This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field u and the magnetic field B, or directions of Elsässer's variables u±B.
Citation: Kun Cheng, Yong Zeng. On regularity criteria for MHD system in anisotropic Lebesgue spaces[J]. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239
[1] | Wenda Pei, Yong Zeng . Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2025, 33(3): 1306-1322. doi: 10.3934/era.2025058 |
[2] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[3] | Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28(1): 183-193. doi: 10.3934/era.2020012 |
[4] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[5] | José Luis Díaz Palencia, Saeed Ur Rahman, Saman Hanif . Regularity criteria for a two dimensional Erying-Powell fluid flowing in a MHD porous medium. Electronic Research Archive, 2022, 30(11): 3949-3976. doi: 10.3934/era.2022201 |
[6] | Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171 |
[7] | Kwok-Pun Ho . Martingale transforms on Banach function spaces. Electronic Research Archive, 2022, 30(6): 2247-2262. doi: 10.3934/era.2022114 |
[8] | Wenjuan Liu, Jialing Peng . Analyticity estimates for the 3D magnetohydrodynamic equations. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173 |
[9] | Huali Wang, Ping Li . Fractional integral associated with the Schrödinger operators on variable exponent space. Electronic Research Archive, 2023, 31(11): 6833-6843. doi: 10.3934/era.2023345 |
[10] | Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162 |
This paper concerns the regularity criteria of the three-dimensional magnetohydrodynamic (MHD) system in anisotropic Lebesgue spaces. Two regularity results were proved under additional assumptions on the horizontal components of the velocity field u and the magnetic field B, or directions of Elsässer's variables u±B.
We consider the following MHD system
{ut−Δu+(u⋅∇)u−(B⋅∇)B+∇(p+12|B|2)=0,Bt−ΔB+(u⋅∇)B−(B⋅∇)u=0,divu=divB=0,u(x,0)=u0,B(x,0)=B0, | (1.1) |
in R3. Here u represents the velocity field, B represents the magnetic field and p represents the pressure. u0 and B0 are given initial datum satisfying divu0=divB0=0 in R3.
The MHD system has been extensively studied. For studies on the existence of weak and strong solutions, see [1,2]. Sermange and Teman [2] also studied the smoothness of strong solutions and the so-called squeezing property of the trajectories. The regularity criteria of weak solutions were studied by many authors. For the fundamental Serrin-type regularity criteria, we refer to [3,4,5,6] and references therein. For more results on MHD and related systems, see [7,8,9,10,11,12,13,14,15,16,17,18,19,20] and references therein.
This paper concerns the regularity criteria of three-dimensional MHD system in anisotropic Lebesgue space. For the Navier-Stokes equations, Zheng [21] first studied anisotropic regularity criterion in terms of one velocity component. Years later, Qian [22], Guo et al. [23] and Guo et al. [24] further studied the regularity condition in anisotropic Lebesgue spaces for the Leary-Hopf weak solutions of Navier-Stokes equations. Guo et al. [25] also studied the regularity condition in anisotropic Lebesgue spaces for MHD system. By considering different weights in spatial variables, they proved that if ∂3u3 and B satisfy certain space-time integrable conditions in anisotropic Lebesgue spaces, then the weak solution is indeed regular.
We are concerned with the regularity criteria of MHD system in anisotropic Lebesgue space under conditions on uh=(u1,u2,0) and Bh=(b1,b2,0), or the directions of u±B. For the Navier-stokes system, Montgomery-Smith [26] proved the logarithmically improved regularity criteria for the Navier-Stokes equations, which says that condition
∫T0‖u(t)‖pLq1+log+‖u(t)‖Lqdt<∞with2p+3q=1and3<q<∞ |
implies that u is regular on (0,T]×R3. Vasseur [27] showed that the condition
div(u|u|)∈Lp(0,T;Lq(R3))with2p+3q≤12and6≤q≤∞ |
ensures the smooth of weak solution. In [28], Miller extended the Ladyzhenskaya-Prodi-Serrin regularity criterion to the Lebesgue sum space and proved that if the maximum existence time T of the local smooth solution is finite, then, it holds that
∫T0‖v‖qLpdt+∫T0‖σ‖L∞dt=∞with2q+3p=1and3<p<∞, |
where u=v+σ. In [29], Wu improves the above results [26,27,28] in anisotropic Lebesgue spaces. More precisely, let uh=ξ+σ and div(u|u|)=f+g, Wu proved that if q>0 then either
∫To‖ξ(t)‖qL→p+‖σ(t)‖2L∞1+ln(e+‖uh‖L→s)dt<∞ |
with
2q+3∑i=11pi=1,3∑i=11si=12,2<pi≤∞,2<si<∞,fori=1,2,3 |
or
∫T0‖f‖qL→pdt+∫T0‖g‖4L∞dt<∞ |
with
2q+3∑i=11pi=12,2<pi≤∞ |
is sufficient to ensure the smoothness of u.
Motivated by the work of Wu [29], we study the regularity of MHD systems in the framework of anisotropic Lebesgue space.
Let us first recall the definition of anisotropic Lebesgue spaces introduced by Benedek and Panzone [30].
Definition 2.1. For a given →p=(p1,p2,p3)∈[1,∞)3, the anisotropic Lebesgue space L→p(R3) is defined to be the space consisting of all measurable functions f:R3→R such that the norm
‖f‖L→p(R3)=(∫∞−∞(∫∞−∞(∫∞−∞|f(x)|p1dx1)p2p1dx2)p3p2dx3)1p3<∞. |
We also write the norm as ‖f‖Lp11Lp22Lp33.
Now we state our main results as follows.
Theorem 2.2. Suppose that (u0,B0)∈H1(R3) and divu0=divB0=0. Let (u,B) be a weak solution to (1.1) on [0,T]. Assume that uh=(u1,u2,0)=ξ1+σ1 and Bh=(B1,B2,0)=ξ2+σ2 such that
∫T0‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞1+ln(e+‖uh‖L→s+‖Bh‖L→r)dt<∞, |
with 2<pi,ki≤∞, 2q=1−∑3i=11pi>0, 2l=1−∑3i=11ki>0 and 2<si,ri<∞, ∑3i=11si=∑3i=11ri=12, then, (u,B) is regular on (0,T].
Theorem 2.3. Suppose that (u0,B0)∈H1(R3) and divu0=divB0=0. Let (u,B) be a weak solution of (1.1) on [0,T]. Assume that div(u+B|u+B|)=f1+g1 and div(u−B|u−B|)=f2+g2 such that
∫T0(‖f1‖qL→p+‖f2‖sL→r)dt+∫T0(‖g1‖4L∞+‖g2‖4L∞)dt<∞, |
with 2<pi,ri≤∞,2q=12−∑3i=11pi>0,2s=12−∑3i=11ri>0, then, (u,B) is regular on (0,T].
Before proving our main results, we recall some fundamental mixed norm inequalities. By successive applications of Hölder's inequality, we immediately have
Lemma 2.4. For →p=(p1,p2,p3) and →q=(q1,q2,q3) with
1pi+1qi=12,2≤pi,qi≤∞,i=1,2,3, |
it holds that
‖fg‖L2(R3)≤‖f‖L→p(R3)‖g‖L→q(R3). |
The following proposition is a direct consequence of Lemma 3 in [23], see also [21,22].
Proposition 2.5. For p1,p2,p3∈[2,∞) and 0≤∑3i=11pi−12≤1, there exists a positive constant C such that
‖f‖L→p(R3)≤C‖∇f‖32−3∑i1piL2(R3)‖f‖3∑i1pi−12L2(R3). |
We also need the following special case of the Sobolev embedding theorem in anisotropic spaces proved in [31, p.181], see also [32, Theorem 2.1].
Lemma 2.6. Let →s=(s1,s2,…,sn)∈[2,∞]n satisfy
1s1+1s2+⋯+1sn=n2−1,sn∈(2,∞). |
Then, there exists a constant C=C(→s) such that
‖u‖L→s(Rn)≤C‖u‖W1,2(Rn),∀u∈W1,2(Rn). |
We first deduce an a priori estimate for (u,B).
Multiplying the first equation of (1.1) with u and multiplying the second equation of (1.1) with B, then integrating by parts over R3, we get
12ddt‖u‖2L2+‖∇u‖2L2−∫(B⋅∇)B⋅udx=0, | (3.1) |
12ddt‖B‖2L2+‖∇B‖2L2+∫(B⋅∇)B⋅udx=0. | (3.2) |
Multiplying both sides of the first equation of system (1.1) with −Δu and the second equation of system (1.1) with −ΔB, then integrating over R3, we have
12ddt∫R3|∇u|2dx+∫R3|∇2u|2dx=∫R3(u⋅∇)u⋅Δudx−∫R3(B⋅∇)B⋅△udx, | (3.3) |
12ddt∫R3|∇B|2dx+∫R3|∇2B|2dx=∫R3(u⋅∇)B⋅ΔBdx−∫R3(B⋅∇)u⋅△Bdx. | (3.4) |
Integrating by parts, it follows that
∫R3(B⋅∇)B⋅△udx=−∫R3(B⋅∇)(△u)⋅Bdx=−3∑i,j,k=1∫R3Bi⋅∂i∂k∂kuj⋅Bjdx=3∑i,j,k=1∫R3∂i∂kuj⋅(Bj∂kBi+Bi∂kBj))dx=−3∑i,j,k=1∫R3∂iuj⋅∂k(Bj∂kBi+Bi∂kBj))dx=−3∑i,j,k=1∫R3∂iuj⋅(2∂kBi⋅∂kBj+Bj∂kkBi+Bi∂kkBj)dx=−3∑i,j,k=1∫R3(∂iuj⋅Bj⋅∂kkBi+2∂iuj∂kBi∂kBj)dx−3∑i,j,k=1∫R3∂iuj⋅Bi⋅∂kkBjdx=−3∑i,j,k=1∫R3(∂iuj⋅Bj⋅∂kkBi+2∂iuj∂kBi∂kBj)dx−∫R3(B⋅∇)u⋅△Bdx. |
Therefore, together with the fact that divB=0, we have
∫R3(B⋅∇)B⋅△udx+∫R3(B⋅∇)u⋅△Bdx=−3∑i,j,k=1∫R3(∂iuj⋅Bj⋅∂kkBi+2∂iuj∂kBi∂kBj)dx=3∑i,j,k=1∫R3∂k(∂iuj⋅Bj)⋅∂kBidx−23∑i,j,k=1∫R3∂iuj∂kBi∂kBjdx=3∑i,j,k=1∫R3∂k∂iuj⋅Bj⋅∂kBidx−3∑i,j,k=1∫R3∂iuj∂kBi∂kBjdx=−3∑i,j,k=1∫R3∂kuj⋅∂i(Bj∂kBi)dx−3∑i,j,k=1∫R3∂iuj∂kBi∂kBjdx=−3∑i,j,k=1∫R3∂kuj⋅∂iBj⋅∂kBidx−3∑i,j,k=1∫R3∂iuj∂kBi∂kBjdx.=I1+I2. | (3.5) |
To estimate I1, we rewrite it as follows
−3∑i,j,k=1∫R3∂kuj⋅∂iBj∂kBidx=−3∑k=13∑j=12∑i=1∫R3∂kuj⋅∂iBj⋅∂kBidx−3∑k=12∑j=1∫R3∂kuj⋅∂3Bj⋅∂kB3dx+3∑k=1∫R3∂ku3⋅(∂1B1+∂2B2)⋅∂kB3dx≤C∫R3|Bh|(|∇u||∇2B|+|∇B||∇2u|)dx. | (3.6) |
Similarly, we have the following estimate for I2:
−3∑i,j,k=1∫R3∂iuj∂kBi∂kBjdx≤C∫R3(|Bh|+|uh|)(|∇u||∇2B|+|∇B||∇2u|)dx. | (3.7) |
Substituting (3.6) and (3.7) into (3.5), we obtain
∫R3(B⋅∇)B⋅△udx+∫R3(B⋅∇)u⋅△Bdx≤C∫R3(|Bh|+|uh|)(|∇u||∇2B|+|∇B||∇2u|)dx. | (3.8) |
Similarly, we can get the following estimates
∫R3(u⋅∇)u⋅△udx≤C∫R3|uh||∇u||∇2u|dx, | (3.9) |
and
∫R3(u⋅∇)B⋅△Bdx≤C∫R3|uh||∇B||∇2B|dx+C∫R3|Bh|(|∇u||∇2B|+|∇B||∇2u|)dx. | (3.10) |
Combined (3.3)–(3.10), we have
12ddt(‖∇u‖2L2+‖∇B‖2L2)+‖Δu‖2L2+‖ΔB‖2L2=∫R3(u⋅∇)u⋅Δudx+∫R3(u⋅∇)B⋅△Bdx−∫R3(B⋅∇)B⋅Δudx−∫R3(B⋅∇)u⋅△Bdx≤C∫R3|uh||∇u||∇2u|dx+C∫R3|uh||∇B||∇2B|dx+C∫R3|uh||∇u||∇2B|dx+C∫R3|uh||∇B||∇2u|dx+C∫R3|Bh||∇u||∇2B|dx+C∫R3|Bh||∇B||∇2u|dx=J1+J2+J3+J4+J5+J6. | (3.11) |
We first estimate J3. By Lemma 2.4, Proposition 2.5 and Young's inequality, we have
J3=C∫R3|uh||∇u||∇2B|dx≤C∫R3|ξ1||∇u||∇2B|dx+C∫R3|σ1||∇u||∇2B|dx≤C‖ξ1‖L→p‖∇u‖L2p1p1−21L2p2p2−22L2p3p3−23‖∇2B‖+C‖σ1‖L∞‖∇u‖L2‖∇2B‖L2≤C‖ξ1‖L→p‖∇u‖1−3∑i=11piL2‖∇2u‖3∑i=11piL2‖∇2B‖L2+C‖σ1‖L∞‖∇u‖L2‖∇2B‖L2≤C‖ξ1‖2L→p‖∇u‖2−3∑i=12piL2‖∇2u‖3∑i=12piL2+ε2‖∇2B‖2L2+C‖σ1‖2L∞‖∇u‖2L2+ε2‖∇2B‖2L2≤C‖ξ1‖21−3∑i=11piL→p‖∇u‖2L2+ε‖∇2u‖2L2+C‖σ1‖2L∞‖∇u‖2L2+ε‖∇2B‖2L2. |
Recall the assumption that 2q+∑3i=11pi=1, we have
q=21−∑3i=11pi, |
hence,
J3≤C(‖ξ1‖qL→p+‖σ1‖2L∞)‖∇u‖2+ε(‖∇2u‖2L2+‖∇2B‖2L2). |
The estimates of J1,J2,J4,J5 and J6 can be obtained in a similar way. Indeed, if we replace ∇2B by ∇2u in the estimate process for J3, we immediately get the estimate for J1:
J1≤C(‖ξ1‖qL→p+‖σ1‖2L∞)‖∇u‖2+ε‖∇2u‖2L2. |
Replace ∇u by ∇B (and then ∇2u by ∇2B) in the estimate process for J3 and we can get the estimate for J2:
J2≤C(‖ξ1‖qL→p+‖σ1‖2L∞)‖∇B‖2L2+ε‖∇2B‖2L2. |
Replace uh by Bh (and then ξ1 by ξ2, σ1 by σ2, pi by ki, q by l) in the estimate process for J3 and we can get the estimate for J5:
J5≤C(‖ξ2‖lL→k+‖σ2‖2L∞)‖∇u‖2L2+ε(‖∇2u‖2L2+‖∇2B‖2L2). |
Now we estimate J4. By Lemma 2.4, Proposition 2.5 and Young's inequality, we have
J4=C∫R3|uh||∇B||∇2u|dx≤C∫R3|ξ1||∇B||∇2u|dx+C∫R3|σ1||∇B||∇2u|dx≤C‖ξ1‖L→p‖∇B‖L2p1p1−21L2p2p2−22L2p3p3−23‖∇2u‖L2+C‖σ1‖L∞‖∇B‖L2‖∇2u‖L2≤C‖ξ1‖L→p‖∇B‖1−3∑i=11piL2‖∇2B‖3∑i=11piL2‖∇2u‖L2+C‖σ1‖L∞‖∇B‖L2‖∇2u‖L2≤C‖ξ1‖2L→p‖∇B‖2−3∑i=12piL2‖∇2B‖3∑i=12piL2+ε2‖∇2u‖2L2+C‖σ1‖2L∞‖∇B‖2L2+ε2‖∇2u‖2L2≤C‖ξ1‖21−3∑i=11piL→p‖∇B‖2L2+ε‖∇2B‖2L2+C‖σ1‖2L∞‖∇B‖2L2+ε‖∇2u‖2L2, |
since
q=21−∑3i=11pi, |
we have
J4≤C(‖ξ1‖qL→p+‖σ1‖2L∞)‖∇B‖2+ε(‖∇2u‖2L2+‖∇2B‖2L2). |
Replace uh by Bh (and then ξ1 by ξ2, σ1 by σ2, pi by ki, q by l) in the estimate process for J4 and we can get the estimate for J6:
J6≤C(‖ξ2‖lL→k+‖σ2‖2L∞)‖∇B‖2L2+ε(‖∇2u‖2L2+‖∇2B‖2L2). |
Substituting the above estimates of Ji, i=1,2,⋯,6 into (3.11), we obtain
12ddt(‖∇u‖2L2+‖∇B‖2L2)+‖∇2u‖2L2+‖∇2B‖2L2≤C(‖ξ1‖qL→p+‖σ1‖2L∞)(‖∇u‖2L2+‖∇B‖2L2)+C(‖ξ2‖lL→k+‖σ2‖2L∞)(‖∇u‖2L2+‖∇B‖2L2)+6ϵ(‖Δu‖2L2+‖ΔB‖2L2). | (3.12) |
Using Lemma 2.6, we find
ddt(‖∇u‖2L2+‖∇B‖2L2)+C(‖∇2u‖2L2+‖∇2B‖2L2)≤C(‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞)(‖∇u‖2L2+‖∇B‖2L2)=C‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞1+ln(e+‖uh‖L→s+‖Bh‖L→r)(1+ln(e+‖uh‖L→s+‖Bh‖L→r))(‖∇u‖2L2+‖∇B‖2L2)≤C‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞1+ln(e+‖uh‖L→s+‖Bh‖L→r)×(1+ln(e+‖u‖2L2+‖∇u‖2L2+‖B‖2L2+‖∇B‖2L2+C))(‖∇u‖2L2+‖∇B‖2L2). | (3.13) |
By (3.1), (3.2) and (3.13), we have
ddt(1+ln(e+‖u‖2L2+‖B‖2L2+‖∇u‖2L2+‖∇B‖2L2+C))+C(‖∇2u‖2L2+‖∇2B‖2L2)≤C‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞1+ln(e+‖uh‖L→s+‖Bh‖L→r)(1+ln(e+‖u‖2L2+‖∇u‖2L2+‖B‖2L2+‖∇B‖2L2+C)). |
Applying Gronwall's inequality, we get
sup0≤t≤Tln(e+‖u‖2L2+‖B‖2L2+‖∇u‖2L2+‖∇B‖2L2+C)≤(1+ln(e+‖u0‖2L2+‖B0‖2L2+‖∇u0‖2L2+‖∇B0‖2L2+C))×exp{C∫T0‖ξ1‖qL→p+‖ξ2‖lL→k+‖σ1‖2L∞+‖σ2‖2L∞1+ln(e+‖uh‖L→s+‖Bh‖L→r)dt}. |
This gives
u,B∈L∞(0,T;H1(R3))∩L2(0,T;H2(R3)). |
Now, we can prove Theorem 2.2. Since u0,B0∈H1(R3) and divu0=divB0=0, the weak solution (u,B) is strong and unique on [0,T1] for some T1<T. The above a priori esitmate ensures that this strong solution can be extended beyond T1, which finally implies that (u,B) is strong on [0,T] and thus is regular up to T. This completes the proof of Theorem 1.1.
Let us introduce Elsässer's variables W+ and W−:
W+=u+B,W−=u−B,W+(0)=u0+B0,W−(0)=u0−B0 |
and ∇P=∇(p+12|B|2). Then, W+,W− satisfies
{∂tW+−ΔW++(W−⋅∇)W++∇P=0,∂tW−−ΔW−+(W+⋅∇)W−+∇P=0. | (4.1) |
Multiplying the first equation of (4.1) by |W+|2W+ and the second equation of (4.1) by |W−|2W−, integrating by parts and using the divergence free property of W+ and W−, we conclude that
14ddt‖W+‖4L4+‖|W+||∇W+|‖2L2+12‖∇|W+|2‖2L2=−∫R3∇P⋅|W+|2W+dx, | (4.2) |
14ddt‖W−‖4L4+‖|W−||∇W−|‖2L2+12‖∇|W−|2‖2L2=−∫R3∇P⋅|W−|2W−dx. | (4.3) |
Combine (4.2) and (4.3) and the vector identity
−a|a|⋅∇|a|=|a|div(a|a|) |
for a=W±, we have
14ddt(‖W+‖4L4+‖W−‖4L4)+‖|W+||∇W+|‖2L2+‖|W−||∇W−|‖2L2+12(‖∇|W+|2‖2L2+‖∇|W−|2‖2L2)=−∫R3∇P⋅(|W+|2W++|W−|2W−)dx=∫R3P(W+∇|W+|2+W−∇|W−|2)dx≤C∫R3|PW+||W+||∇|W+||dx+C∫R3|PW−||W−||∇|W−||dx≤C∫R3|PW+||W+||(W+|W+||∇|W+|)|dx+C∫R3|PW−||W−||(W−|W−|∇|W−|)|dx=C∫R3|PW+||W+||W+||div(W+|W+|)|dx+C∫R3|PW−||W−||W−||div(W−|W−|)|dx=K1+K2. | (4.4) |
To estimate K1 and K2, let us first establish an estimate of the pressure P. Taking the divergence operator ∇⋅ on both sides of the first equation of (4.1), it follows that
−ΔP=div((W−⋅∇)W+)=∂j(W−i∂iW+j)=∂j∂i(W−iW+j). |
Here we used the divergence free property of W− and the summation symbol ∑3i,j=1 was omitted for convenience. As a consequence
P=RiRj(W+iW−j), |
where Ri represents the classical three-dimensional Riesz transformations. By using the boundedness of Riesz transformations in Lr(1<r<∞) space, we get
‖P‖Lr≤C‖W+‖L2r‖W−‖L2r. | (4.5) |
Using Hölder's inequality, Poincaré's inequality and (4.5), we obtain
‖PW+‖2L2=∫R3|P|2|W+|2dx≤C‖P‖L2‖P‖L3‖|W+|2‖L6≤C‖W+‖L4‖W−‖L4‖W+‖L6‖W−‖L6‖∇|W+|2‖L2≤C‖W+‖L4‖W−‖L4‖∇W+‖L2‖∇W−‖L2‖∇|W+|2‖L2. | (4.6) |
Similarly, we can get
‖PW−‖2L2≤C‖W+‖L4‖W−‖L4‖∇W+‖L2‖∇W−‖L2‖∇|W−|2‖L2. | (4.7) |
Now, we are in position of estimating K1 and K2. For K1, recall the decompostion of div(W+|W+|) and Lemma 2.4, we have
K1≤C‖f1‖L→p‖|W+|2‖L2p1p1−21L2p2p2−22L2p3p3−23‖PW+‖L2+C‖g1‖L∞‖|W+|2‖L2‖PW+‖L2≤C‖f1‖L→p‖|W+|2‖1−(1p1+1p2+1p3)L2‖∇|W+|2‖1p1+1p2+1p3L2‖PW+‖L2+C‖g1‖L∞‖|W+|2‖L2‖PW+‖L2=K′1+K″1. |
Let's estimate K′1 first, by (4.6) we have
K′1≤C‖f1‖L→p‖|W+|2‖1−(1p1+1p2+1p3)L2‖∇|W+|2‖1p1+1p2+1p3L2×‖W+‖12L4‖W−‖12L4‖∇W+‖12L2‖∇W−‖12L2‖∇|W+|2‖12L2≤C‖f1‖L→p‖W+‖52−2(1p1+1p2+1p3)L4‖∇|W+|2‖12+1p1+1p2+1p3L2‖W−‖12L4‖∇W+‖12L2‖∇W−‖12L2≤ε‖∇|W+|2‖2L2+C‖f1‖43−2(1p1+1p2+1p3)L→p‖W+‖4(52−2(1p1+1p2+1p3))3−2(1p1+1p2+1p3)L4‖W−‖23−2(1p1+1p2+1p3)L4×‖∇W+‖23−2(1p1+1p2+1p3)L2‖∇W−‖23−2(1p1+1p2+1p3)L2. | (4.8) |
Let
α=4(52−2(1p1+1p2+1p3))3−2(1p1+1p2+1p3)≥3,β=23−2(1p1+1p2+1p3)∈(23,1). |
It is easily checked that α+β=4, therefore, by Young's inequality we have
‖W+‖αL4‖W−‖βL4≤αα+β‖W+‖α⋅α+βαL4+βα+β‖W−‖β⋅α+ββL4≤‖W+‖4L4+‖W−‖4L4, | (4.9) |
and
‖f1‖2βL→p‖∇W+‖βL2‖∇W−‖βL2≤(1−β)‖f1‖2β1−βL→p+β(‖∇W+‖βL2‖∇W−β‖L2)1β≤C(‖f1‖qL→p+‖∇W+‖2L2+‖∇W−‖2L2), | (4.10) |
where q=2β1−β=41−2(1p1+1p2+1p3).
Concluding (4.8)–(4.10), we get the estimates for K′1:
K′1≤ε‖∇|W+|2‖2L2+C(‖f1‖qL→p+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4). | (4.11) |
The estimate of K″1 can be obtained in a similar way:
K″1≤C‖g1‖L∞‖|W+|2‖L2‖W+‖12L4‖W−‖12L4‖∇W+‖12L2‖∇W−‖12L2‖∇|W+|2‖12L2≤C‖g1‖L∞‖W+‖52L4‖W−‖12L4‖∇W+‖12L2‖∇W−‖12L2‖∇|W+|2‖12L2≤ε‖∇|W+|2‖2L2+C‖g1‖43L∞‖W+‖103L4‖W−‖23L4‖∇W+‖23L2‖∇W−‖23L2≤ε‖∇|W+|2‖2L2+C(‖g1‖4L∞+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4). | (4.12) |
Thus, we get
K1≤2ε‖∇|W+|2‖2L2+C(‖f1‖qL→p+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4)+C(‖g1‖4L∞+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4). | (4.13) |
Following a similar argument, we get the estimate for K2:
K2≤2ε‖∇|W−|2‖2L2+C(‖f2‖sL→r+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4)+C(‖g2‖4L∞+‖∇W+‖2L2+‖∇W−‖2L2)(‖W+‖4L4+‖W−‖4L4). | (4.14) |
Substitute (4.13) and (4.14) into (4.4), we have
14ddt(‖W+‖4L4+‖W−‖4L4)+‖|W+||∇W+|‖2L2+‖|W−||∇W−|‖2L2+12(‖∇|W+|2‖2L2+‖∇|W−|2‖2L2)≤C(‖f1‖qL→p+‖f2‖sL→r+2∑i=1‖gi‖4L∞+‖∇W+‖2L2+‖∇W+‖2L2)(‖W+‖4L4+‖W−‖4L4)+2ε(‖∇|W+|2‖2L2+‖∇|W−|2‖2L2). |
Choosing ε small and applying Gronwall's inequality, we see that
sup0≤t≤T(‖W+‖4L4+‖W−‖4L4)≤(‖W+(0)‖4L4+‖W−(0)‖4L4)×exp{C∫T0(‖f1‖qL→p+‖f2‖sL→r+2∑i=1‖gi‖4L∞+‖∇W+‖2L2+‖∇W+‖2L2)dt}, |
which implies that
u,B∈L∞(0,T;L4(R3))⊂L8(0,T;L4(R3)), |
combining this with the Serrin-type regularity criteria for MHD system (see for example [4, Theorem 4]), we complete the proof of Theorem 2.3.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was partially supported by the National Natural Science Foundation of China Grant no. 12001069, the Natural Science Foundation of Chongqing Grant No. cstc2019jcyj-msxmX0214 and the Team Building Project for Graduate Tutors in Chongqing (yds223010).
The authors declare there is no conflicts of interest.
[1] |
G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnéto-hydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
![]() |
[2] |
M. Sermange, R. Teman, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635–664. https://doi.org/10.1002/cpa.3160360506 doi: 10.1002/cpa.3160360506
![]() |
[3] |
Q. Chen, C. Miao, Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Commun. Math. Phys., 284 (2008), 919–930. https://doi.org/10.1007/s00220-008-0545-y doi: 10.1007/s00220-008-0545-y
![]() |
[4] |
C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differ. Equations, 213 (2005), 235–254. https://doi.org/10.3934/dcdsb.2004.4.1065 doi: 10.3934/dcdsb.2004.4.1065
![]() |
[5] |
Y. Wang, BMO and the regularity criterion for weak solutions to the magnetohydynamic equations, J. Math. Anal. Appl., 328 (2007), 1082–1086. https://doi.org/10.1016/j.jmaa.2006.05.054 doi: 10.1016/j.jmaa.2006.05.054
![]() |
[6] |
Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881–886. https://doi.org/10.3934/dcds.2005.12.881 doi: 10.3934/dcds.2005.12.881
![]() |
[7] |
R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space, Z. Angew. Math. Phys., 71 (2020), 95. https://doi.org/10.1007/s00033-020-01318-4 doi: 10.1007/s00033-020-01318-4
![]() |
[8] |
R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
![]() |
[9] |
B. Dong, Z. Chen, Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components, J. Math. Anal. Appl., 338 (2008), 1–10. https://doi.org/10.1016/j.jmaa.2007.05.003 doi: 10.1016/j.jmaa.2007.05.003
![]() |
[10] | S. Gala, M. A. Ragusa, Note on the blow-up criterion for generalized MHD equations, in AIP Conference Proceedings, (2017). https://doi.org/10.1063/1.4972650 |
[11] |
S. Gala, M. A. Ragusa, A new regularity criterion for the 3D incompressible MHD equations via partial derivatives, J. Math. Anal. Appl., 481 (2020), 123497. https://doi.org/10.1016/j.jmaa.2019.123497 doi: 10.1016/j.jmaa.2019.123497
![]() |
[12] |
S. Gala, M. A. Ragusa, An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects. (Russian) Sovrem. Mat. Fundam. Napravl., 67 (2021), 526–534. https://doi.org/10.22363/2413-3639-2021-67-3-526-534 doi: 10.22363/2413-3639-2021-67-3-526-534
![]() |
[13] |
R. H. Ji, L. Tian, Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain, AIMS Math., 6 (2021), 11837–11849. https://doi.org/10.3934/math.2021687 doi: 10.3934/math.2021687
![]() |
[14] |
I. Khan, H. Ullah, H. AlSalman, M. Fiza, S. Islam, M. Shoaib, et al., Fractional analysis of MHD boundary layer flow over a stretching sheet in porous medium: A new stochastic method, J. Funct. Spaces, 2021 (2021), 5844741. https://doi.org/10.1155/2021/5844741 doi: 10.1155/2021/5844741
![]() |
[15] |
Z. Lei, Y. Zhou, BKMs criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575–583. https://doi.org/10.3934/dcds.2009.25.575 doi: 10.3934/dcds.2009.25.575
![]() |
[16] |
C. Luo, J. Zhang, A regularity result for the incompressible magnetohydrodynamics equations with free surface boundary, Nonlinearity, 33 (2020), 1499. https://doi.org/10.1088/1361-6544/ab60d9 doi: 10.1088/1361-6544/ab60d9
![]() |
[17] |
L. Ni, Z. Guo, Y. Zhou, Some new regularity criteria for the 3D MHD equations, J. Math. Anal. Appl., 396 (2012), 108–118. https://doi.org/10.1016/j.jmaa.2012.05.076 doi: 10.1016/j.jmaa.2012.05.076
![]() |
[18] |
M. E. Schonbek, T. P. Schonbek, E. Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717–756. https://doi.org/10.1007/BF01446316 doi: 10.1007/BF01446316
![]() |
[19] |
Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier–Stokes equations in a generic domain, Math. Ann., 328 (2004), 173–192. https://doi.org/10.1007/s00208-003-0478-x doi: 10.1007/s00208-003-0478-x
![]() |
[20] |
Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 24 (2007), 491–505. https://doi.org/10.1016/J.ANIHPC.2006.03.014 doi: 10.1016/J.ANIHPC.2006.03.014
![]() |
[21] |
X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differ. Equations, 256 (2014), 283–309. https://doi.org/10.1016/j.jde.2013.09.002 doi: 10.1016/j.jde.2013.09.002
![]() |
[22] |
C. Qian, A generalized regularity criterion for 3D Navier–Stokes equations in terms of one velocity component, J. Differ. Equations, 260 (2016), 3477–3494. https://doi.org/10.1016/j.jde.2015.10.037 doi: 10.1016/j.jde.2015.10.037
![]() |
[23] |
Z. Guo, M. Caggio, Z. Skalák, Regularity criteria for the Navier–Stokes equations based on one component of velocity, Nonlinear Anal. Real World Appl., 35 (2017), 379–396. https://doi.org/10.1016/j.nonrwa.2016.11.005 doi: 10.1016/j.nonrwa.2016.11.005
![]() |
[24] |
Z. Guo, P. Kuǎera, Z. Skalák, Regularity criterion for solutions to the Navier–Stokes equations in the whole 3D space based on two vorticity components, J. Math. Anal. Appl., 458 (2018), 755–-766. https://doi.org/10.1016/j.jmaa.2017.09.029 doi: 10.1016/j.jmaa.2017.09.029
![]() |
[25] |
Z. Guo, D. Tong, W. Wang, On regularity of the 3D MHD equations based on one velocity component in anisotropic Lebesgue spaces, Appl. Math. Lett., 120 (2021), 107230. https://doi.org/10.1016/j.aml.2021.107230 doi: 10.1016/j.aml.2021.107230
![]() |
[26] |
S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation, Appl. Math., 50 (2005), 451–464. https://doi.org/10.1007/s10492-005-0032-0 doi: 10.1007/s10492-005-0032-0
![]() |
[27] |
A. Vasseur, Regularity criterion for 3d Navier-Stokes equations in terms of the direction of the velocity, Appl. Math., 54 (2009), 47–52. https://doi.org/10.1007/s10492-009-0003-y doi: 10.1007/s10492-009-0003-y
![]() |
[28] |
E. Miller, Navier-Stokes regularity criteria in sum spaces, Pure. Appl. Anal., 3 (2021), 527–576. https://doi.org/10.2140/paa.2021.3.527 doi: 10.2140/paa.2021.3.527
![]() |
[29] |
F. Wu, Improvement of several regularity criteria for the Navier-Stokes equations, Nonlinear Anal. Real World Appl., 65 (2022), 103464. https://doi.org/10.1016/j.nonrwa.2021.103464 doi: 10.1016/j.nonrwa.2021.103464
![]() |
[30] |
A. Benedek, R. Panzone, The space Lp with mixed norm, Duke Math. J., 28 (1961), 301–324. https://doi.org/10.1016/0022-247X(65)90110-1 doi: 10.1016/0022-247X(65)90110-1
![]() |
[31] | O. V. Besov, V. P. Il'In, S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, V.H. Winston & Sons, 1978. |
[32] |
T. Phan, T. Robertson, On Masuda uniqueness theorem for Leray-Hopf weak solutions in mixed-norm spaces, Eur. J. Mech. B Fluids, 90 (2021), 18–28. https://doi.org/10.1016/j.euromechflu.2021.08.001 doi: 10.1016/j.euromechflu.2021.08.001
![]() |