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Abstract. This article is an overview on some recent advances in the inverse

scattering problems with phaseless data. Based upon our previous studies on
the uniqueness issues in phaseless inverse acoustic scattering theory, this sur-

vey aims to briefly summarize the relevant rudiments comprising prototypical

model problems, major results therein, as well as the rationale behind the basic
techniques. We hope to sort out the essential ideas and shed further lights on

this intriguing field.

1. Introduction. Inverse scattering problems are fundamental in many scientific
and industrial applications. Several exemplary scenarios involve sonar detection,
radar sensing, medical imaging and geophysical exploration. Inverse scattering
problems are concerned with the detection and identification of unknown targets
from the knowledge of associated wave scattering data. In particular, inverse scat-
tering of time-harmonic waves is of great significance. The typical time-harmonic
inverse scattering problems are based on complex-valued data comprising phase and
intensity/modulus. On the other hand, the phase information may be unavailable
or extremely difficult to be detected accurately in practice. Hence, according to
the accessibility to phase, the measured data in time-harmonic inverse scattering
problems can be classified into two categories: phased/full data and phaseless or
intensity-only/modulus-only data. Over the past several decades, the inverse scat-
tering problems with full measured data received a great deal of attentions in the
literature (see, e.g. [11, 12, 22] and the references therein). In fact, the phase-
less measurements are usually more feasible in practice. Therefore, the phaseless
inverse scattering problems have recently been intensively studied mathematically
and numerically [1, 2, 4, 31, 32, 49, 57].
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Due to the lack of phase information, the phaseless inverse scattering problems
are in general very challenging. From the mathematical perspective, the first chal-
lenge is the uniqueness: can one uniquely identify the underlying target from the
measured phaseless data? To compensate the missing phase and justify the unique-
ness, some additional information should be incorporated into the scattering sys-
tem. There are several strategies for supplementing more quantities, for instance,
superposing incident waves and adding artificial reference/interfering objects. Using
these techniques, the phaseless inverse scattering problems can be recast as “well-
posed” problems in the sense of uniqueness justifications. The uniqueness results
for phaseless inverse scattering problems usually rely on the existing uniqueness
theorems concerning the phased data. We refer to the monograph [12] as an entry
for the vast investigations on the uniqueness issues associated with full data.

Our studies on the uniqueness in phaseless inverse scattering problems are scat-
tered in different papers [44, 50, 52, 55] and thus they are loosely coupled in certain
sense. Accordingly, this paper aims to present a unified and consistent framework
for the problem formulations, technical treatment and the uniqueness results. We
would like to emphasize that the purpose of this short review is mainly to crystallize
the major developments that we had participated in, that is, we made no effort to
cover all the relevant topics or present a comprehensive investigation on the diverse
literature. In fact we only consider the phaseless inverse acoustic scattering prob-
lems as models. Nevertheless, it paves the way for many extensions to the cases of
electromagnetic and elastic waves, where analogous strategies can be employed but
technical details might be more complicated. We refer to the recent survey paper
[42] for the phaseless inverse problems for some typical wave equations.

The rest of this paper is arranged as follows. Section 2 is devoted to the reference
ball technique for uniquely determining a bounded scatterer from phaseless far-
field data. Then in section 3, we present the uniqueness results related to the
superposition of exterior point sources and near-field measurements. Finally, the
interior problem of imaging the cavity is discussed in section 4.

2. The reference ball technique. We present some prototypical inverse acoustic
scattering models and the reference ball technique for establishing the uniqueness.

2.1. Model problems. In this subsection, we introduce the acoustic direct and
inverse scattering models for an incident plane wave. Let the scatterer D ⊂ R3

occupy an open and simply-connected domain with C2 boundary ∂D. Let ui(x, d) =
eikx·d be a given incident plane wave, where d ∈ S2 and k > 0 are the incident
direction and wavenumber, respectively.

Denote by ν the unit outward normal to ∂D. Then the forward obstacle scat-
tering problem can be stated as: given D and ui, find the scattered field us ∈
H1

loc(R3\D) such that the total field u = ui + us satisfies the following boundary
value problem (see [12]):

∆u+ k2u =0 in R3\D, (1)

Bu =0 on ∂D, (2)

lim
r=|x|→∞

r

(
∂us

∂r
− ikus

)
= 0, (3)

where us denotes the scattered field and (3) is the Sommerfeld radiation condition.
The boundary operator B defined in (2) is given by
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Bu =

u if D is of sound-soft type,
∂u

∂ν
+ ikλu if D is of impedance type,

(4)

where λ is a real parameter signifying the physical impedance. The boundary condi-
tion (4) is rather general since it covers the usual Dirichlet/sound-soft boundary con-
dition, the Neumann/sound-hard boundary condition (λ = 0) and the impedance
boundary condition (λ 6= 0).

In contrast to the obstacle scattering problem dealing with an impenetrable scat-
terer D, if D is penetrable with respect to wave propagation, then the forward
scattering can be formulated as the medium scattering problem: given D and ui,
determine the scattered field us ∈ H1

loc(R3) such that the total field u = ui + us

fulfills

∆u+ k2nu = 0 in R3, (5)

lim
r=|x|→∞

r

(
∂us

∂r
− ikus

)
= 0, (6)

where the refractive index n(x) of the inhomogeneous medium is piecewise contin-
uous such that Re(n) > 0, Im(n) ≥ 0 and 1− n(x) is supported in D.

The forward scattering problems (1)–(3) and (5)–(6) admit a unique solution (see,
e.g., [6, 12, 37]), respectively. Moreover, the scattered wave us has the following
asymptotic behavior

us(x; d) =
eik|x|

|x|

{
u∞(x̂; d) +O

(
1

|x|

)}
, |x| → ∞

uniformly in all observation directions x̂ = x/|x|. Denote by S2 := {x ∈ R3 : |x| =
1} the unit sphere in R3. Then the complex-valued analytic function u∞(x̂; d) is
defined on S2 and known as the scattering amplitude or the far field pattern (see
[12]). In what follows, we shall also employ u∞D (x̂; d) to indicate the dependence of
the far field pattern u∞ on the observation direction x̂, the incident direction d, the
obstacle or medium D and a fixed wavenumber k.

A typical phaseless inverse scattering problem is stated as follows.

Problem 2.1. Given phaseless far field data |u∞D (x̂; d)| for x̂, d ∈ S2 and a fixed
k > 0.

(i) Suppose that D is an impenetrable obstacle, determine the location and shape
∂D as well as the boundary condition B.

(ii) Suppose that D is a penetrable inhomogeneous medium, determine the refrac-
tive index nD for the medium inclusion.

There is a well-known obstruction of Problem 2.1 due to the translation invari-
ance. Specifically, for the shifted domain Dh := {x+h : x ∈ D} with a fixed vector
h ∈ R3, the far field pattern u∞Dh(x̂; d) satisfies the relation [29, 34]

u∞Dh(x̂; d) = eikh·(d−x̂)u∞D (x̂; d), x̂ ∈ S2. (7)

Hence the location of the scatterer cannot be uniquely determined from the intensity-
only far-field data. More notoriously, this intrinsic ambiguity cannot be remedied by
simply using finitely many incident waves with different wavenumbers or distinct
directions of incidence. Nevertheless, it is still possible to reconstruct the shape
without such phase information. In fact, a great number of inversion schemes have
been proposed to recover the shape of scatterer from the intensity-only far-field
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data with a single incident plane wave, see [17, 18, 19, 30, 31, 32]. We also refer to
[10, 16] for the relevant numerical investigations.

2.2. Uniqueness with a reference ball. To compensate the lack of phase and
thereby break the translation-invariance obstruction, some supplementing informa-
tion is required to be incorporated into the scattering system. We made an attempt
in [50] to tackle the translation invariance by adding a reference ball in conjunction
with the superposition of incident waves. In this subsection, we shall give a brief
outline of the reference ball technique for phaseless inverse scattering problems.

Definition 2.1 (Reference ball). For the inverse scattering problem of recovering
D, let B ⊂ R3 such that D ∩B = ∅. The scatterer B is called a reference object if

(i) The geometrical (location, shape, etc.) and physical properties (boundary
conditions, refractive index, etc.) of B are assumed, a priori, to be known.

(ii) Determination of the target D relies on the scattering data produced by D∪B.

Clearly, a simplest candidate for the reference object is the reference ball B =
B(x0, R) := {x ∈ R3 : |x− x0| < R}.

Due to the nonlinearity of typical inverse scattering problems, one should bear
in mind that extracting the contribution of D from the data due to D ∪ B is not
straightforward in most cases.

We also need the following admissible source location.

Definition 2.2 (Admissible source location). Assume that P is a simply-connected
convex polyhedron with boundary Π := ∂P such that P ⊂ R3\(D ∪ B) and k2 is
not a Dirichlet eigenvalue of −∆ in P .

Then let us consider the superposition of a plane wave ui and a point source vi

as the incident wave:

ui(x, d) + vi(x, z) = eikx·d + Φ(x, z), (8)

where z ∈ Π denotes the location of point source, and

Φ(x; z) =
eik|x−z|

4π|x− z|
is the fundamental solution to the Helmholtz equation.

Let the u∞D∪B(x̂; d) and v∞D∪B(x̂; z) be the far-field pattern generated by D ∪ B
corresponding to the incident field ui and vi, respectively. Then, by the linearity of
direct scattering problem, the far-field pattern generated by D∪B and the incident
wave ui +vi defined in (8) is given by u∞D∪B(x̂; d)+v∞D∪B(x̂; z), x̂ ∈ S2, respectively.

Based on Definitions 2.1 and 2.2, we are now in the position to introduce the
phaseless datasets.

Definition 2.3 (Far field data with a reference ball). For a fixed wavenumber k > 0
and a fixed d0 ∈ S2, define

DFB
1 := {|u∞D∪B(x̂; d0)| : x̂ ∈ S2},

DFB
2 := {|v∞D∪B(x̂; z)| : x̂ ∈ S2, z ∈ Π},

DFB
3 := {|u∞D∪B(x̂; d0) + v∞D∪B(x̂; z)| : x̂ ∈ S2, z ∈ Π}.

The incursion of the reference ball and superposition of incoming waves lead to
the following reformulation of phaseless inverse scattering problems:



UNIQUENESS IN PHASELESS INVERSE SCATTERING 2153

D

B

ui

us + vs

z

vi

u∞ + v∞(|x| → ∞)
PΠ

Figure 1. An illustration of the reference ball technique.

Problem 2.2 (Inverse obstacle scattering with a reference ball and far-field data).
Let D be the impenetrable obstacle with boundary condition B. Given the phaseless
triple {DFB

1 ,DFB
2 ,DFB

3 } due to D and a sound-soft reference ball B, determine the
location and shape ∂D as well as the boundary condition B for the obstacle.

Problem 2.3 (Inverse medium scattering with a reference ball and far-field data).
Let D be the inhomogeneous medium with refractive index n. Given the phaseless
triple {DFB

1 ,DFB
2 ,DFB

3 } due to the inhomogeneity D and a penetrable reference ball
B, determine the refractive index n for the medium inclusion.

We refer to Figure 1 for an illustration of the geometry setup of Problems 2.2
and 2.3. The following theorem shows the uniqueness results for Problem 2.2 and
Problem 2.2, i.e., the scatterer can be uniquely determined from the consolidated
phaseless data {DFB

1 ,DFB
2 ,DFB

3 }.

Theorem 2.1. [50] Given a fixed d0 ∈ S2 and a reference ball B, the far-field pattern
with respect to the incident field ui(x; d0) and vi(x; z) are denoted by u∞Dj∪B(x̂; d0),

and v∞Dj∪B(x̂; z), j = 1, 2, respectively. Suppose that

|u∞D1∪B(x̂; d0)| =|u∞D2∪B(x̂; d0)|, ∀x̂ ∈ S2,
|v∞D1∪B(x̂; z)| =|v∞D2∪B(x̂; z)|, ∀(x̂, z) ∈ S2 ×Π,

|u∞D1∪B(x̂; d0) + v∞D1∪B(x̂; z)| =|u∞D2∪B(x̂; d0) + v∞D2∪B(x̂; z)|, ∀(x̂, z) ∈ S2 ×Π.

Then we have

(i) If D1 and D2 are two obstacles with boundary conditions B1 and B2 respec-
tively, and B is sound-soft, then D1 = D2 and B1 = B2.

(ii) If D1 and D2 are two inclusions with refractive indices n1 and n2 respectively,
and B = B(x0, R) is a homogeneous medium with refractive index n0 > 0
such that 2kR(n0 + 1) < π, then n1 = n2.

To resolve non-uniqueness issues, the idea of utilizing the superposition of distinct
incident plane waves was proposed in [56], which led to the multi-frequency Newton



2154 DEYUE ZHANG AND YUKUN GUO

iteration algorithm [56]. Moreover, by the superposition of two incident plane waves,
uniqueness results were established in [46] under some a priori assumptions.

We would like to point out that the idea of adding a reference ball to the scattering
system in [50] was motivated by [33] and [38, 39]. Later, the reference ball technique
was used in [47] to alleviate the requirement of the a priori assumptions in [46].
Recently, similar strategies of adding reference objects or sources to the scattering
system have also been intensively applied to the theoretical analysis and numerical
approaches for different models of phaseless inverse scattering problems [15, 13, 20,
21, 51, 53, 14].

3. Superposition of point sources. Next we will deal with the uniqueness issue
concerning the inverse acoustic scattering problems with point excitation sources
and associated phaseless near-field measurements. In optics and engineering ar-
eas, the phaseless inverse scattering with near-field data is also known as phase
retrieval problem [35]. The numerical studies on the inverse scattering problems
with phaseless near-field data are intensive (see, e.g., [8, 7, 10, 9, 40, 45]), whereas
few theoretical investigations have been made on the uniqueness aspects.

A uniqueness result was established in [25] to the reconstruction of a potential
with the phaseless near-field data for point sources on a spherical surface and an
interval of frequencies, which was extended to the determination of wave speed in
generalized 3-D Helmholtz equation [26]. The uniqueness of a coefficient inverse
scattering problem with phaseless near-field data was established in [28]. We also
refer to [27, 38, 39] for the inversion algorithms for the inverse medium scattering
problems with modulus-only near-field data. The stability analysis for linearized
near-field phase retrieval in X-ray phase contrast imaging was given in [36].

In this section, we will be concerned the uniqueness via superposition of incident
point sources, which does not rely on any additional reference/interfering scatterer.
Toward establishing the uniqueness for exterior inverse scattering problems, su-
perposing certain point sources has the capability of providing more information
and overcoming the indispensability of incorporating a reference ball in the pre-
vious section. By introducing a general admissible surface/curve, along with the
superposition of point sources, we proved that the bounded scatterer (impenetrable
obstacle or medium inclusion) and the locally perturbed half-plane (locally rough
surface) could be uniquely determined from the phaseless near-field data [52]. The
uniqueness can be also established by the superposition of incident point sources
and phaseless far-field data, see [44]. For the uniqueness of inverse scattering by
locally rough surfaces with phaseless far-field data, we refer to [47]. The crux of our
study is the utilization of limited-aperture phaseless near-field data co-produced by
the scatterer and point sources. A related study on the electromagnetic case can
be found in [48].

The following definition of admissible surfaces is needed.

Definition 3.1 (Admissible surface). An open surface Γ is called an admissible
surface with respect to domain Ω if

(i) Ω ⊂ R3\D is bounded and simply-connected;
(ii) ∂Ω is analytic homeomorphic to S2;

(iii) Ω is non-resonant, i.e., k2 is not a Dirichlet eigenvalue of −∆ in Ω;
(iv) Γ ⊂ ∂Ω is a two-dimensional analytic manifold with non-vanishing measure.

For a generic point z ∈ R3\D, recall that the incident field due to the point
source located at z is given by



UNIQUENESS IN PHASELESS INVERSE SCATTERING 2155

Φ(x; z) :=
eik|x−z|

4π|x− z|
, x ∈ R3\(D ∪ {z}),

Denote by vsD(x; z) and v∞D (x̂; z) the near-field and far-field pattern generated by
D corresponding to the incident field Φ(x; z). Define

v(x; z) := vsD(x; z) + Φ(x; z), x ∈ R3\(D ∪ {z})

and

v∞(x̂; z) := v∞D (x̂; z) + Φ∞(x̂; z), x̂ ∈ S2,
where Φ∞(x̂, z) := e−ikx̂·z/(4π) is the far-field pattern of Φ(x; z).

For two generic and distinct source points z1, z2 ∈ R3\D, we denote by

vi(x; z1, z2) := Φ(x; z1) + Φ(x; z2), x ∈ R3\(D ∪ {z1} ∪ {z2}),

the superposition of these point sources. Then, by the linearity of direct scattering
problem, the near- and far-field co-produced by D and the incident wave vi(x; z1, z2)
are respectively given by

v(x; z1, z2) :=v(x; z1) + v(x; z2), x ∈ R3\(D ∪ {z1} ∪ {z2}).
v∞(x̂; z1, z2) :=v∞(x̂; z1) + v∞(x̂; z2), x̂ ∈ S2.

3.1. Bounded scatterer with far-field data. We first outline the results for
recovering a bounded scatterer from phaseless far-field data. Following [44], we
would like to remark that the phaseless data |v∞D (x̂, z) + Φ∞(x̂, z)| is usually ob-
tainable in practice, while the phaseless data |v∞D (x̂, z)| cannot be directly mea-
sured. Hence, in our opinion, it would be more meaningful to use modulus-only
data |v∞(x̂, z)| = |v∞D (x̂, z) + Φ∞(x̂, z)|.

Definition 3.2 (Far-field datasets). For a fixed wavenumber k > 0 and a fixed
z0 ∈ R3\(D ∪ Γ), define

DF
1 := {|v∞(x̂; z0)| : x̂ ∈ S2},

DF
2 := {|v∞(x̂; z)| : x̂ ∈ S2, z ∈ Γ},

DF
3 := {|v∞(x̂; z0) + v∞(x̂; z)| : x̂ ∈ S2, z ∈ Γ},

where Γ is an admissible surface.

The phaseless inverse scattering problems are listed in Problems 3.1 and 3.2.
These problems are depicted in Figure 2 as an illustration.

Problem 3.1 (Inverse obstacle scattering with far-field data). Let D be the im-
penetrable obstacle with boundary condition B. Given the phaseless far-field data
triple {DF

1 ,DF
2 ,DF

3 } due to the obstacle D, determine the location and shape ∂D as
well as the boundary condition B for the obstacle.

Problem 3.2 (Phaseless inverse medium scattering with far-field data). Let D
be the inhomogeneous medium with refractive index n. Given the phaseless far-field
data triple {DF

1 ,DF
2 ,DF

3 } due to the inhomogeneity D, determine the refractive index
n for the medium inclusion.

The following theorem tells us that Problem 3.1 (resp. Problem 3.2) admits a
unique solution, namely, the geometrical and physical information of the obstacle
(resp. the refractive index for the medium) can be uniquely determined from the
far-field data triple {DF

1 ,DF
2 ,DF

3 }.
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D

Ω

Γ

z0

z

vi(·; z0, z)

|v∞(·; z0, z)|, |x| → ∞

Figure 2. An illustration of the inverse scattering with a bounded
scatterer and far-field measurements.

Theorem 3.1. [44] For two scatterers D1 and D2, suppose that the corresponding
far-field patterns satisfy that

|v∞1 (x̂; z0)| =|v∞2 (x̂; z0)|, ∀x̂ ∈ S2,
|v∞1 (x̂; z)| =|v∞2 (x̂; z)|, ∀(x̂, z) ∈ S2 × Γ,

|v∞1 (x̂; z0) + v∞1 (x̂; z)| =|v∞2 (x̂; z0) + v∞2 (x̂; z)|, ∀(x̂, z) ∈ S2 × Γ

for an admissible surface Γ and an arbitrarily fixed z0 ∈ R3\(D∪Γ). Then we have

(i) If D1 and D2 are two impenetrable obstacles with boundary conditions B1 and
B2 respectively, then D1 = D2 and B1 = B2.

(ii) If D1 and D2 are two medium inclusions with refractive indices n1 and n2
respectively, then n1 = n2.

3.2. Bounded scatterers with near-field data. We then talk about the inverse
scattering problems for a bounded scatterer with near-field data. Let D be the im-
penetrable obstacle with boundary condition B or the inhomogeneous medium with
refractive index n. The mathematical formulation of forward scattering problems
can be found in Section 2.

Definition 3.3 (Near-field datasets for a bounded scatterer). Assume that Γ and Σ
are admissible surfaces with respect to Ω and G, respectively, such that Ω∩G = ∅.
Define

DN
1 := {|v(x; z0)| : x ∈ Σ},

DN
2 := {|v(x; z)| : x ∈ Σ, z ∈ Γ},

DN
3 := {|v(x; z0) + v(x; z)| : x ∈ Σ, z ∈ Γ}

for a fixed wavenumber k > 0 and a fixed z0 ∈ R3\(D ∪ Γ ∪ Σ).

With these configurations, we formulate the phaseless inverse scattering problems
as follows.
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Figure 3. An illustration of the inverse scattering with a bounded
scatterer and near-field measurements.

Problem 3.3 (Inverse obstacle scattering with near-field data). Let D be the im-
penetrable obstacle with boundary condition B. Given the phaseless near-field triple
{DN

1 ,DN
2 ,DN

3 } due to the obstacle D, determine the location and shape ∂D as well
as the boundary condition B for the obstacle.

Problem 3.4 (Inverse medium scattering with near-field data). Let D be the in-
homogeneous medium with refractive index n. Given the phaseless near-field triple
{DN

1 ,DN
2 ,DN

3 } due to the inhomogeneity D, determine the refractive index n for the
medium inclusion.

We refer to Figure 3 for an illustration of the geometry setting of Problems 3.3
and 3.4.

Now we present the uniqueness results on phaseless inverse scattering. The fol-
lowing theorem asserts that Problem 3.3 and Problem 3.3 admits a unique solu-
tion respectively, namely, the geometrical and physical information of the scatterer
boundary or the refractive index for the medium can be simultaneously and uniquely
determined from near-field data {DN

1 ,DN
2 ,DN

3 }. For similar studies on phaseless in-
verse problem with superimposed/interfering waves, we refer to [43, 48].

Theorem 3.2. [52] Assume that Γ and Σ are admissible surfaces with respect to
Ω and G respectively, such that Ω ∩G = ∅. For two scatterers D1 and D2, suppose
that

|v1(x; z0)| =|v2(x; z0)|, ∀x ∈ Σ,

|v1(x; z)| =|v2(x; z)|, ∀(x, z) ∈ Σ× Γ,

|v1(x; z0) + v1(x; z)| =|v2(x; z0) + v2(x; z)|, ∀(x, z) ∈ Σ× Γ,

for an arbitrarily fixed z0 ∈ R3\(D ∪ Γ ∪ Σ). Then we have

(i) If D1 and D2 are two impenetrable obstacles with boundary conditions B1 and
B2 respectively, then D1 = D2 and B1 = B2.

(ii) If D1 and D2 are two medium inclusions with refractive indices n1 and n2
respectively, then n1 = n2.
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Remark 1. In fact Theorem 3.2 (ii) is concerned with the uniqueness for a phaseless
coefficient inverse problem of determining the coefficient n in the Helmholtz equa-
tion. It is well known that among all inverse problems, with phase and without phase
information, the problems about finding coefficients of PDEs are the most challeng-
ing ones. So, Theorem 3.2 does not come for “free”. In the sense of cardinality
counting, the main simplifying assumption in it is of course the over-determination
of data: the data depend on more variables than the unknown coefficient. In this
regard, the unique method at this point of time allowing to prove uniqueness for co-
efficient inverse problems with non-overdetermined data is the Bukhgĕım-Klibanov
method [5], also see a survey in [23]. As to the phaseless case, the single paper
addressing this issue is the paper [24]. What is done in [24] is that first, the phase
is determined. And, second, reference to [23] is given.

3.3. Locally perturbed half-planes. This subsection deals with the model scat-
tering problem of a locally perturbed half-plane. Assume that the real-valued func-
tion f ∈ C2(R) has a compact support. Let Γ = {x = (x1, x2) ∈ R2| x2 =
f(x1), x1 ∈ R} be the locally perturbed curve and D = {x ∈ R2| x2 > f(x1), x1 ∈
R} be the locally perturbed half-plane. Denote by Γc = {x ∈ R2| x2 = 0} and then
Γp = Γ\Γc is the local perturbation. For a generic point z ∈ D, the incident field
ui due to the point source located at z is given by

ui(x; z) :=
i

4
H

(1)
0 (k|x− z|), x ∈ D\{z},

which is the 2D fundamental solution to the Helmholtz equation. Here H
(1)
0 signifies

the Hankel function of the first kind and order zero. Then the scattering problem
can be formulated as: find the scattered field us such that

∆us + k2us =0 in D, (9)

Bcu =0 on Γc, (10)

Bpu =0 on Γp, (11)

lim
r=|x|→∞

√
r

(
∂us

∂r
−ikus

)
= 0, (12)

where u = ui + us denotes the total field. The boundary operators Bc and Bp

appeared in (10)-(11) are defined by

Bcu :=

u, for a perturbation of sound-soft type,
∂u

∂ν
, for a perturbation of sound-hard type,

Bpu :=

u, on Γp,D ,
∂u

∂ν
+ λu, on Γp,I ,

(13)

where ν is the unit normal on Γ directed into D, Γp,D ∪ Γp,I = Γp, Γp,D ∩ Γp,I = ∅,
λ ∈ C(Γp,I) and Imλ ≥ 0. It can be seen that the mixed boundary condition (13)
is rather general since it covers the usual Dirichlet/sound-soft boundary condition
(Γp,I = ∅), the Neumann/sound-hard boundary condition (Γp,D = ∅ and λ = 0),
and the impedance boundary condition (Γp,D = ∅ and λ 6= 0).

The well-posedness of scattering problem (9)–(12) in various specific scenarios can
be established by the variational method or the integral equation method [3, 41, 54].
We now consider the inverse scattering problem by the locally perturbed half-plane
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for incident point sources with limited-aperture phaseless near-field data. Analogous
to Definition 3.1, the admissible curves need to be introduced [52].

Definition 3.4 (Admissible curve). An open curve Λ is called an admissible curve
with respect to domain Ω if

(i) Ω ⊂ D is bounded and simply-connected;
(ii) ∂Ω is analytic homeomorphic to the unit circle S;

(iii) Ω is non-resonant, i.e., k2 is not a Dirichlet eigenvalue of −∆ in Ω;
(iv) Λ ⊂ ∂Ω is a one-dimensional analytic manifold with non-vanishing measure.

Similar to the arguments in the previous section, for two generic and distinct
source points z1, z2 ∈ D, we denote by

ui(x; z1, z2) := ui(x; z1) + ui(x; z2), x ∈ D\({z1} ∪ {z2}),

the superposition of them. By the linearity of direct scattering problem, the total
near-field is expressed by

u(x; z1, z2) := u(x; z1) + u(x; z2), x ∈ D\({z1} ∪ {z2}).

The phaseless datasets are analogous as well.

Definition 3.5 (Near-field datasets for locally perturbed half-plane). Assume that
Γ and Σ are admissible surfaces with respect to Ω and G, respectively, such that
Ω ∩G = ∅. Define

DNL
1 := {|u(x; z0)| : x ∈ Σ},

DNL
2 := {|u(x; z)| : x ∈ Σ, z ∈ Λ},

DNL
3 := {|u(x; z0) + u(x; z)| : x ∈ Σ, z ∈ Λ}

for a fixed wavenumber k > 0 and a fixed z0 ∈ D\(Λ ∪ Σ).

The formulation of the phaseless inverse scattering problems under consideration
is given by the following problem, which is geometrically illustrated in Figure 4.

Problem 3.5 (Inverse scattering by locally perturbed half-planes). Let Γ be the
locally perturbed curve with boundary condition Bc and Bp. Assume that Λ and
Σ are admissible curves with respect to Ω and G, respectively. Given the near-field
data triple {DNL

1 ,DNL
2 ,DNL

3 }, determine the locally perturbed curve Γ as well as the
boundary condition Bc and Bp.

Let Γj = {x ∈ R2 : x2 = fj(x1), x1 ∈ R} be the locally perturbed curve with
compactly supported function fj ∈ C2(R), j = 1, 2. Denote by Dj = {x ∈ R2 : x2 >
fj(x1), x1 ∈ R} the corresponding domain above Γj , j = 1, 2, and by D0 = D1∩D2.
Denote by usj and uj the scattered field and the total field produced by Γj , respec-

tively, corresponding to the incident field ui(x; z), j = 1, 2. The following theorem
shows that Problem 3.5 admits a unique solution, in other words, the geometrical
and physical information of the locally perturbed plane can be simultaneously and
uniquely determined from the phaseless near-field data {DNL

1 ,DNL
2 ,DNL

3 }.

Theorem 3.3. [52] Let Γ1 and Γ2 be two locally perturbed curves with boundary
conditions Bc,1,Bp,1 and Bc,2,Bp,2, respectively. Assume that Λ and Σ are admis-

sible curves with respect to Ω and G, respectively, such that Ω ⊂⊂ D0, G ⊂⊂ D0
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Figure 4. An illustration of the phaseless inverse scattering by a
locally perturbed half-plane.

and Ω ∩G = ∅. Suppose that the corresponding total near-fields satisfy that

|u1(x; z0)| =|u2(x; z0)|, ∀x ∈ Σ,

|u1(x; z)| =|u2(x; z)|, ∀(x, z) ∈ Σ× Λ,

|u1(x; z0) + u1(x; z)| =|u2(x; z0) + u2(x; z)|, ∀(x, z) ∈ Σ× Λ,

for an arbitrarily fixed z0 ∈ D0\(Λ ∪ Σ). Then we have Γ1 = Γ2, Bc,1 = Bc,2 and
Bp,1 = Bp,2.

4. An interior problem. In this last section, a recent result concerning phaseless
inverse cavity scattering problems will be presented [55]. To our knowledge, this
is the first uniqueness result in inverse cavity scattering problems with phaseless
data. As mentioned in the previous sections, the reference ball approach and the
superposition of emanating point sources are crucial ingredients for the success of
establishing uniqueness for phaseless exterior inverse scattering problems. For the
interior problem of an impenetrable cavity, it is reasonable to combine these two
strategies in order to guarantee the uniqueness. To this end, we bring together four
main ingredients in our analysis: utilization of the reference ball technique, super-
position of point sources, the reciprocity relations and the singularity of the total
fields. In particular, an impedance reference ball plays an exceptionally important
role in our analysis and thus irreplaceable. We refer the interested reader to [55]
for more details.

We first formulate the model cavity scattering problem. Let D ⊂ R3 be an open
and simply connected domain with C2 boundary ∂D. Then, the interior scattering
problem for cavities can be stated as: given the incident field ui, find the scattered
field us which satisfies the boundary value problem:

∆us + k2us =0 in D, (14)

Bu =0 on ∂D, (15)

where u = ui + us denotes the total field and k > 0 is the wavenumber. Here B in
(15) is the boundary operator defined by

Bu :=

u, for a sound-soft cavity,
∂u

∂ν
+ λu, for an impedance cavity,

(16)



UNIQUENESS IN PHASELESS INVERSE SCATTERING 2161

where ν is the unit outward normal to ∂D, and λ ∈ C(∂D) is the impedance function
satisfying =(λ) ≥ 0. This boundary condition 16 covers the Dirichlet/sound-soft
type, the Neumann/sound-hard type (λ = 0), and the impedance type (λ 6= 0).
The existence of a solution to the direct scattering problem 14–15 is well known
(see, e.g., [12]).

To introduce the interior inverse scattering problem for incident point sources
with limited-aperture phaseless near-field data, we again employ a reference ball B
as an extra artificial object to the scattering system such that B ⊂⊂ D with the
impedance boundary condition

∂u

∂ν
+ iλ0u = 0 on ∂B, (17)

where λ0 is a positive constant. Similar to the previous sections, we also need
Definition 3.3 as an interior admissible surface.

The superposition of point sources are almost identical to the previous section.
For a generic point z ∈ D\B, the incident field ui due to the point source located
at z is given by ui(x; z) = Φ(x; z), x ∈ D\(B ∪ {z}). Denote by us(x; z) the
near-field generated by D and B corresponding to the incident field ui(x; z). Let
u(x; z) = us(x; z) + ui(x; z), x ∈ D\(B ∪ {z}) be the total field.

For two generic and distinct source points z1, z2 ∈ D\B, we denote by

ui(x; z1, z2) := ui(x; z1) + ui(x; z2), x ∈ D\(B ∪ {z1} ∪ {z2}),

the superposition of these point sources. Once again, by the linearity of direct
scattering problem, the near-field co-generated by D, B and the incident wave
ui(x; z1, z2) is written as

u(x; z1, z2) := u(x; z1) + u(x; z2), x ∈ D\(B ∪ {z1} ∪ {z2}).

Definition 4.1 (Near-field datasets for the cavity). Assume that Γ and Σ are
admissible surfaces with respect to Ω and G, respectively, such that Ω ⊂⊂ G and
G ⊂⊂ D\B. Define

DC
1 := {|u(x; z0)| : x ∈ Σ},

DC
2 := {|u(x; z)| : x ∈ Σ, z ∈ Γ},

DC
3 := {|u(x; z0) + u(x; z)| : x ∈ Σ, z ∈ Γ}

for a fixed wavenumber k > 0 and a fixed z0 ∈ D\(B ∪ Γ ∪ Σ).

With these preparations, the inverse problem under consideration is formulated
as the following phaseless interior problems. The illustration is shown in Figure 5.

Problem 4.1 (Inverse scattering for cavities). Let D be the impenetrable cavity with
boundary condition B. Given the data triple {DC

1 ,DC
2 ,DC

3 }, determine the location
and shape ∂D as well as the boundary condition B for the cavity.

A rigorous proof shows that Problem 4.1 admits a unique solution, namely, the ge-
ometrical and physical information of the cavity can be simultaneously and uniquely
determined from the phaseless data {DC

1 ,DC
2 ,DC

3 }}. To sum up, we end this section
by the following uniqueness theorem.

Theorem 4.1. [55] Let D1 and D2 be two impenetrable cavities with boundary
conditions B1 and B2, respectively. Assume that Γ and Σ are admissible surfaces
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Figure 5. An illustration of the interior inverse scattering problem.

with respect to Ω and G, respectively, such that Ω ⊂⊂ G and G ⊂⊂ (D1 ∩D2)\B.
Suppose that the corresponding near-fields satisfy that

|u1(x; z0)| =|u2(x; z0)|, ∀x ∈ Σ,

|u1(x; z)| =|u2(x; z)|, ∀(x, z) ∈ Σ× Γ

|u1(x; z0) + u1(x; z)| =|u2(x; z0) + u2(x; z)|, ∀(x, z) ∈ Σ× Γ

for an arbitrarily fixed z0 ∈ (D1 ∩ D2)\(B ∪ Γ ∪ Σ). Then we have D1 = D2 and
B1 = B2.

5. Conclusion. The phaseless inverse scattering problems are theoretically and
practically important. Nevertheless, being lack of phase information in measured
data makes it difficult to resolve the uniqueness issue. This paper briefly reviews
some recent developments in this field by summarizing the results obtained so far
in a series of our publications. Intrinsically speaking, our proofs of the aforemen-
tioned uniqueness results hinge on the crux of decoupling the phaseless data via a
polarization identity and with an introduction of an additional degree of freedom in
the measurement, e.g., with a reference ball, with another point source/plane wave
or measurement surface. Consequently, the desired uniqueness can be established
by the existing uniqueness results with phase information.

In our view, there are still some open problems in this intriguing and challenging
field. Therefore, we finally propose several more topics from our perspective that
are interesting for further investigation.

Problem 5.1. Can one uniquely determine the obstacle using the phaseless far-field
data due to incident plane waves with distinct directions with a fixed wavenumber
and a reference ball?
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Although there exist numerical results showing that the target obstacle can be
accurately reconstructed without any superposition of waves [15], a rigorously math-
ematical answer to Problem 5.1, to our best knowledge, is still open.

Problem 5.2. Given the a priori information that the obstacle is of general sound-
soft or sound-hard polygon or polyhedron type, can the obstacle be uniquely deter-
mined using less phaseless data due to point sources/plane waves in conjunction
with a reference object?

Under the assumption of physical optics approximation, one can indeed deter-
mine the exterior unit normal vector of each side/face of the polygonal obstacle from
phaseless backscattering data corresponding to a few incident plane waves with suit-
ably chosen incoming directions [31, 32]. By incorporating a reference ball into the
scattering system, the phaseless data triple such as the one defined in Definition
2.3 would probably involve redundant data for recovering a polygon/polyhedron.
Thus it would be interesting to investigate the proper choice of the dataset so as to
establish the corresponding uniqueness.

Problem 5.3. For the determinations of periodic structures in inverse diffraction
grating problems, is it possible to develop similar reference object techniques to ob-
tain the uniqueness from associated amplitude information of scattering data?

A number of inversion methods have been proposed to numerically reconstruct
the grating profiles from phaseless data, e.g., [2, 4, 57] but the theoretical study
on the uniqueness seems to be very limited. Whilst various inversion approaches
for imaging bounded scatterers can be modified to find unbounded structures, it
is hence plausible to consider devising novel methodologies with the techniques
presented in this paper.
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