Loading [MathJax]/jax/output/SVG/jax.js
Research article

On regularity criteria for MHD system in anisotropic Lebesgue spaces

  • Received: 29 March 2023 Revised: 14 June 2023 Accepted: 24 June 2023 Published: 30 June 2023
  • This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field u and the magnetic field B, or directions of Elsässer's variables u±B.

    Citation: Kun Cheng, Yong Zeng. On regularity criteria for MHD system in anisotropic Lebesgue spaces[J]. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239

    Related Papers:

    [1] Wenda Pei, Yong Zeng . Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058
    [2] Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309
    [3] Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012
    [4] J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164
    [5] José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201
    [6] Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171
    [7] Kwok-Pun Ho . Martingale transforms on Banach function spaces. Electronic Research Archive, 2022, 30(6): 2247-2262. doi: 10.3934/era.2022114
    [8] Wenjuan Liu, Jialing Peng . Analyticity estimates for the 3D magnetohydrodynamic equations. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173
    [9] Huali Wang, Ping Li . Fractional integral associated with the Schrödinger operators on variable exponent space. Electronic Research Archive, 2023, 31(11): 6833-6843. doi: 10.3934/era.2023345
    [10] Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162
  • This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field u and the magnetic field B, or directions of Elsässer's variables u±B.



    We consider the following MHD system

    {utΔu+(u)u(B)B+(p+12|B|2)=0,BtΔB+(u)B(B)u=0,divu=divB=0,u(x,0)=u0,B(x,0)=B0, (1.1)

    in R3. Here u represents the velocity field, B represents the magnetic field and p represents the pressure. u0 and B0 are given initial datum satisfying divu0=divB0=0 in R3.

    The MHD system has been extensively studied. For studies on the existence of weak and strong solutions, see [1,2]. Sermange and Teman [2] also studied the smoothness of strong solutions and the so-called squeezing property of the trajectories. The regularity criteria of weak solutions were studied by many authors. For the fundamental Serrin-type regularity criteria, we refer to [3,4,5,6] and references therein. For more results on MHD and related systems, see [7,8,9,10,11,12,13,14,15,16,17,18,19,20] and references therein.

    This paper concerns the regularity criteria of three-dimensional MHD system in anisotropic Lebesgue space. For the Navier-Stokes equations, Zheng [21] first studied anisotropic regularity criterion in terms of one velocity component. Years later, Qian [22], Guo et al. [23] and Guo et al. [24] further studied the regularity condition in anisotropic Lebesgue spaces for the Leary-Hopf weak solutions of Navier-Stokes equations. Guo et al. [25] also studied the regularity condition in anisotropic Lebesgue spaces for MHD system. By considering different weights in spatial variables, they proved that if 3u3 and B satisfy certain space-time integrable conditions in anisotropic Lebesgue spaces, then the weak solution is indeed regular.

    We are concerned with the regularity criteria of MHD system in anisotropic Lebesgue space under conditions on uh=(u1,u2,0) and Bh=(b1,b2,0), or the directions of u±B. For the Navier-stokes system, Montgomery-Smith [26] proved the logarithmically improved regularity criteria for the Navier-Stokes equations, which says that condition

    T0u(t)pLq1+log+u(t)Lqdt<with2p+3q=1and3<q<

    implies that u is regular on (0,T]×R3. Vasseur [27] showed that the condition

    div(u|u|)Lp(0,T;Lq(R3))with2p+3q12and6q

    ensures the smooth of weak solution. In [28], Miller extended the Ladyzhenskaya-Prodi-Serrin regularity criterion to the Lebesgue sum space and proved that if the maximum existence time T of the local smooth solution is finite, then, it holds that

    T0vqLpdt+T0σLdt=with2q+3p=1and3<p<,

    where u=v+σ. In [29], Wu improves the above results [26,27,28] in anisotropic Lebesgue spaces. More precisely, let uh=ξ+σ and div(u|u|)=f+g, Wu proved that if q>0 then either

    Toξ(t)qLp+σ(t)2L1+ln(e+uhLs)dt<

    with

    2q+3i=11pi=1,3i=11si=12,2<pi,2<si<,fori=1,2,3

    or

    T0fqLpdt+T0g4Ldt<

    with

    2q+3i=11pi=12,2<pi

    is sufficient to ensure the smoothness of u.

    Motivated by the work of Wu [29], we study the regularity of MHD systems in the framework of anisotropic Lebesgue space.

    Let us first recall the definition of anisotropic Lebesgue spaces introduced by Benedek and Panzone [30].

    Definition 2.1. For a given p=(p1,p2,p3)[1,)3, the anisotropic Lebesgue space Lp(R3) is defined to be the space consisting of all measurable functions f:R3R such that the norm

    fLp(R3)=(((|f(x)|p1dx1)p2p1dx2)p3p2dx3)1p3<.

    We also write the norm as fLp11Lp22Lp33.

    Now we state our main results as follows.

    Theorem 2.2. Suppose that (u0,B0)H1(R3) and divu0=divB0=0. Let (u,B) be a weak solution to (1.1) on [0,T]. Assume that uh=(u1,u2,0)=ξ1+σ1 and Bh=(B1,B2,0)=ξ2+σ2 such that

    T0ξ1qLp+ξ2lLk+σ12L+σ22L1+ln(e+uhLs+BhLr)dt<,

    with 2<pi,ki, 2q=13i=11pi>0, 2l=13i=11ki>0 and 2<si,ri<, 3i=11si=3i=11ri=12, then, (u,B) is regular on (0,T].

    Theorem 2.3. Suppose that (u0,B0)H1(R3) and divu0=divB0=0. Let (u,B) be a weak solution of (1.1) on [0,T]. Assume that div(u+B|u+B|)=f1+g1 and div(uB|uB|)=f2+g2 such that

    T0(f1qLp+f2sLr)dt+T0(g14L+g24L)dt<,

    with 2<pi,ri,2q=123i=11pi>0,2s=123i=11ri>0, then, (u,B) is regular on (0,T].

    Before proving our main results, we recall some fundamental mixed norm inequalities. By successive applications of Hölder's inequality, we immediately have

    Lemma 2.4. For p=(p1,p2,p3) and q=(q1,q2,q3) with

    1pi+1qi=12,2pi,qi,i=1,2,3,

    it holds that

    fgL2(R3)fLp(R3)gLq(R3).

    The following proposition is a direct consequence of Lemma 3 in [23], see also [21,22].

    Proposition 2.5. For p1,p2,p3[2,) and 03i=11pi121, there exists a positive constant C such that

    fLp(R3)Cf323i1piL2(R3)f3i1pi12L2(R3).

    We also need the following special case of the Sobolev embedding theorem in anisotropic spaces proved in [31, p.181], see also [32, Theorem 2.1].

    Lemma 2.6. Let s=(s1,s2,,sn)[2,]n satisfy

    1s1+1s2++1sn=n21,sn(2,).

    Then, there exists a constant C=C(s) such that

    uLs(Rn)CuW1,2(Rn),uW1,2(Rn).

    We first deduce an a priori estimate for (u,B).

    Multiplying the first equation of (1.1) with u and multiplying the second equation of (1.1) with B, then integrating by parts over R3, we get

    12ddtu2L2+u2L2(B)Budx=0, (3.1)
    12ddtB2L2+B2L2+(B)Budx=0. (3.2)

    Multiplying both sides of the first equation of system (1.1) with Δu and the second equation of system (1.1) with ΔB, then integrating over R3, we have

    12ddtR3|u|2dx+R3|2u|2dx=R3(u)uΔudxR3(B)Budx, (3.3)
    12ddtR3|B|2dx+R3|2B|2dx=R3(u)BΔBdxR3(B)uBdx. (3.4)

    Integrating by parts, it follows that

    R3(B)Budx=R3(B)(u)Bdx=3i,j,k=1R3BiikkujBjdx=3i,j,k=1R3ikuj(BjkBi+BikBj))dx=3i,j,k=1R3iujk(BjkBi+BikBj))dx=3i,j,k=1R3iuj(2kBikBj+BjkkBi+BikkBj)dx=3i,j,k=1R3(iujBjkkBi+2iujkBikBj)dx3i,j,k=1R3iujBikkBjdx=3i,j,k=1R3(iujBjkkBi+2iujkBikBj)dxR3(B)uBdx.

    Therefore, together with the fact that divB=0, we have

    R3(B)Budx+R3(B)uBdx=3i,j,k=1R3(iujBjkkBi+2iujkBikBj)dx=3i,j,k=1R3k(iujBj)kBidx23i,j,k=1R3iujkBikBjdx=3i,j,k=1R3kiujBjkBidx3i,j,k=1R3iujkBikBjdx=3i,j,k=1R3kuji(BjkBi)dx3i,j,k=1R3iujkBikBjdx=3i,j,k=1R3kujiBjkBidx3i,j,k=1R3iujkBikBjdx.=I1+I2. (3.5)

    To estimate I1, we rewrite it as follows

    3i,j,k=1R3kujiBjkBidx=3k=13j=12i=1R3kujiBjkBidx3k=12j=1R3kuj3BjkB3dx+3k=1R3ku3(1B1+2B2)kB3dxCR3|Bh|(|u||2B|+|B||2u|)dx. (3.6)

    Similarly, we have the following estimate for I2:

    3i,j,k=1R3iujkBikBjdxCR3(|Bh|+|uh|)(|u||2B|+|B||2u|)dx. (3.7)

    Substituting (3.6) and (3.7) into (3.5), we obtain

    R3(B)Budx+R3(B)uBdxCR3(|Bh|+|uh|)(|u||2B|+|B||2u|)dx. (3.8)

    Similarly, we can get the following estimates

    R3(u)uudxCR3|uh||u||2u|dx, (3.9)

    and

    R3(u)BBdxCR3|uh||B||2B|dx+CR3|Bh|(|u||2B|+|B||2u|)dx. (3.10)

    Combined (3.3)–(3.10), we have

    12ddt(u2L2+B2L2)+Δu2L2+ΔB2L2=R3(u)uΔudx+R3(u)BBdxR3(B)BΔudxR3(B)uBdxCR3|uh||u||2u|dx+CR3|uh||B||2B|dx+CR3|uh||u||2B|dx+CR3|uh||B||2u|dx+CR3|Bh||u||2B|dx+CR3|Bh||B||2u|dx=J1+J2+J3+J4+J5+J6. (3.11)

    We first estimate J3. By Lemma 2.4, Proposition 2.5 and Young's inequality, we have

    J3=CR3|uh||u||2B|dxCR3|ξ1||u||2B|dx+CR3|σ1||u||2B|dxCξ1LpuL2p1p121L2p2p222L2p3p3232B+Cσ1LuL22BL2Cξ1Lpu13i=11piL22u3i=11piL22BL2+Cσ1LuL22BL2Cξ12Lpu23i=12piL22u3i=12piL2+ε22B2L2+Cσ12Lu2L2+ε22B2L2Cξ1213i=11piLpu2L2+ε2u2L2+Cσ12Lu2L2+ε2B2L2.

    Recall the assumption that 2q+3i=11pi=1, we have

    q=213i=11pi,

    hence,

    J3C(ξ1qLp+σ12L)u2+ε(2u2L2+2B2L2).

    The estimates of J1,J2,J4,J5 and J6 can be obtained in a similar way. Indeed, if we replace 2B by 2u in the estimate process for J3, we immediately get the estimate for J1:

    J1C(ξ1qLp+σ12L)u2+ε2u2L2.

    Replace u by B (and then 2u by 2B) in the estimate process for J3 and we can get the estimate for J2:

    J2C(ξ1qLp+σ12L)B2L2+ε2B2L2.

    Replace uh by Bh (and then ξ1 by ξ2, σ1 by σ2, pi by ki, q by l) in the estimate process for J3 and we can get the estimate for J5:

    J5C(ξ2lLk+σ22L)u2L2+ε(2u2L2+2B2L2).

    Now we estimate J4. By Lemma 2.4, Proposition 2.5 and Young's inequality, we have

    J4=CR3|uh||B||2u|dxCR3|ξ1||B||2u|dx+CR3|σ1||B||2u|dxCξ1LpBL2p1p121L2p2p222L2p3p3232uL2+Cσ1LBL22uL2Cξ1LpB13i=11piL22B3i=11piL22uL2+Cσ1LBL22uL2Cξ12LpB23i=12piL22B3i=12piL2+ε22u2L2+Cσ12LB2L2+ε22u2L2Cξ1213i=11piLpB2L2+ε2B2L2+Cσ12LB2L2+ε2u2L2,

    since

    q=213i=11pi,

    we have

    J4C(ξ1qLp+σ12L)B2+ε(2u2L2+2B2L2).

    Replace uh by Bh (and then ξ1 by ξ2, σ1 by σ2, pi by ki, q by l) in the estimate process for J4 and we can get the estimate for J6:

    J6C(ξ2lLk+σ22L)B2L2+ε(2u2L2+2B2L2).

    Substituting the above estimates of Ji, i=1,2,,6 into (3.11), we obtain

    12ddt(u2L2+B2L2)+2u2L2+2B2L2C(ξ1qLp+σ12L)(u2L2+B2L2)+C(ξ2lLk+σ22L)(u2L2+B2L2)+6ϵ(Δu2L2+ΔB2L2). (3.12)

    Using Lemma 2.6, we find

    ddt(u2L2+B2L2)+C(2u2L2+2B2L2)C(ξ1qLp+ξ2lLk+σ12L+σ22L)(u2L2+B2L2)=Cξ1qLp+ξ2lLk+σ12L+σ22L1+ln(e+uhLs+BhLr)(1+ln(e+uhLs+BhLr))(u2L2+B2L2)Cξ1qLp+ξ2lLk+σ12L+σ22L1+ln(e+uhLs+BhLr)×(1+ln(e+u2L2+u2L2+B2L2+B2L2+C))(u2L2+B2L2). (3.13)

    By (3.1), (3.2) and (3.13), we have

    ddt(1+ln(e+u2L2+B2L2+u2L2+B2L2+C))+C(2u2L2+2B2L2)Cξ1qLp+ξ2lLk+σ12L+σ22L1+ln(e+uhLs+BhLr)(1+ln(e+u2L2+u2L2+B2L2+B2L2+C)).

    Applying Gronwall's inequality, we get

    sup0tTln(e+u2L2+B2L2+u2L2+B2L2+C)(1+ln(e+u02L2+B02L2+u02L2+B02L2+C))×exp{CT0ξ1qLp+ξ2lLk+σ12L+σ22L1+ln(e+uhLs+BhLr)dt}.

    This gives

    u,BL(0,T;H1(R3))L2(0,T;H2(R3)).

    Now, we can prove Theorem 2.2. Since u0,B0H1(R3) and divu0=divB0=0, the weak solution (u,B) is strong and unique on [0,T1] for some T1<T. The above a priori esitmate ensures that this strong solution can be extended beyond T1, which finally implies that (u,B) is strong on [0,T] and thus is regular up to T. This completes the proof of Theorem 1.1.

    Let us introduce Elsässer's variables W+ and W:

    W+=u+B,W=uB,W+(0)=u0+B0,W(0)=u0B0

    and P=(p+12|B|2). Then, W+,W satisfies

    {tW+ΔW++(W)W++P=0,tWΔW+(W+)W+P=0. (4.1)

    Multiplying the first equation of (4.1) by |W+|2W+ and the second equation of (4.1) by |W|2W, integrating by parts and using the divergence free property of W+ and W, we conclude that

    14ddtW+4L4+|W+||W+|2L2+12|W+|22L2=R3P|W+|2W+dx, (4.2)
    14ddtW4L4+|W||W|2L2+12|W|22L2=R3P|W|2Wdx. (4.3)

    Combine (4.2) and (4.3) and the vector identity

    a|a||a|=|a|div(a|a|)

    for a=W±, we have

    14ddt(W+4L4+W4L4)+|W+||W+|2L2+|W||W|2L2+12(|W+|22L2+|W|22L2)=R3P(|W+|2W++|W|2W)dx=R3P(W+|W+|2+W|W|2)dxCR3|PW+||W+|||W+||dx+CR3|PW||W|||W||dxCR3|PW+||W+||(W+|W+|||W+|)|dx+CR3|PW||W||(W|W||W|)|dx=CR3|PW+||W+||W+||div(W+|W+|)|dx+CR3|PW||W||W||div(W|W|)|dx=K1+K2. (4.4)

    To estimate K1 and K2, let us first establish an estimate of the pressure P. Taking the divergence operator on both sides of the first equation of (4.1), it follows that

    ΔP=div((W)W+)=j(WiiW+j)=ji(WiW+j).

    Here we used the divergence free property of W and the summation symbol 3i,j=1 was omitted for convenience. As a consequence

    P=RiRj(W+iWj),

    where Ri represents the classical three-dimensional Riesz transformations. By using the boundedness of Riesz transformations in Lr(1<r<) space, we get

    PLrCW+L2rWL2r. (4.5)

    Using Hölder's inequality, Poincaré's inequality and (4.5), we obtain

    PW+2L2=R3|P|2|W+|2dxCPL2PL3|W+|2L6CW+L4WL4W+L6WL6|W+|2L2CW+L4WL4W+L2WL2|W+|2L2. (4.6)

    Similarly, we can get

    PW2L2CW+L4WL4W+L2WL2|W|2L2. (4.7)

    Now, we are in position of estimating K1 and K2. For K1, recall the decompostion of div(W+|W+|) and Lemma 2.4, we have

    K1Cf1Lp|W+|2L2p1p121L2p2p222L2p3p323PW+L2+Cg1L|W+|2L2PW+L2Cf1Lp|W+|21(1p1+1p2+1p3)L2|W+|21p1+1p2+1p3L2PW+L2+Cg1L|W+|2L2PW+L2=K1+K1.

    Let's estimate K1 first, by (4.6) we have

    K1Cf1Lp|W+|21(1p1+1p2+1p3)L2|W+|21p1+1p2+1p3L2×W+12L4W12L4W+12L2W12L2|W+|212L2Cf1LpW+522(1p1+1p2+1p3)L4|W+|212+1p1+1p2+1p3L2W12L4W+12L2W12L2ε|W+|22L2+Cf1432(1p1+1p2+1p3)LpW+4(522(1p1+1p2+1p3))32(1p1+1p2+1p3)L4W232(1p1+1p2+1p3)L4×W+232(1p1+1p2+1p3)L2W232(1p1+1p2+1p3)L2. (4.8)

    Let

    α=4(522(1p1+1p2+1p3))32(1p1+1p2+1p3)3,β=232(1p1+1p2+1p3)(23,1).

    It is easily checked that α+β=4, therefore, by Young's inequality we have

    W+αL4WβL4αα+βW+αα+βαL4+βα+βWβα+ββL4W+4L4+W4L4, (4.9)

    and

    f12βLpW+βL2WβL2(1β)f12β1βLp+β(W+βL2WβL2)1βC(f1qLp+W+2L2+W2L2), (4.10)

    where q=2β1β=412(1p1+1p2+1p3).

    Concluding (4.8)–(4.10), we get the estimates for K1:

    K1ε|W+|22L2+C(f1qLp+W+2L2+W2L2)(W+4L4+W4L4). (4.11)

    The estimate of K1 can be obtained in a similar way:

    K1Cg1L|W+|2L2W+12L4W12L4W+12L2W12L2|W+|212L2Cg1LW+52L4W12L4W+12L2W12L2|W+|212L2ε|W+|22L2+Cg143LW+103L4W23L4W+23L2W23L2ε|W+|22L2+C(g14L+W+2L2+W2L2)(W+4L4+W4L4). (4.12)

    Thus, we get

    K12ε|W+|22L2+C(f1qLp+W+2L2+W2L2)(W+4L4+W4L4)+C(g14L+W+2L2+W2L2)(W+4L4+W4L4). (4.13)

    Following a similar argument, we get the estimate for K2:

    K22ε|W|22L2+C(f2sLr+W+2L2+W2L2)(W+4L4+W4L4)+C(g24L+W+2L2+W2L2)(W+4L4+W4L4). (4.14)

    Substitute (4.13) and (4.14) into (4.4), we have

    14ddt(W+4L4+W4L4)+|W+||W+|2L2+|W||W|2L2+12(|W+|22L2+|W|22L2)C(f1qLp+f2sLr+2i=1gi4L+W+2L2+W+2L2)(W+4L4+W4L4)+2ε(|W+|22L2+|W|22L2).

    Choosing ε small and applying Gronwall's inequality, we see that

    sup0tT(W+4L4+W4L4)(W+(0)4L4+W(0)4L4)×exp{CT0(f1qLp+f2sLr+2i=1gi4L+W+2L2+W+2L2)dt},

    which implies that

    u,BL(0,T;L4(R3))L8(0,T;L4(R3)),

    combining this with the Serrin-type regularity criteria for MHD system (see for example [4, Theorem 4]), we complete the proof of Theorem 2.3.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was partially supported by the National Natural Science Foundation of China Grant no. 12001069, the Natural Science Foundation of Chongqing Grant No. cstc2019jcyj-msxmX0214 and the Team Building Project for Graduate Tutors in Chongqing (yds223010).

    The authors declare there is no conflicts of interest.



    [1] G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnéto-hydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [2] M. Sermange, R. Teman, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635–664. https://doi.org/10.1002/cpa.3160360506 doi: 10.1002/cpa.3160360506
    [3] Q. Chen, C. Miao, Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Commun. Math. Phys., 284 (2008), 919–930. https://doi.org/10.1007/s00220-008-0545-y doi: 10.1007/s00220-008-0545-y
    [4] C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differ. Equations, 213 (2005), 235–254. https://doi.org/10.3934/dcdsb.2004.4.1065 doi: 10.3934/dcdsb.2004.4.1065
    [5] Y. Wang, BMO and the regularity criterion for weak solutions to the magnetohydynamic equations, J. Math. Anal. Appl., 328 (2007), 1082–1086. https://doi.org/10.1016/j.jmaa.2006.05.054 doi: 10.1016/j.jmaa.2006.05.054
    [6] Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881–886. https://doi.org/10.3934/dcds.2005.12.881 doi: 10.3934/dcds.2005.12.881
    [7] R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space, Z. Angew. Math. Phys., 71 (2020), 95. https://doi.org/10.1007/s00033-020-01318-4 doi: 10.1007/s00033-020-01318-4
    [8] R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
    [9] B. Dong, Z. Chen, Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components, J. Math. Anal. Appl., 338 (2008), 1–10. https://doi.org/10.1016/j.jmaa.2007.05.003 doi: 10.1016/j.jmaa.2007.05.003
    [10] S. Gala, M. A. Ragusa, Note on the blow-up criterion for generalized MHD equations, in AIP Conference Proceedings, (2017). https://doi.org/10.1063/1.4972650
    [11] S. Gala, M. A. Ragusa, A new regularity criterion for the 3D incompressible MHD equations via partial derivatives, J. Math. Anal. Appl., 481 (2020), 123497. https://doi.org/10.1016/j.jmaa.2019.123497 doi: 10.1016/j.jmaa.2019.123497
    [12] S. Gala, M. A. Ragusa, An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects. (Russian) Sovrem. Mat. Fundam. Napravl., 67 (2021), 526–534. https://doi.org/10.22363/2413-3639-2021-67-3-526-534 doi: 10.22363/2413-3639-2021-67-3-526-534
    [13] R. H. Ji, L. Tian, Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain, AIMS Math., 6 (2021), 11837–11849. https://doi.org/10.3934/math.2021687 doi: 10.3934/math.2021687
    [14] I. Khan, H. Ullah, H. AlSalman, M. Fiza, S. Islam, M. Shoaib, et al., Fractional analysis of MHD boundary layer flow over a stretching sheet in porous medium: A new stochastic method, J. Funct. Spaces, 2021 (2021), 5844741. https://doi.org/10.1155/2021/5844741 doi: 10.1155/2021/5844741
    [15] Z. Lei, Y. Zhou, BKMs criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575–583. https://doi.org/10.3934/dcds.2009.25.575 doi: 10.3934/dcds.2009.25.575
    [16] C. Luo, J. Zhang, A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary, Nonlinearity, 33 (2020), 1499. https://doi.org/10.1088/1361-6544/ab60d9 doi: 10.1088/1361-6544/ab60d9
    [17] L. Ni, Z. Guo, Y. Zhou, Some new regularity criteria for the 3D MHD equations, J. Math. Anal. Appl., 396 (2012), 108–118. https://doi.org/10.1016/j.jmaa.2012.05.076 doi: 10.1016/j.jmaa.2012.05.076
    [18] M. E. Schonbek, T. P. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717–756. https://doi.org/10.1007/BF01446316 doi: 10.1007/BF01446316
    [19] Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain, Math. Ann., 328 (2004), 173–192. https://doi.org/10.1007/s00208-003-0478-x doi: 10.1007/s00208-003-0478-x
    [20] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 24 (2007), 491–505. https://doi.org/10.1016/J.ANIHPC.2006.03.014 doi: 10.1016/J.ANIHPC.2006.03.014
    [21] X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differ. Equations, 256 (2014), 283–309. https://doi.org/10.1016/j.jde.2013.09.002 doi: 10.1016/j.jde.2013.09.002
    [22] C. Qian, A generalized regularity criterion for 3D Navier–Stokes equations in terms of one velocity component, J. Differ. Equations, 260 (2016), 3477–3494. https://doi.org/10.1016/j.jde.2015.10.037 doi: 10.1016/j.jde.2015.10.037
    [23] Z. Guo, M. Caggio, Z. Skalák, Regularity criteria for the Navier–Stokes equations based on one component of velocity, Nonlinear Anal. Real World Appl., 35 (2017), 379–396. https://doi.org/10.1016/j.nonrwa.2016.11.005 doi: 10.1016/j.nonrwa.2016.11.005
    [24] Z. Guo, P. Kuǎera, Z. Skalák, Regularity criterion for solutions to the Navier–Stokes equations in the whole 3D space based on two vorticity components, J. Math. Anal. Appl., 458 (2018), 755–-766. https://doi.org/10.1016/j.jmaa.2017.09.029 doi: 10.1016/j.jmaa.2017.09.029
    [25] Z. Guo, D. Tong, W. Wang, On regularity of the 3D MHD equations based on one velocity component in anisotropic Lebesgue spaces, Appl. Math. Lett., 120 (2021), 107230. https://doi.org/10.1016/j.aml.2021.107230 doi: 10.1016/j.aml.2021.107230
    [26] S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 50 (2005), 451–464. https://doi.org/10.1007/s10492-005-0032-0 doi: 10.1007/s10492-005-0032-0
    [27] A. Vasseur, Regularity criterion for 3d Navier-Stokes equations in terms of the direction of the velocity, Appl. Math., 54 (2009), 47–52. https://doi.org/10.1007/s10492-009-0003-y doi: 10.1007/s10492-009-0003-y
    [28] E. Miller, Navier-Stokes regularity criteria in sum spaces, Pure. Appl. Anal., 3 (2021), 527–576. https://doi.org/10.2140/paa.2021.3.527 doi: 10.2140/paa.2021.3.527
    [29] F. Wu, Improvement of several regularity criteria for the Navier-Stokes equations, Nonlinear Anal. Real World Appl., 65 (2022), 103464. https://doi.org/10.1016/j.nonrwa.2021.103464 doi: 10.1016/j.nonrwa.2021.103464
    [30] A. Benedek, R. Panzone, The space Lp with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1016/0022-247X(65)90110-1 doi: 10.1016/0022-247X(65)90110-1
    [31] O. V. Besov, V. P. Il'In, S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, V.H. Winston & Sons, 1978.
    [32] T. Phan, T. Robertson, On Masuda uniqueness theorem for Leray-Hopf weak solutions in mixed-norm spaces, Eur. J. Mech. B Fluids, 90 (2021), 18–28. https://doi.org/10.1016/j.euromechflu.2021.08.001 doi: 10.1016/j.euromechflu.2021.08.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1414) PDF downloads(109) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog