparative analysis of in vitro antioxidant and wound healing activities of Indian paalai plant extracts and investigation of their phytochemical profile by GC-MS, 2025, 7, 29501997, 100202, 10.1016/j.prenap.2025.100202
    134. Fabián Delgado Rodríguez, Gabriela Azofeifa, Silvia Quesada, Nien Tzu Weng Huang, Arlene Loría Gutiérrez, María Fernanda Morales Rojas, Influence of Plant Part Selection and Drying Technique: Exploration and Optimization of Antioxidant and Antibacterial Activities of New Guinea Impatiens Extracts, 2025, 14, 2223-7747, 1092, 10.3390/plants14071092
    135. Asha Ashraf, Bernd Zechmann, Erica D. Bruce, Hypoxia-inducible factor 1α modulates acrolein-induced cellular damage in bronchial epithelial cells, 2025, 515, 0300483X, 154158, 10.1016/j.tox.2025.154158
    136. Taiyue Jin, Seulbi Lee, Juhee Seo, Shinhee Ye, Soontae Kim, Jin-Kyoung Oh, Seyoung Kim, Byungmi Kim, Long-term ambient ozone exposure and lung cancer mortality: a nested case-control study in Korea, 2025, 02697491, 126299, 10.1016/j.envpol.2025.126299
    137. Gennaro Prota, Giuliano Berloffa, Wael Awad, Alessandro Vacchini, Andrew Chancellor, Verena Schaefer, Daniel Constantin, Dene R. Littler, Rodrigo Colombo, Vladimir Nosi, Lucia Mori, Jamie Rossjohn, Gennaro De Libero, Mitochondria regulate MR1 protein expression and produce self-metabolites that activate MR1-restricted T cells, 2025, 122, 0027-8424, 10.1073/pnas.2418525122
    138. Max Temnik, Sergey Gurin, Alexandr Balakin, Roman Byshovets, Olesia Kalmukova, Tetiana Vovk, Tetiana Halenova, Nataliia Raksha, Tetyana Falalyeyeva, Olexiy Savchuk, Therapeutic potential of zinc 64Zn aspartate for obesity management: impact on oxidative stress, lipid metabolism, pancreas and liver in high-calorie diet model, 2025, 16, 1663-9812, 10.3389/fphar.2025.1543166
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1527) PDF downloads(48) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog