Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Special Issues

Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory

  • Received: 01 May 2020 Revised: 01 September 2020 Published: 19 October 2020
  • Primary:78A46, 74J25;Secondary:45Q05, 35R30, 31B20

  • This article is an overview on some recent advances in the inverse scattering problems with phaseless data. Based upon our previous studies on the uniqueness issues in phaseless inverse acoustic scattering theory, this survey aims to briefly summarize the relevant rudiments comprising prototypical model problems, major results therein, as well as the rationale behind the basic techniques. We hope to sort out the essential ideas and shed further lights on this intriguing field.

    Citation: Deyue Zhang, Yukun Guo. Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory[J]. Electronic Research Archive, 2021, 29(2): 2149-2165. doi: 10.3934/era.2020110

    Related Papers:

    [1] Qian Lin, Yan Zhu . Unicyclic graphs with extremal exponential Randić index. Mathematical Modelling and Control, 2021, 1(3): 164-171. doi: 10.3934/mmc.2021015
    [2] Zhen Lin . On the sum of powers of the Aα-eigenvalues of graphs. Mathematical Modelling and Control, 2022, 2(2): 55-64. doi: 10.3934/mmc.2022007
    [3] Iman Malmir . Novel closed-loop controllers for fractional nonlinear quadratic systems. Mathematical Modelling and Control, 2023, 3(4): 345-354. doi: 10.3934/mmc.2023028
    [4] Zhibo Cheng, Pedro J. Torres . Periodic solutions of the Lp-Minkowski problem with indefinite weight. Mathematical Modelling and Control, 2022, 2(1): 7-12. doi: 10.3934/mmc.2022002
    [5] Mrutyunjaya Sahoo, Dhabaleswar Mohapatra, S. Chakraverty . Wave solution for time fractional geophysical KdV equation in uncertain environment. Mathematical Modelling and Control, 2025, 5(1): 61-72. doi: 10.3934/mmc.2025005
    [6] Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016
    [7] Jiaquan Huang, Zhen Jia, Peng Zuo . Improved collaborative filtering personalized recommendation algorithm based on k-means clustering and weighted similarity on the reduced item space. Mathematical Modelling and Control, 2023, 3(1): 39-49. doi: 10.3934/mmc.2023004
    [8] Qian Wang, Xue Han . Comparing the number of ideals in quadratic number fields. Mathematical Modelling and Control, 2022, 2(4): 268-271. doi: 10.3934/mmc.2022025
    [9] Yongming Li, Shou Ma, Kunting Yu, Xingli Guo . Vehicle kinematic and dynamic modeling for three-axles heavy duty vehicle. Mathematical Modelling and Control, 2022, 2(4): 176-184. doi: 10.3934/mmc.2022018
    [10] Yanchao He, Yuzhen Bai . Finite-time stability and applications of positive switched linear delayed impulsive systems. Mathematical Modelling and Control, 2024, 4(2): 178-194. doi: 10.3934/mmc.2024016
  • This article is an overview on some recent advances in the inverse scattering problems with phaseless data. Based upon our previous studies on the uniqueness issues in phaseless inverse acoustic scattering theory, this survey aims to briefly summarize the relevant rudiments comprising prototypical model problems, major results therein, as well as the rationale behind the basic techniques. We hope to sort out the essential ideas and shed further lights on this intriguing field.



    Let C denote the complex plane and Cn the n-dimensional complex Euclidean space with an inner product defined as z,w=nj=1zj¯wj. Let B(a,r)={zCn:|za|<r} be the open ball of Cn. In particular, the open unit ball is defined as B=B(0,1).

    Let H(B) denote the set of all holomorphic functions on B and S(B) the set of all holomorphic self-mappings of B. For given φS(B) and uH(B), the weighted composition operator on or between some subspaces of H(B) is defined by

    Wu,φf(z)=u(z)f(φ(z)).

    If u1, then Wu,φ is reduced to the composition operator usually denoted by Cφ. If φ(z)=z, then Wu,φ is reduced to the multiplication operator usually denoted by Mu. Since Wu,φ=MuCφ, Wu,φ can be regarded as the product of Mu and Cφ.

    If n=1, B becomes the open unit disk in C usually denoted by D. Let Dm be the mth differentiation operator on H(D), that is,

    Dmf(z)=f(m)(z),

    where f(0)=f. D1 denotes the classical differentiation operator denoted by D. As expected, there has been some considerable interest in investigating products of differentiation and other related operators. For example, the most common products DCφ and CφD were extensively studied in [1,10,11,12,13,23,25,26], and the products

    MuCφD,CφMuD,MuDCφ,CφDMu,DMuCφ,DCφMu (1.1)

    were also extensively studied in [14,18,22,27]. Following the study of the operators in (1.1), people naturally extend to study the operators (see [5,6,30])

    MuCφDm,CφMuDm,MuDmCφ,CφDmMu,DmMuCφ,DmCφMu.

    Other examples of products involving differentiation operators can be found in [7,8,19,32] and the related references.

    As studying on the unit disk becomes more mature, people begin to become interested in exploring related properties on the unit ball. One method for extending the differentiation operator to Cn is the radial derivative operator

    f(z)=nj=1zjfzj(z).

    Naturally, replacing D by in (1.1), we obtain the following operators

    MuCφ,CφMu,MuCφ,CφMu,MuCφ,CφMu. (1.2)

    Recently, these operators have been studied in [31]. Other operators involving radial derivative operators have been studied in [21,33,34].

    Interestingly, the radial derivative operator can be defined iteratively, namely, mf can be defined as mf=(m1f). Similarly, using the radial derivative operator can yield the related operators

    MuCφm,CφMum,MumCφ,CφmMu,mMuCφ,mCφMu. (1.3)

    Clearly, the operators in (1.3) are more complex than those in (1.2). Since CφMum=MuφCφm, the operator MuCφm can be regarded as the simplest one in (1.3) which was first studied and denoted as mu,φ in [24]. Recently, it has been studied again because people need to obtain more properties about spaces to characterize its properties (see [29]).

    To reconsider the operator CφmMu, people find the fact

    CφmMu=mi=0Cimi(miu)φ,φ. (1.4)

    Motivated by (1.4), people directly studied the sum operator (see [2,28])

    Smu,φ=mi=0MuiCφi,

    where uiH(B), i=¯0,m, and φS(B). Particularly, if we set u0um10 and um=u, then Smu,φ=MuCφm; if we set u0um10 and um=uφ, then Smu,φ=CφMum. In [28], Stević et al. studied the operators Smu,φ from Hardy spaces to weighted-type spaces on the unit ball and obtained the following results.

    Theorem A. Let mN, ujH(B), j=¯0,m, φS(B), and μ a weight function on B. Then, the operator Smu,φ:HpHμ is bounded and

    supzBμ(z)|uj(φ(z))||φ(z)|<+,j=¯1,m, (1.5)

    if and only if

    I0=supzBμ(z)|u0(z)|(1|φ(z)|2)np<+

    and

    Ij=supzBμ(z)|uj(z)||φ(z)|(1|φ(z)|2)np+j<+,j=¯1,m.

    Theorem B. Let mN, ujH(B), j=¯0,m, φS(B), and μ a weight function on B. Then, the operator Smu,φ:HpHμ is compact if and only if it is bounded,

    lim|φ(z)|1μ(z)|u0(z)|(1|φ(z)|2)np=0

    and

    lim|φ(z)|1μ(z)|uj(z)||φ(z)|(1|φ(z)|2)np+j=0,j=¯1,m.

    It must be mentioned that we find that the necessity of Theorem A requires (1.5) to hold. Inspired by [2,28], here we use a new method and technique without (1.5) to study the sum operator Smu,φ from logarithmic Bergman-type space to weighted-type space on the unit ball. To this end, we need to introduce the well-known Bell polynomial (see [3])

    Bm,k(x1,x2,,xmk+1)=m!mk1i=1ji!mk1i=1(xii!)ji,

    where all non-negative integer sequences j1, j2,,jmk+1 satisfy

    mk+1i=1ji=kandmk+1i=1iji=m.

    In particular, when k=0, one can get B0,0=1 and Bm,0=0 for any mN. When k=1, one can get Bi,1=xi. When m=k=i, Bi,i=xi1 holds.

    In this section, we need to introduce logarithmic Bergman-type space and weighted-type space. Here, a bounded positive continuous function on B is called a weight. For a weight μ, the weighted-type space Hμ consists of all fH(B) such that

    fHμ=supzBμ(z)|f(z)|<+.

    With the norm Hμ, Hμ becomes a Banach space. In particular, if μ(z)=(1|z|2)σ(σ>0), the space Hμ is called classical weighted-type space usually denoted by Hσ. If μ1, then space Hμ becomes the bounded holomorphic function space usually denoted by H.

    Next, we need to present the logarithmic Bergman-type space on B (see [4] for the unit disk case). Let dv be the standardized Lebesgue measure on B. The logarithmic Bergman-type space Apwγ,δ consists of all fH(B) such that

    fpApwγ,δ=B|f(z)|pwγ,δ(z)dv(z)<+,

    where 1<γ<+, δ0, 0<p<+ and wγ,δ(z) is defined by

    wγ,δ(z)=(log1|z|)γ[log(11log|z|)]δ.

    When p1, Apwγ,δ is a Banach space. While 0<p<1, it is a Fréchet space with the translation invariant metric ρ(f,g)=fgpApωγ,δ.

    Let φS(B), 0r<1, 0γ<, δ0, and aB{φ(0)}. The generalized counting functions are defined as

    Nφ,γ,δ(r,a)=zj(a)φ1(a)wγ,δ(zj(a)r)

    where |zj(a)|<r, counting multiplicities, and

    Nφ,γ,δ(a)=Nφ,γ,δ(1,a)=zj(a)φ1(a)wγ,δ(zj(a)).

    If φS(D), then the function Nφ,γ,δ has the integral expression: For 1γ<+ and δ0, there is a positive function F(t) satisfying

    Nφ,γ,δ(r,u)=r0F(t)Nφ,1(t,u)dt,r(0,1),uφ(0).

    When φS(D) and δ=0, the generalized counting functions become the common counting functions. Namely,

    Nφ,γ(r,a)=zφ1(a),|z|<r(logr|z|)γ,

    and

    Nφ,γ(a)=Nφ,γ(1,a)=zφ1(a)(log1|z|)γ.

    In [17], Shapiro used the function Nφ,γ(1,a) to characterize the compact composition operators on the weighted Bergman space.

    Let X and Y be two topological spaces induced by the translation invariant metrics dX and dY, respectively. A linear operator T:XY is called bounded if there is a positive number K such that

    dY(Tf,0)KdX(f,0)

    for all fX. The operator T:XY is called compact if it maps bounded sets into relatively compact sets.

    In this paper, j=¯k,l is used to represent j=k,...,l, where k,lN0 and kl. Positive numbers are denoted by C, and they may vary in different situations. The notation ab (resp. ab) means that there is a positive number C such that aCb (resp. aCb). When ab and ba, we write ab.

    In this section, we obtain some properties on the logarithmic Bergman-type space. First, we have the following point-evaluation estimate for the functions in the space.

    Theorem 3.1. Let 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, there exists a positive number C=C(γ,δ,p,r) independent of zK={zB:|z|>r} and fApwγ,δ such that

    |f(z)|C(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ. (3.1)

    Proof. Let zB. By applying the subharmonicity of the function |f|p to Euclidean ball B(z,r) and using Lemma 1.23 in [35], we have

    |f(z)|p1v(B(z,r))B(z,r)|f(w)|pdv(w)C1,r(1|z|2)n+1B(z,r)|f(w)|pdv(w). (3.2)

    Since r<|z|<1 and 1|w|21|z|2, we have

    log1|w|1|w|1|z|log1|z| (3.3)

    and

    log(1log1|w|)log(1log1|z|). (3.4)

    From (3.3) and (3.4), it follows that there is a positive constant C2,r such that wγ,δ(z)C2,rwγ,δ(w) for all wB(z,r). From this and (3.2), we have

    |f(z)|pC1,rC2,r(1|z|2)n+1wγ,δ(z)B(z,r)|f(w)|pwγ,δ(w)dv(w)C1,rC2,r(1|z|2)n+1wγ,δ(z)fpApwγ,δ. (3.5)

    From (3.5) and the fact log1|z|1|z|1|z|2, the following inequality is right with a fixed constant C3,r

    |f(z)|pC1,rC2,rC3,r(1|z|2)n+1+γ[log(11log|z|)]δfpApwγ,δ.

    Let C=C1,rC2,rC3,rp. Then the proof is end.

    Theorem 3.2. Let mN, 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, there exists a positive constant Cm=C(γ,δ,p,r,m) independent of zK and fApwγ,δ such that

    |mf(z)zi1zi2zim|Cm(1|z|2)γ+n+1p+m[log(11log|z|)]δpfApwγ,δ. (3.6)

    Proof. First, we prove the case of m=1. By the definition of the gradient and the Cauchy's inequality, we get

    |f(z)zi||f(z)|˜C1supwB(z,q(1|z|))|f(w)|1|z|, (3.7)

    where i=¯1,n. By using the relations

    1|z|1|z|22(1|z|),
    (1q)(1|z|)1|w|(q+1)(1|z|),

    and

    log(11log|z|)log(11log|w|),

    we obtain the following formula

    |f(w)|˘C1(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ

    for any wB(z,q(1|z|)). Then,

    supwB(z,q(1|z|))|f(w)|˘C1(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ.

    From (3.1) and (3.2), it follows that

    |f(z)zi|ˆC1(1|z|2)γ+n+1p+1[log(11log|z|)]δpfApwγ,δ. (3.8)

    Hence, the proof is completed for the case of m=1.

    We will use the mathematical induction to complete the proof. Assume that (3.6) holds for m<a. For convenience, let g(z)=a1f(z)zi1zi2zia1. By applying (3.7) to the function g, we obtain

    |g(z)zi|˜C1supwB(z,q(1|z|))|g(w)|1|z|. (3.9)

    According to the assumption, the function g satisfies

    |g(z)|ˆCa1(1|z|2)γ+n+1p+a1[log(11log|z|)]δpfApwγ,δ.

    By using (3.8), the following formula is also obtained

    |g(z)zi|ˆCa(1|z|2)γ+n+1p+a[log(11log|z|)]δpfApwγ,δ.

    This shows that (3.6) holds for m=a. The proof is end.

    As an application of Theorems 3.1 and 3.2, we give the estimate in z=0 for the functions in Apωγ,δ.

    Corollary 3.1. Let 1<γ<+, δ0, 0<p<+, and 0<r<2/3. Then, for all fApwγ,δ, it follows that

    |f(0)|C(1r2)γ+n+1p[log(11logr)]δpfApwγ,δ, (3.10)

    and

    |mf(0)zl1zlm|Cm(1r2)γ+n+1p+m[log(11logr)]δpfApwγ,δ, (3.11)

    where constants C and Cm are defined in Theorems 3.1 and 3.2, respectively.

    Proof. For fApwγ,δ, from Theorem 3.1 and the maximum module theorem, we have

    |f(0)|max|z|=r|f(z)|C(1r2)γ+n+1p[log(11logr)]δpfApwγ,δ,

    which implies that (3.10) holds. By using the similar method, we also have that (3.11) holds.

    Next, we give an equivalent norm in Apwγ,δ, which extends Lemma 3.2 in [4] to B.

    Theorem 3.3. Let r0[0,1). Then, for every fApwγ,δ, it follows that

    fpApwγ,δBr0B|f(z)|pwγ,δ(z)dv(z). (3.12)

    Proof. If r0=0, then it is obvious. So, we assume that r0(0,1). Integration in polar coordinates, we have

    fpApwγ,δ=2n10wγ,δ(r)r2n1drS|f(rζ)|pdσ(ζ).

    Put

    A(r)=wγ,δ(r)r2n1andM(r,f)=S|f(rζ)|pdσ(ζ).

    Then it is represented that

    fpApwγ,δr00+1r0M(r,f)A(r)dr. (3.13)

    Since M(r,f) is increasing, A(r) is positive and continuous in r on (0,1) and

    limr0A(r)=limx+xγ[log(1+1x)]δe(2n1)x=limx+xγδe(2n1)x=0,

    that is, there is a constant ε>0(ε<r0) such that A(r)<A(ε) for r(0,ε). Then we have

    r00M(r,f)A(r)dr2r01r0maxεrr0A(r)1+r02r0M(r,f)dr2r01r0maxεrr0A(r)minr0r1+r02A(r)1+r02r0M(r,f)A(r)dr1r0M(r,f)A(r)dr. (3.14)

    From (3.13) and (3.14), we obtain the inequality

    fpApwγ,δ1r0M(r,f)A(r)dr.

    The inequality reverse to this is obvious. The asymptotic relationship (3.12) follows, as desired.

    The following integral estimate is an extension of Lemma 3.4 in [4]. The proof is similar, but we still present it for completeness.

    Lemma 3.1. Let 1<γ<+, δ0, β>γδ and 0<r<1. Then, for each fixed wB with |w|>r,

    Bωγ,δ(z)|1z,w|n+β+1dv(z)1(1|w|)βγ[log(11log|w|)]δ.

    Proof. Fix |w| with |w|>r0 (0<r0<1). It is easy to see that

    log1r1rforr0r<1. (3.15)

    By applying Theorem 3.3 with

    fw(z)=1(1z,w)n+β+1

    and using (3.15), the formula of integration in polar coordinates gives

    B1|1z,w|n+β+1ωγ,δ(z)dv(z)1r0M(r,fw)(1r)γ[log(11logr)]δr2n1dr. (3.16)

    By Proposition 1.4.10 in [15], we have

    M(r,fw)1(1r2|w|2)β+1. (3.17)

    From (3.16) and (3.17), we have

    B1|1z,w|β+2nωγ,δ(z)dv(z)1r01(1r2|w|2)β+1(1r)γ[log(11logr)]δr2n1dr1r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr|w|r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr+1|w|1(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr=I1+I2.

    Since [log(11logr)]δ is decreasing in r on [|w|,1], we have

    I2=1|w|1(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr1(1|w|)β+1[log(11log|w|)]δ1|w|(1r)γdr1(1|w|)βγ[log(11log|w|)]δ. (3.18)

    On the other hand, we obtain

    I1=|w|r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr|w|r0(1r)γβ1(log21r)δdr.

    If δ=0 and β>γ, then we have

    I1(0)(1|w|)γβ.

    If δ0, then integration by parts gives

    I1(δ)=1γβ(1|w|)γβ(log21|w|)δ+1γβ(1r0)γβ(log21r0)δ+δγβI1(δ1).

    Since δ<0, γβ<0 and

    (log21r)δ1(log21r)δforr0<r<|w|<1,

    we have

    I1(δ)1γβ(1|w|)γβ(log21|w|)δ+δγβI1(δ)

    and from this follows

    I1(δ)(1|w|)γβ(log21|w|)δ(1|w|)γβ[log(11log|w|)]δ

    provided γβδ<0. The proof is finished.

    The following gives an important test function in Apwγ,δ.

    Theorem 3.4. Let 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, for each t0 and wB with |w|>r, the following function is in Apwγ,δ

    fw,t(z)=[log(11log|w|)]δp(1|w|2)δp+t+1(1z,w)γδ+n+1p+t+1.

    Moreover,

    sup{wB:|w|>r}fw,tApwγ,δ1.

    Proof. By Lemma 3.1 and a direct calculation, we have

    fw,tpApwγ,δ=B|[log(11log|w|)]δp(1|w|2)δp+t+1(1z,w)γδ+n+1p+t+1|pwγ,δ(z)dA(z)=(1|w|2)p(t+1)δ[log(11log|w|)]δ×B1|1z,w|γδ+p(t+1)+n+1wγ,δ(z)dA(z)1.

    The proof is finished.

    In this section, for simplicity, we define

    Bi,j(φ(z))=Bi,j(φ(z),φ(z),,φ(z)).

    In order to characterize the compactness of the operator Smu,φ:Apwγ,δHμ, we need the following lemma. It can be proved similar to that in [16], so we omit here.

    Lemma 4.1. Let 1<γ<+, δ0, 0<p<+, mN, ujH(B), j=¯0,m, and φS(B). Then, the bounded operator Smu,φ:Apwγ,δHμ is compact if and only if for every bounded sequence {fk}kN in Apwγ,δ such that fk0 uniformly on any compact subset of B as k, it follows that

    limkSmu,φfkHμ=0.

    The following result was obtained in [24].

    Lemma 4.2. Let s0, wB and

    gw,s(z)=1(1z,w)s,zB.

    Then,

    kgw,s(z)=sPk(z,w)(1z,w)s+k,

    where Pk(w)=sk1wk+p(k)k1(s)wk1+...+p(k)2(s)w2+w, and p(k)j(s), j=¯2,k1, are nonnegative polynomials for s.

    We also need the following result obtained in [20].

    Lemma 4.3. Let s>0, wB and

    gw,s(z)=1(1z,w)s,zB.

    Then,

    kgw,s(z)=kt=1a(k)t(t1j=0(s+j))z,wt(1z,w)s+t,

    where the sequences (a(k)t)t¯1,k, kN, are defined by the relations

    a(k)k=a(k)1=1

    for kN and

    a(k)t=ta(k1)t+a(k1)t1

    for 2tk1,k3.

    The final lemma of this section was obtained in [24].

    Lemma 4.4. If a>0, then

    Dn(a)=|111aa+1a+n1a(a+1)(a+1)(a+2)(a+n1)(a+n)n2k=0(a+k)n2k=0(a+k+1)n2k=0(a+k+n1)|=n1k=1k!.

    Theorem 4.1. Let 1<γ<+, δ0, 0<p<+, mN, ujH(B), j=¯0,m, and φS(B). Then, the operator Smu,φ:Apwγ,δHμ is bounded if and only if

    M0:=supzBμ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp<+ (4.1)

    and

    Mj:=supzBμ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp<+ (4.2)

    for j=¯1,m.

    Moreover, if the operator Smu,φ:Apwγ,δHμ is bounded, then

    Smu,φApwγ,δHμmj=0Mj. (4.3)

    Proof. Suppose that (4.1) and (4.2) hold. From Theorem 3.1, Theorem 3.2, and some easy calculations, it follows that

    μ(z)|mi=0ui(z)if(φ(z))|μ(z)mi=0|ui(z)||if(φ(z))|=μ(z)|u0(z)||f(φ(z))|+μ(z)|mi=1ij=1(ui(z)nl1=1nlj=1(jfzl1zl2zlj(φ(z))k1,,kjC(i)k1,,kjjt=1φlt(z)))|=μ(z)|u0(z)f(φ(z))|+μ(z)|mj=1mi=j(ui(z)nl1=1nlj=1(jfzl1zl2zlj(φ(z))k1,,kjC(i)k1,,kjjt=1φlt(z)))|μ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δpfApwγ,δ+mj=1μ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δpfApwγ,δ=M0fApwγ,δ+mj=1MjfApwγ,δ. (4.4)

    By taking the supremum in inequality (4.4) over the unit ball in the space Apwγ,δ, and using (4.1) and (4.2), we obtain that the operator Smu,φ:Apwγ,δHμ is bounded. Moreover, we have

    Smu,φApwγ,δHμCmj=0Mj, (4.5)

    where C is a positive constant.

    Assume that the operator Smu,φ:Apwγ,δHμ is bounded. Then there exists a positive constant C such that

    Smu,φfHμCfApwγ,δ (4.6)

    for any fApwγ,δ. First, we can take f(z)=1Apwγ,δ, then one has that

    supzBμ(z)|u0(z)|<+. (4.7)

    Similarly, take fk(z)=zjkApwγ,δ, k=¯1,n and j=¯1,m, by (4.7), then

    μ(z)|u0(z)φk(z)j+mi=j(ui(z)Bi,j(φk(z))))|<+ (4.8)

    for any j{1,2,,m}. Since φ(z)B, we have |φ(z)|1. So, one can use the triangle inequality (4.7) and (4.8), the following inequality is true

    supzBμ(z)|mi=jui(z)Bi,j(φ(z))|<+. (4.9)

    Let wB and dk=γ+n+1p+k. For any j{1,2,,m} and constants ck=c(j)k, k=¯0,m, let

    h(j)w(z)=mk=0c(j)kfw,k(z), (4.10)

    where fw,k is defined in Theorem 3.4. Then, by Theorem 3.4, we have

    Lj=supwBh(j)wApwγ,δ<+. (4.11)

    From (4.6), (4.11), and some easy calculations, it follows that

    LjSmu,φApwγ,δHμSmu,φh(j)φ(w)Hμ=supzBμ(z)|mi=0u0(z)h(j)φ(w)(φ(z))|μ(w)|u0(w)h(j)φ(w)(φ(w))+mi=1(ui(w)ih(j)φ(w)(φ(w)))|=μ(w)|u0(w)h(j)φ(w)(φ(w))+mi=1ui(w)mk=0c(j)kfφ(w),k(φ(w))|=μ(w)|u0(w)c0+c1++cm(1|φ(z)|2)γ+n+1p+mi=1ui(w)Bi,1(φ(w)),φ(w)(d0c0++dmcm)(1|φ(w)|2)γ+n+1p+1++mi=jui(w)Bi,j(φ(w)),φ(w)j(d0dj1c0++dmdm+j1cm)(1|φ(w)|2)γ+n+1p+j++um(w)Bm,m(φ(w)),φ(w)m(d0dm1c0++dmd2m1cm)(1|φ(w)|2)γ+n+1p+m|[log(11log|φ(w)|)]δp. (4.12)

    Since , , by Lemma 4.4, we have the following linear equations

    (4.13)

    From (4.12) and (4.13), we have

    (4.14)

    On the other hand, from (4.9), we have

    (4.15)

    From (4.14) and (4.15), we get that (4.2) holds for .

    For constants , , let

    (4.16)

    By Theorem 3.4, we know that . From this, (4.12), (4.13) and Lemma 4.4, we get

    So, we have . Moreover, we have

    (4.17)

    From (4.5) and (4.17), we obtain (4.3). The proof is completed.

    From Theorem 4.1 and (1.4), we obtain the following result.

    Corollary 4.1. Let , , and is a weight function on . Then, the operator is bounded if and only if

    and

    for .

    Moreover, if the operator is bounded, then

    Theorem 4.2. Let , , , , , , and . Then, the operator is compact if and only if the operator is bounded,

    (4.18)

    for , and

    (4.19)

    Proof. Assume that the operator is compact. It is obvious that the operator is bounded.

    If , then it is clear that (4.18) and (4.19) are true. So, we suppose that . Let be a sequence in such that

    where are defined in (4.10) for a fixed . Then, it follows that uniformly on any compact subset of as . Hence, by Lemma 4.1, we have

    Then, we can find sufficiently large such that

    (4.20)

    If , then (4.20) is true.

    Now, we discuss the case of . Let , where is defined in (4.16). Then, we also have that and uniformly on any compact subset of as . Hence, by Lemma 4.1, one has that

    (4.21)

    Then, by (4.21), we know that (4.18) is true.

    Now, assume that is bounded, (4.18) and (4.19) are true. One has that

    (4.22)

    and

    (4.23)

    for any . By (4.18) and (4.19), for arbitrary , there is a , for any such that

    (4.24)

    and

    (4.25)

    Assume that is a sequence such that and uniformly on any compact subset of as . Then by Theorem 3.1, Theorem 3.2 and (4.22)–(4.25), one has that

    (4.26)

    Since uniformly on any compact subset of as . By Cauchy's estimates, we also have that uniformly on any compact subset of as . From this and using the fact that is a compact subset of , by letting in inequality (4.26), one get that

    Since is an arbitrary positive number, it follows that

    By Lemma 4.1, the operator is compact.

    As before, we also have the following result.

    Corollary 4.2. Let , , and is a weight function on . Then, the operators is compact if and only if the operator is bounded,

    and

    for .

    In this paper, we study and obtain some properties about the logarithmic Bergman-type space on the unit ball. As some applications, we completely characterized the boundedness and compactness of the operator

    from the logarithmic Bergman-type space to the weighted-type space on the unit ball. Here, one thing should be pointed out is that we use a new method and technique to characterize the boundedness of such operators without the condition (1.5), which perhaps is the special flavour in this paper.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Sichuan Science and Technology Program (2022ZYD0010) and the Graduate Student Innovation Foundation (Y2022193).

    The authors declare that they have no competing interests.



    [1] Phased and phaseless domain reconstructions in the inverse scattering problem via scattering coefficients. SIAM J. Appl. Math. (2016) 76: 1000-1030.
    [2] Numerical solution of an inverse diffraction grating problem from phaseless data. J. Opt. Soc. Am. A (2013) 30: 293-299.
    [3] Imaging of local surface displacement on an infinite ground plane: The multiple frequency case. SIAM J. Appl. Math. (2011) 71: 1733-1752.
    [4] G. Bao and L. Zhang, Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data, Inverse Problems, 32 (2016), 085002, 16 pp. doi: 10.1088/0266-5611/32/8/085002
    [5] Uniqueness in the large of a class of multidimensional inverse problems. Dokl. Akad. Nauk SSSR (1981) 260: 269-272.
    [6] The direct and inverse scattering problem for partially coated obstacles. Inverse Problems (2001) 17: 1997-2015.
    [7] Phase retrieval via Wirtinger flow: Theory and algorithms. IEEE Trans. Information Theory (2015) 61: 1985-2007.
    [8] PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. (2013) 66: 1241-1274.
    [9] A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Probl. Imaging (2017) 11: 901-916.
    [10] Phaseless imaging by reverse time migration: Acoustic waves. Numer. Math. Theor. Meth. Appl. (2017) 10: 1-21.
    [11] Looking back on inverse scattering theory. SIAM Rev. (2018) 60: 779-807.
    [12] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4 edition, Applied Mathematical Sciences, 93. Springer, Cham, 2019. doi: 10.1007/978-3-030-30351-8
    [13] Inverse obstacle scattering problem for elastic waves with phased or phaseless far-field data. SIAM J. Imaging Sci. (2019) 12: 809-838.
    [14] H. Dong, J. Lai and P. Li, An inverse acoustic-elastic interaction problem with phased or phaseless far-field data, Inverse Problems, 36 (2020), 035014, 36 pp. doi: 10.1088/1361-6420/ab693e
    [15] A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems and Imagin (2019) 13: 177-195.
    [16] Inverse scattering via nonlinear integral equations method for a sound-soft crack from phaseless data. Applications of Mathematics (2018) 63: 149-165.
    [17] Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Probl. Imaging (2007) 1: 609-622.
    [18] Identification of sound-soft 3D obstacles from phaseless data. Inverse Probl. Imaging (2010) 4: 131-149.
    [19] Inverse scattering for surface impedance from phaseless far field data. J. Comput. Phys. (2011) 230: 3443-3452.
    [20] Target reconstruction with a reference point scatterer using phaseless far field patterns. SIAM J. Imaging Sci. (2019) 12: 372-391.
    [21] X. Ji, X. Liu and B. Zhang, Phaseless inverse source scattering problem: Phase retrieval, uniqueness and direct sampling methods, J. Comput. Phys. X, 1 (2019), 100003, 15 pp. doi: 10.1016/j.jcpx.2019.100003
    [22] (2008) The Factorization Methods for Inverse Problems. Oxford: Oxford Lecture Series in Mathematics and its Applications, 36. Oxford University Press.
    [23] Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse and Ⅲ-Posed Problems (2013) 21: 477-510.
    [24] Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-d. Applicable Analysis (2014) 93: 1135-1149.
    [25] Phaseless inverse scattering problems in three dimensions. SIAM J. Appl. Math. (2014) 74: 392-410.
    [26] A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Probl. Imaging (2017) 11: 263-276.
    [27] Reconstruction procedures for two inverse scattering problems without the phase information. SIAM J. Appl. Math. (2016) 76: 178-196.
    [28] M. V. Klibanov and V. G. Romanov, Uniqueness of a 3-D coefficient inverse scattering problem without the phase information, Inverse Problems, 33 (2017), 095007, 10 pp. doi: 10.1088/1361-6420/aa7a18
    [29] R. Kress and W. Rundell, Inverse obstacle scattering with modulus of the far field pattern as data, Inverse Problems in Medical Imaging and Nondestructive Testing (Oberwolfach, 1996), (1997), 75–92.
    [30] Shape reconstructions from phaseless data. Eng. Anal. Bound. Elem. (2016) 71: 174-178.
    [31] Recovering a polyhedral obstacle by a few backscattering measurements. J. Differential Equat. (2015) 259: 2101-2120.
    [32] J. Li, H. Liu and Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscattering measurements, Inverse Problems, 33 (2017), 035001, 20 pp. doi: 10.1088/1361-6420/aa5bf3
    [33] Strengthened linear sampling method with a reference ball. SIAM J. Sci. Comput. (2009) 31: 4013-4040.
    [34] On stability for a translated obstacle with impedance boundary condition. Nonlinear Anal. (2004) 59: 731-744.
    [35] Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction tomography. J. Opt. Soc. Am. A (1993) 10: 1086-1092.
    [36] Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging. SIAM J. Appl. Math. (2017) 77: 384-408.
    [37] (2000) Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press.
    [38] Formulas for phase recovering from phaseless scattering data at fixed frequency. Bull. Sci. Math. (2015) 139: 923-936.
    [39] Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions. J. Geom. Anal. (2016) 26: 346-359.
    [40] Subspace-based optimization method for inverse scattering problems utilizing phaseless data. IEEE Trans. Geosci. Remote Sensing (2011) 49: 981-987.
    [41] F. Qu, B. Zhang and H. Zhang, A novel integral equation for scattering by locally rough surfaces and application to the inverse problem: The Neumann case, SIAM J. Sci. Comput., 41 (2019), A3673–A3702. doi: 10.1137/19M1240745
    [42] Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell Equations. Comput. Math. Math. Phys. (2020) 60: 1045-1062.
    [43] Phaseless inverse problems with interference waves. J. Inverse Ⅲ-Posed Probl. (2018) 26: 681-688.
    [44] F. Sun, D. Zhang and Y. Guo, Uniqueness in phaseless inverse scattering problems with known superposition of incident point sources, Inverse Problems, 35 (2019), 105007, 10 pp. doi: 10.1088/1361-6420/ab3373
    [45] Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field. Microwave Opt. Tech. Lett. (1997) 14: 139-197.
    [46] Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency. SIAM J. Appl. Math. (2018) 78: 1737-1753.
    [47] Uniqueness in inverse scattering problems with phaseless far-field data at a fixed frequency. Ⅱ. SIAM J. Appl. Math. (2018) 78: 3024-3039.
    [48] Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Probl. Imaging (2020) 14: 489-510.
    [49] W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594, 18 pp. doi: 10.1016/j.jcp.2020.109594
    [50] D. Zhang and Y. Guo, Uniqueness results on phaseless inverse scattering with a reference ball, Inverse Problems, 34 (2018), 085002, 12 pp. doi: 10.1088/1361-6420/aac53c
    [51] D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 094001, 21 pp. doi: 10.1088/1361-6420/aaccda
    [52] Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Probl. Imaging (2020) 14: 569-582.
    [53] D. Zhang, Y. Guo, F. Sun and X. Wang, Reconstruction of acoustic sources from multi-frequency phaseless far-field data, preprint, arXiv: 2002.03279.
    [54] A finite element method with perfectly matched absorbing layers for the wave scattering from a cavity. J. Comput. Phys. (2008) 25: 301-308.
    [55] D. Zhang, Y. Wang, Y. Guo and J. Li, Uniqueness in inverse cavity scattering problem with phaseless near-field data, Inverse Problems, 36 (2020), 025004, 10 pp. doi: 10.1088/1361-6420/ab53ee
    [56] Recovering scattering obstacles by multi-frequency phaseless far-field data. J. Comput. Phys. (2017) 345: 58-73.
    [57] J. Zheng, J. Cheng, P. Li and S. Lu, Periodic surface identification with phase or phaseless near-field data, Inverse Problems, 33 (2017), 115004, 35 pp. doi: 10.1088/1361-6420/aa8cb3
  • This article has been cited by:

    1. Hafiz Muhammad Fraz, Kashif Ali, Muhammad Faisal Nadeem, Entropy measures of silicon nanotubes using degree based topological indices, 2025, 100, 0031-8949, 015202, 10.1088/1402-4896/ad94b4
    2. Pranavi Jaina, K. Anil Kumar, J. Vijayasekhar, Application of Zagreb Index Models in Predicting the Physicochemical Properties of Unsaturated Fatty Acids, 2025, 41, 22315039, 201, 10.13005/ojc/410124
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3271) PDF downloads(309) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog