Process-based Integrated Assessment Models (IAMs) play a crucial role in climate agenda-setting and progress monitoring. They advise climate negotiations, inform nationally determined contributions (NDCs), and help create scenarios for central banks. Recent developments have enhanced IAMs' policy scope and accuracy, including the incorporation of industrial policies, improved sectoral details, and modeling of consumer behavior. Despite these advancements, challenges remain, particularly in improving spatio-temporal and sectoral resolution, adapting to fast-changing sector-specific policies, and addressing complex dynamics beyond the traditional techno-economic cost-minimization framework. This literature review explores Directed Technical Change (DTC) growth models, Agent-Based Modeling (ABM), and game theory to complement mainstream IAM approaches, especially in integrating political economy considerations. DTC emphasizes the role of public research and development (R&D) investment in supporting early-stage mitigation technologies. ABM highlights the decision-making processes and behaviors of heterogeneous agents, while game theory examines market dynamics, such as newcomer vs. incumbent competition, strategic pricing, and resource extraction. While these models cannot replace IAMs, they can broaden the scenario design space and improve the complexity and policy relevance of IAM-based mitigation modeling.
Citation: Chen Chris Gong, Behnaz Minooei Fard, Ibrahim Tahri. Improving accuracy, complexity and policy relevance: a literature survey on recent advancements of climate mitigation modeling[J]. AIMS Environmental Science, 2025, 12(2): 276-320. doi: 10.3934/environsci.2025014
Process-based Integrated Assessment Models (IAMs) play a crucial role in climate agenda-setting and progress monitoring. They advise climate negotiations, inform nationally determined contributions (NDCs), and help create scenarios for central banks. Recent developments have enhanced IAMs' policy scope and accuracy, including the incorporation of industrial policies, improved sectoral details, and modeling of consumer behavior. Despite these advancements, challenges remain, particularly in improving spatio-temporal and sectoral resolution, adapting to fast-changing sector-specific policies, and addressing complex dynamics beyond the traditional techno-economic cost-minimization framework. This literature review explores Directed Technical Change (DTC) growth models, Agent-Based Modeling (ABM), and game theory to complement mainstream IAM approaches, especially in integrating political economy considerations. DTC emphasizes the role of public research and development (R&D) investment in supporting early-stage mitigation technologies. ABM highlights the decision-making processes and behaviors of heterogeneous agents, while game theory examines market dynamics, such as newcomer vs. incumbent competition, strategic pricing, and resource extraction. While these models cannot replace IAMs, they can broaden the scenario design space and improve the complexity and policy relevance of IAM-based mitigation modeling.
| [1] |
Lisette van Beek, Maarten Hajer, et al. (2020) Anticipating futures through models: the rise of integrated assessment modelling in the climate science-policy interface since 1970. Global Environ Chang 65:102191. https://doi.org/10.1016/j.gloenvcha.2020.102191 doi: 10.1016/j.gloenvcha.2020.102191
|
| [2] |
Jean-Francois Mercure, Florian Knobloch, Hector Pollitt, et al. (2019) Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use. Clim Policy 19: 1019–1037. https://doi.org/10.1080/14693062.2019.1617665 doi: 10.1080/14693062.2019.1617665
|
| [3] |
Ajay Gambhir, Isabela Butnar, Pei-Hao Li, et al. (2019) A review of criticisms of integrated assessment models and proposed approaches to address these, through the lens of beccs. Energies 12. https://doi.org/10.3390/en12091747 doi: 10.3390/en12091747
|
| [4] |
Sarah Hafner, Annela Anger-Kraavi, Irene Monasterolo, et al. (2020) Emergence of New Economics Energy Transition Models: A Review. Ecol Econ 177. https://doi.org/10.1016/j.ecolecon.2020.106779 doi: 10.1016/j.ecolecon.2020.106779
|
| [5] |
I Keppo, I Butnar, N Bauer, et al. (2021) Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models. Environ Res Lett 16: 053006. https://doi.org/10.1088/1748-9326/abe5d8 doi: 10.1088/1748-9326/abe5d8
|
| [6] |
Isak Stoddard, Kevin Anderson, Stuart Capstick, et al. (2021) Three decades of climate mitigation: Why haven't we bent the global emissions curve? Annu Rev Environ Resour 46: 653–689. https://doi.org/10.1146/annurev-environ-012220-011104 doi: 10.1146/annurev-environ-012220-011104
|
| [7] |
Michael Grubb, Claudia Wieners, Pu Yang (2021) Modeling myths: On dice and dynamic realism in integrated assessment models of climate change mitigation. WIREs Clim Chang 12: e698. https://doi.org/10.1002/wcc.698 doi: 10.1002/wcc.698
|
| [8] |
Roberto Pasqualino, Cristina Peñasco, Peter Barbrook-Johnson, et al. (2024) Modelling induced innovation for the low-carbon energy transition: a menu of options. Environ Res Lett 19: 073004. https://doi.org/10.1088/1748-9326/ad4c79 doi: 10.1088/1748-9326/ad4c79
|
| [9] |
Ploy Achakulwisut, Peter Erickson, Céline Guivarch, et al. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat Commun, 14, 09 2023. https://doi.org/10.1038/s41467-023-41105-z doi: 10.1038/s41467-023-41105-z
|
| [10] | Irene Monasterolo, María J. Nieto, Edo Schets (2023) The good, the bad and the hot house world: conceptual underpinnings of the NGFS scenarios and suggestions for improvement. Occasional Papers 2302, Banco de España, January 2023. https://doi.org/10.53479/29533 |
| [11] | E. Byers, E. Brutschin, F. Sferra, et al. (2023) Scenarios processing, vetting and feasibility assessment for the european scientific advisory board on climate change. Iiasa report, IIASA, Laxenburg, Austria, June 2023. |
| [12] | European Environment Agency (2023) Scientific advice for the determination of an EU-wide 2040 climate target and a greenhouse gas budget for 2030–2050. Publications Office of the European Union. |
| [13] | Renato Rodrigues, Robert Pietzcker, Joanna Sitarz, et al. (2023) 2040 greenhouse gas reduction targets and energy transitions in line with the eu green deal, 07 2023. https://doi.org/10.21203/rs.3.rs-3192471/v1 |
| [14] | Jiankun He, Zheng Li, Xiliang Zhang (2022) China's Long-Term Low-Carbon Development Strategies and Pathways: Comprehensive Report. China Environment Publishing Group Company, Limited. |
| [15] | Oliver Richters, Elmar Kriegler, Alaa Al Khourdajie, et al. (2023) NGFS Climate Scenarios Technical Documentation V4.2, November 2023. |
| [16] |
Charlie Wilson, Céline Guivarch, Elmar Kriegler, et al. (2021) Evaluating process-based integrated assessment models of climate change mitigation. Clim Change 166. https://doi.org/10.1007/s10584-021-03099-9 doi: 10.1007/s10584-021-03099-9
|
| [17] |
Glen Peters, Alaa Al Khourdajie, Ida Sognnaes, et al. (2323) Ar6 scenarios database: an assessment of current practices and future recommendations. npj Climate Action 2. https://doi.org/10.1038/s44168-023-00050-9 doi: 10.1038/s44168-023-00050-9
|
| [18] | V. Krey, P. Havlik, P. N. Kishimoto, et al. (2020) MESSAGEix-GLOBIOM Documentation – 2020 release. Technical report, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. |
| [19] | Gunnar Luderer, Nico Bauer, Lavinia Baumstark, et al. (2023) Remind - regional model of investments and development - version 3.2.0. |
| [20] |
J.-F. Mercure, H. Pollitt, U. Chewpreecha, et al. (2014) The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector. Energy Policy 73: 686–700. https://doi.org/10.1016/j.enpol.2014.06.029 doi: 10.1016/j.enpol.2014.06.029
|
| [21] | J. Hilaire, C. Bertram (2020) The remind-magpie model and scenarios for transition risk analysis. Technical report, Potsdam Institute for Climate Impact Research. |
| [22] | Bas van Ruijven, Ji ho Min (2020) The messageix-globiom model and scenarios for transition risk analysis. 2020. |
| [23] |
C. C. Gong, F. Ueckerdt, R. Pietzcker, et al. (2023) Bidirectional coupling of the long-term integrated assessment model regional model of investments and development (remind) v3.0.0 with the hourly power sector model dispatch and investment evaluation tool with endogenous renewables (dieter) v1.0.2. Geosci Model Dev 16: 4977–5033. https://doi.org/10.5194/gmd-16-4977-2023 doi: 10.5194/gmd-16-4977-2023
|
| [24] |
T. Brown, L. Reichenberg (2021) Decreasing market value of variable renewables can be avoided by policy action. Energy Econ 100: 105354. https://doi.org/10.1016/j.eneco.2021.105354 doi: 10.1016/j.eneco.2021.105354
|
| [25] | Chen Chris Gong, Falko Ueckerdt, Christoph Bertram, et al. (2024) Multi-level emission impacts of electrification and coal pathways in china's netzero transition. |
| [26] | I. Weber, J. Thie, J. Jauregui, et al. (2024) Carbon prices and inflation in a world of shocks-systemically significant prices and industrial policy targeting in germany. Bertelsmann Stiftung, Sustainable Social Market Economies, Gütersloh. |
| [27] | Falko Ueckerdt, Philipp Verpoort, Rahul Anantharaman, et al. (2022) On the cost competitiveness of blue and green hydrogen. https://doi.org/10.21203/rs.3.rs-1436022/v1 |
| [28] |
Jonas Meckling, Bentley B. Allan (2020) The evolution of ideas in global climate policy. Nat Clima Chang 10: 434–438. https://doi.org/10.1038/s41558-020-0739-7 doi: 10.1038/s41558-020-0739-7
|
| [29] |
John E T Bistline (2021) The importance of temporal resolution in modeling deep decarbonization of the electric power sector. Environ Res Lett 16: 084005. https://doi.org/10.1088/1748-9326/ac10df doi: 10.1088/1748-9326/ac10df
|
| [30] |
Y. Alimou, N. Maïzi, J.-Y. Bourmaud, et al. (2020) Assessing the security of electricity supply through multi-scale modeling: The times-antares linking approach. Appl Energy 279: 115717. https://doi.org/10.1016/j.apenergy.2020.115717 doi: 10.1016/j.apenergy.2020.115717
|
| [31] | M. Brinkerink (2020) Assessing 1.5–2 c scenarios of integrated assessment models from a power system perspective – linkage with a detailed hourly global electricity model. Monograph, IIASA, Laxenburg, Austria. |
| [32] |
P. Seljom, E. Rosenberg, L. E. Schäffer, et al. (2020) Bidirectional linkage between a long-term energy system and a short-term power market model. Energy, 198: 117311. https://doi.org/10.1016/j.energy.2020.117311 doi: 10.1016/j.energy.2020.117311
|
| [33] |
F. Guo, B. J. van Ruijven, B. Zakeri, et al. (2020) Implications of intercontinental renewable electricity trade for energy systems and emissions. Nature Energy 7 1144–1156. https://doi.org/10.1038/s41560-022-01136-0 doi: 10.1038/s41560-022-01136-0
|
| [34] |
A. Younis, R. Benders, J. Ramírez, et al. (2022) Scrutinizing the intermittency of renewable energy in a long-term planning model via combining direct integration and soft-linking methods for colombia's power system. Energies 15: 7604. https://doi.org/10.3390/en15207604 doi: 10.3390/en15207604
|
| [35] |
M. Brinkerink, B. Zakeri, D. Huppmann, et al. (2022) Assessing global climate change mitigation scenarios from a power system perspective using a novel multi-model framework. Environ Modell Softw 150: 105336. https://doi.org/10.1016/j.envsoft.2022.105336 doi: 10.1016/j.envsoft.2022.105336
|
| [36] |
M. Mowers, B. K. Mignone, D. C. Steinberg (2023) Quantifying value and representing competitiveness of electricity system technologies in economic models. Appl Energy 329: 120132. https://doi.org/10.1016/j.apenergy.2022.120132 doi: 10.1016/j.apenergy.2022.120132
|
| [37] | NewClimate Institute, Wageningen University and Research, and PBL Netherlands Environmental Assessment Agency (2323) Climate policy database. Technical report. |
| [38] | Ernest Orlando, Jayant. Sathaye, Tengfang T. Xu, et al. (2011) Bottom-up representation of industrial energy efficiency technologies in integrated assessment models for the cement sector. Lawrence Berkeley National Laboratory. |
| [39] |
Yiyi Ju, Masahiro Sugiyama, Etsushi Kato, et al. (2022) Job creation in response to japan's energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models. Appl Energy 318: 119178. https://doi.org/10.1016/j.apenergy.2022.119178 doi: 10.1016/j.apenergy.2022.119178
|
| [40] | Nur Firdaus Yiyi Ju, Tao Cao (2323) Industry's role in japan's energy transition: soft-linking gcam and national io table with extended electricity supply sectors. Econ Syst Res 1–21. |
| [41] | Simone Boldrini, George Krivorotov (2024) Long-run sectoral transition risk using a hybrid mrio/iam approach. 2024. https://doi.org/10.2139/ssrn.4811268 |
| [42] | F. Sferra, B. van Ruijven, K. Riahi (2021) Downscaling iams results to the country level - a new algorithm. Iiasa report, IIASA, Laxenburg, Austria, October 2021. |
| [43] | Climate Analytics (2023) 1.5$^{\circ}$C National Pathways Explorer. Technical report, Climate Analytics, 2023. |
| [44] |
Silvia Madeddu, Falko Ueckerdt, Michaja Pehl, et al. (2020) The co2 reduction potential for the european industry via direct electrification of heat supply (power-to-heat). Environ Res Lett 15. https://doi.org/10.1088/1748-9326/abbd02 doi: 10.1088/1748-9326/abbd02
|
| [45] |
Jay Fuhrman, Haewon McJeon, Scott C. Doney, et al. (2019) From zero to hero?: Why integrated assessment modeling of negative emissions technologies is hard and how we can do better. Front Clim 1. https://doi.org/10.3389/fclim.2019.00011 doi: 10.3389/fclim.2019.00011
|
| [46] |
Jay Fuhrman, Candelaria Bergero, Maridee Weber, et al. (2023) Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat Clim Chang 13: 1–10. https://doi.org/10.1038/s41558-023-01604-9 doi: 10.1038/s41558-023-01604-9
|
| [47] |
Saheed A. Gbadegeshin, Anas Al Natsheh, Kawtar Ghafel, et al. (2022) Overcoming the valley of death: A new model for high technology startups. Sustaina Futures 4: 100077. https://doi.org/10.1016/j.sftr.2022.100077 doi: 10.1016/j.sftr.2022.100077
|
| [48] | Enrica De Cian, Johannes Buhl, Samuel Carrara, et al. (2016) Knowledge creation between integrated assessment models and initiative-based learning - an interdisciplinary approach. Nota di Lavoro 66.2016, Milano. https://doi.org/10.2139/ssrn.2871828 |
| [49] |
Yueming Qiu, Laura D. Anadon (2012) The price of wind power in china during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization. Energy Econo 34: 772–785. https://doi.org/10.1016/j.eneco.2011.06.008 doi: 10.1016/j.eneco.2011.06.008
|
| [50] |
John Paul Helveston, Gang He, Michael R Davidson (2022) Quantifying the cost savings of global solar photovoltaic supply chains. Nature 612: 83—87. https://doi.org/10.1038/s41586-022-05316-6 doi: 10.1038/s41586-022-05316-6
|
| [51] | Efrem Castelnuovo, Marzio Galeotti, Gretel Gambarelli, et al. (2005) Learning-by-doing vs. learning by researching in a model of climate change policy analysis. Ecol Econo 54: 261–276. https://doi.org/10.1016/j.ecolecon.2004.12.036 Technological Change and the Environment. |
| [52] | Yixin Sun, Hongbo Duan (2024) Endogenous technological change in iams: Takeaways in the e3metl model. Energy Climate Management. |
| [53] |
Roland Sturm (1993) Nuclear power in Eastern Europe. Learning or forgetting curves? Energy Econ 15: 183–189. https://doi.org/10.1016/0140-9883(93)90004-B doi: 10.1016/0140-9883(93)90004-B
|
| [54] |
Mohamad Y. Jaber and Maurice Bonney (1997) A comparative study of learning curves with forgetting. Appl Math Model 21: 523–531. https://doi.org/10.1016/S0307-904X(97)00055-3 doi: 10.1016/S0307-904X(97)00055-3
|
| [55] |
C. Lanier Benkard (2000) Learning and forgetting: The dynamics of aircraft production. Am Econ Rev 90: 1034–1054. https://doi.org/10.1257/aer.90.4.1034 doi: 10.1257/aer.90.4.1034
|
| [56] |
José Ângelo Ferreira, Edson Luiz Valmorbida, Bruno Goulart Sato, et al. (2024) Forgetting curve models: A systematic review aimed at consolidating the main models and outlining possibilities for future research in production. Expert Syst 41: e13405. https://doi.org/10.1111/exsy.13405 doi: 10.1111/exsy.13405
|
| [57] |
Annika Stechemesser, Nicolas Koch, Ebba Mark, et al. (2024) Climate policies that achieved major emission reductions: Global evidence from two decades. Science 385: 884–892. https://doi.org/10.1126/science.adl6547 doi: 10.1126/science.adl6547
|
| [58] | R. Pietzcker, J. Feuerhahn, L. Haywood, et al. (2021) Ariadne-hintergrund: Notwendige co2-preise zum erreichen des europäischen klimaziels 2030. Technical report, Ariadne Project. |
| [59] | Yannis Dafermos, Maria Nikolaidi (2019) Fiscal policy and ecological sustainability: A post-keynesian perspective. FMM Working Paper 52, Düsseldorf. |
| [60] |
Michael Grubb, Alexandra Poncia, Paul Drummond, et al. (2023) Policy complementarity and the paradox of carbon pricing. Oxford Review of Economic Policy 39: 711–730. https://doi.org/10.1093/oxrep/grad045 doi: 10.1093/oxrep/grad045
|
| [61] | Julien Lefevre Briera Thibault. (2024) Credible climate policy commitments are needed for keeping long-term climate goals within reach. 2024. |
| [62] |
Matthias Kalkuhl, Ottmar Edenhofer, Kai Lessmann (2013) Renewable energy subsidies: Second-best policy or fatal aberration for mitigation? Resour Energy Econ 35: 217–234. https://doi.org/10.1016/j.reseneeco.2013.01.002 doi: 10.1016/j.reseneeco.2013.01.002
|
| [63] | D. Jewell, J. McCollum (2014) Report on improving the representation of existing energy policies (taxes and subsidies) in iams. Technical report, ADVANCE Deliverable No. 3.1. |
| [64] |
Christoph Bertram, Gunnar Luderer, Robert C. Pietzcker, et al. (2015) Complementing carbon prices with technology policies to keep climate targets within reach. Nat Clim Chang 5: 235–239. https://doi.org/10.1038/nclimate2514 doi: 10.1038/nclimate2514
|
| [65] |
Anselm Schultes, Marian Leimbach, Gunnar Luderer, et al. (2018) Optimal international technology cooperation for the low-carbon transformation. Clim Policy 18: 1165–1176. https://doi.org/10.1080/14693062.2017.1409190 doi: 10.1080/14693062.2017.1409190
|
| [66] | Runsen Zhang (2020) Chapter 2 - the role of the transport sector in energy transition and climate change mitigation: insights from an integrated assessment model. In Junyi Zhang, editor, Transport Energy Res, 15–30. https://doi.org/10.1016/B978-0-12-815965-1.00002-8 |
| [67] |
J.-F. Mercure, A. Lam, S. Billington, et al. (2018) Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ℃. Clima Change 151: 109–129. https://doi.org/10.1007/s10584-018-2262-7 doi: 10.1007/s10584-018-2262-7
|
| [68] |
K. Calvin, P. Patel, L. Clarke, et al. (2019) Gcam v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci Model Dev 12: 677–698. https://doi.org/10.5194/gmd-12-677-2019 doi: 10.5194/gmd-12-677-2019
|
| [69] | Aileen Lam. (2019) Modelling the impact of policy incentives on co2 emissions from passenger light duty vehicles in five major economies with a dynamic model of technological change. 2019. |
| [70] |
Runsen Zhang, Shinichiro Fujimori (2020) The role of transport electrification in global climate change mitigation scenarios. Environ Res Lett 15: 034019. https://doi.org/10.1088/1748-9326/ab6658 doi: 10.1088/1748-9326/ab6658
|
| [71] |
Marianna Rottoli, Alois Dirnaichner, Page Kyle, et al. (2021) Coupling a detailed transport model to the integrated assessment model remind. Environ Model Assess 26. https://doi.org/10.1007/s10666-021-09760-y doi: 10.1007/s10666-021-09760-y
|
| [72] |
Aileen Lam, Jean-Francois Mercure. (2021) Which policy mixes are best for decarbonising passenger cars? simulating interactions among taxes, subsidies and regulations for the united kingdom, the united states, japan, china, and india. Energy Res Soc Sci 75: 101951. https://doi.org/10.1016/j.erss.2021.101951 doi: 10.1016/j.erss.2021.101951
|
| [73] | Leon Rostek, Meta Thurid Lotz, Sabine Wittig, et al. (2022) A dynamic material flow model for the european steel cycle. Working Papers "Sustainability and Innovation" S07/2022, Fraunhofer Institute for Systems and Innovation Research (ISI). |
| [74] |
Shaohui Zhang, Bo-Wen Yi, Ernst Worrell, et al. (2019) Integrated assessment of resource-energy-environment nexus in china's iron and steel industry. J Clean Prod 232: 235–249. https://doi.org/10.1016/j.jclepro.2019.05.392 doi: 10.1016/j.jclepro.2019.05.392
|
| [75] |
Katerina Kermeli, Oreane Y. Edelenbosch, Wina Crijns-Graus, et al. (2022) Improving material projections in integrated assessment models: The use of a stock-based versus a flow-based approach for the iron and steel industry. Energy 239: 122434. https://doi.org/10.1016/j.energy.2021.122434 doi: 10.1016/j.energy.2021.122434
|
| [76] | Katrin E. Daehn, André Cabrera Serrenho, Julian M. Allwood (2017) How will copper contamination constrain future global steel recycling? Environ Sci Technol 51: 6599–6606. PMID: 28445647. https://doi.org/10.1021/acs.est.7b00997 |
| [77] |
Katrin Daehn, André Serrenho, Julian Allwood (2019) Finding the most efficient way to remove residual copper from steel scrap. Metall Maters Trans B 50: 1–16. https://doi.org/10.1007/s11663-019-01537-9 doi: 10.1007/s11663-019-01537-9
|
| [78] |
Paul Stegmann, Vassilis Daioglou, Marc Londo, et al. (2022) Plastic futures and their co2 emissions. Nature 612: 272–276. https://doi.org/10.1038/s41586-022-05422-5 doi: 10.1038/s41586-022-05422-5
|
| [79] |
G. Ünlü, F. Maczek, J. Min, et al. (2024) Messageix-materials v1.0.0: Representation of material flows and stocks in an integrated assessment model. EGUsphere 2024: 1–41. https://doi.org/10.5194/egusphere-2023-3035-supplement doi: 10.5194/egusphere-2023-3035-supplement
|
| [80] |
J. Farmer, Cameron Hepburn, Penny Mealy, et al. (2015) A third wave in the economics of climate change. Environ Resourc Econ 62: 329–357. https://doi.org/10.1007/s10640-015-9965-2 doi: 10.1007/s10640-015-9965-2
|
| [81] | Cambridge Econometrics. (2022) E3me model manual. Cambridge Econometrics: Cambridge, UK. |
| [82] |
Frank W. Geels, Frans Berkhout, Detlef van Vuuren (2016) Bridging analytical approaches for low-carbon transitions. Nat Clim Chang 6: 576–583. https://doi.org/10.1038/nclimate2980 doi: 10.1038/nclimate2980
|
| [83] |
Evelina Trutnevyte, Léon F. Hirt, Nico Bauer, et al. (2019) Societal transformations in models for energy and climate policy: The ambitious next step. One Earth 1: 423–433. https://doi.org/10.1016/j.oneear.2019.12.002 doi: 10.1016/j.oneear.2019.12.002
|
| [84] |
Ingrid Schulte, Ping Yowargana, Jonas Ø. Nielsen, et al. (2024) Towards integration? considering social aspects with large-scale computational models for nature-based solutions. Glob Sustain 7: e4. https://doi.org/10.1017/sus.2023.26 doi: 10.1017/sus.2023.26
|
| [85] |
Auke Hoekstra, Maarten Steinbuch, Geert Verbong (2017) Creating agent-based energy transition management models that can uncover profitable pathways to climate change mitigation. Complexity 2017: 1967645. https://doi.org/10.1155/2017/1967645 doi: 10.1155/2017/1967645
|
| [86] |
D. L. McCollum, A. Gambhir, J. Rogelj, et al. (2020) Energy modellers should explore extremes more systematically in scenarios. Nature Energy 5. https://doi.org/10.1038/s41560-020-0555-3 doi: 10.1038/s41560-020-0555-3
|
| [87] |
Richard Hanna, Robert Gross (2021) How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? implications for policy and practitioners. Energy Policy 149: 111984. https://doi.org/10.1016/j.enpol.2020.111984 doi: 10.1016/j.enpol.2020.111984
|
| [88] |
Ajay Gambhir, Gaurav Ganguly, Shivika Mittal (2022) Climate change mitigation scenario databases should incorporate more non-iam pathways. Joule 6: 2663–2667. https://doi.org/10.1016/j.joule.2022.11.007 doi: 10.1016/j.joule.2022.11.007
|
| [89] |
Vadim Vinichenko, Marta Vetier, Jessica Jewell, et al. (2023) Phasing out coal for 2° c target requires worldwide replication of most ambitious national plans despite security and fairness concerns. Environ Res Lett 18: 014031. https://doi.org/10.1088/1748-9326/acadf6 doi: 10.1088/1748-9326/acadf6
|
| [90] |
Greg Muttitt, James Price, Steve Pye, et al. (2023) Socio-political feasibility of coal power phase-out and its role in mitigation pathways. Nat Clim Chang 13: 1–8. https://doi.org/10.1038/s41558-022-01576-2 doi: 10.1038/s41558-022-01576-2
|
| [91] |
Stephen L. Bi, Nico Bauer, Jessica Jewell (2023) Coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum. Nat Clim Chang 13: 130–139. https://doi.org/10.1038/s41558-022-01570-8 doi: 10.1038/s41558-022-01570-8
|
| [92] |
Daron Acemoglu (2002) Directed technical change. Rev Econ Stud 69: 781–809. https://doi.org/10.1111/1467-937X.00226 doi: 10.1111/1467-937X.00226
|
| [93] | André Grimaud, Luc Rouge (2008) Environ Resourc Econ 41: 439–463. Environment, directed technical change and economic policy. https://doi.org/10.1007/s10640-008-9201-4 |
| [94] |
Johannes Behrens, Elisabeth Zeyen, Maximilian Hoffmann, et al. (2024) Reviewing the complexity of endogenous technological learning for energy system modeling. Adv Appl Energy 16: 100192. https://doi.org/10.1016/j.adapen.2024.100192 doi: 10.1016/j.adapen.2024.100192
|
| [95] | Raphael Calel, Antoine Dechezlepretre (2016) Environmental policy and directed technological change: evidence from the european carbon market. Rev Econ Stat 98: 173–191. |
| [96] |
Philippe Aghion, Antoine Dechezlepretre, David Hemous, et al. (2016) Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. J Polit Econ 124: 1–51. https://doi.org/10.1086/684581 doi: 10.1086/684581
|
| [97] | Daron Acemoglu, Ufuk Akcigit, Douglas Hanley, et al. (2023) Transition to clean technology. J Polit Econ 131: 143–199. |
| [98] | International Energy Agency (2023) World energy investment 2023. Report, IEA, Paris, May. |
| [99] | International Energy Agency. (2023) Energy technology perspectives 2023. Report, IEA, Paris, September. |
| [100] |
Sabrina T Howell (2017) Financing innovation: Evidence from r & d grants. Am Econ Rev 107: 1136–1164. https://doi.org/10.1257/aer.20150808 doi: 10.1257/aer.20150808
|
| [101] | Antoine Dechezleprêtre, Ralf Martin, Myra Mohnen (2017) Knowledge spillovers from clean and dirty technologies: A patent citation analysis. Grantham Research Institute on Climate Change and the Environment Working Paper 135. |
| [102] | Daron Acemoglu, Philippe Aghion, Lint Barrage, et al. (2021) Climate change, directed innovation and energy transition: The long-run consequences of the shale gas revolution. mimeo. |
| [103] |
Valentina Bosetti, Carlo Carraro, Marzio Galeotti, et al. (2006) A world induced technical change hybrid model. Energy J 27: 13–37. https://doi.org/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-2 doi: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-2
|
| [104] |
Valentina Bosetti, Carlo Carraro, Emanuele Massetti, et al. (2009) Optimal energy investment and r & d strategies to stabilize atmospheric greenhouse gas concentrations. Resourc Energy Econ 31: 123–137. https://doi.org/10.1016/j.reseneeco.2009.01.001 doi: 10.1016/j.reseneeco.2009.01.001
|
| [105] |
Feng Song, Zichao Yu, Weiting Zhuang, et al. (2021) The institutional logic of wind energy integration: What can china learn from the united states to reduce wind curtailment? Renew Sust Energ Rev 137: 110440. https://doi.org/10.1016/j.rser.2020.110440 doi: 10.1016/j.rser.2020.110440
|
| [106] |
Qi Zhang, Hailong Li, Lijing Zhu, et al. (2018) Factors influencing the economics of public charging infrastructures for ev – a review. Renew Sust Energ Rev 94: 500–509. https://doi.org/10.1016/j.rser.2018.06.022 doi: 10.1016/j.rser.2018.06.022
|
| [107] | Charles M. Macal, Michael J. North (2010) Tutorial on agent-based modelling and simulation. J Simul 4: 151–162. |
| [108] | Joshua M. Epstein, Robert Axtell (1996) Growing artificial societies: Social science from the bottom up. Brookings Institution Press; The MIT Press. https://doi.org/10.7551/mitpress/3374.001.0001 |
| [109] |
Eric Bonabeau (2002) Agent-based modeling: Methods and techniques for simulating human systems. Proc Nati Acad Sci, 99: 7280–7287. https://doi.org/10.1073/pnas.082080899 doi: 10.1073/pnas.082080899
|
| [110] | Nigel Gilbert, Klaus Troitzsch (2005) Simulation Soc Scientist. Open University Press. |
| [111] | Flaminio Squazzoni, Wander Jager, Bruce Edmonds (2014) Social simulation in the social sciences: A brief overview. 32. https://doi.org/10.1177/0894439313512975 |
| [112] | Steven F. Railsback, Volker Grimm (2012) Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press. |
| [113] | Christina Nägeli, Clara Camarasa, Yorick Ostermeyer (2021) An agent-based modeling framework for energy transitions in building stocks. Energy Build 250: 111273. |
| [114] | Jiankun Li, Yufeng Gao, Jiahai Yuan (2020) Agent-based modeling of china's coal phase-out. Energy Policy 140: 111402. |
| [115] | Yan Zhang, Hua Liao (2021) An agent-based modeling approach for understanding the policy impact on the diffusion of renewable energy technologies. Energy Policy 148: 111983. |
| [116] | Yong Chen, Dimitrios Zafirakis (2021) Agent-based modelling of energy systems integration. Appl Energy 290: 116723. |
| [117] |
Tatiana Filatova (2015) Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. Comput Environ Urban Syst 54: 397–413. https://doi.org/10.1016/j.compenvurbsys.2014.06.007 doi: 10.1016/j.compenvurbsys.2014.06.007
|
| [118] |
H Zhang, Y Vorobeychik (2019) Empirically grounded agent-based models of innovation diffusion: a critical review. Artif Intell Rev 52: 707–741. https://doi.org/10.1007/s10462-017-9577-z doi: 10.1007/s10462-017-9577-z
|
| [119] | F. Lamperti, V. Bosetti, A. Roventini, et al. (2019) The role of financial market regulation in the transition to a low-carbon economy. Econ Energy Environ Policy 61–82. |
| [120] | F. Lamperti, G. Dosi, M. Napoletano, et al. (2020) Climate change and the green transition in a keynesian, schumpeterian model. J Econ Dyn Control 114: 103890. |
| [121] |
K. Safarzynska, J. C. J. M. van den Bergh (2022) Abm-iam: Optimal climate policy under bounded rationality and multiple inequalities. Environ Res Lett 17: 094022. https://doi.org/10.1088/1748-9326/ac8b25 doi: 10.1088/1748-9326/ac8b25
|
| [122] |
Michał Czupryna, Samuel Fankhauser, Pablo Cristóbal Salas (2020) Agent-based integrated assessment modeling: A tool for exploring energy transitions. Energy Policy 137: 111090. https://doi.org/10.1016/j.enpol.2019.111090 doi: 10.1016/j.enpol.2019.111090
|
| [123] | Michał Czupryna, Samuel Fankhauser, Pablo Cristóbal Salas (2021) An agent-based integrated assessment model for studying interactions between climate and economic systems. Energy Policy 156: 112417. |
| [124] |
L. Gerdes, B. Rengs, M. Scholz-Wäckerle (2022) Labor and environment in global value chains: An evolutionary policy study with a three-sector and two-region agent-based macroeconomic model. Journal of Evolutionary Economics 32: 123–173. https://doi.org/10.1007/s00191-021-00750-7 doi: 10.1007/s00191-021-00750-7
|
| [125] | Christoph Schimeczek, Michael Sonnenschein (2020) AMIRIS – a simulation model for analyzing the market integration of renewable energies by simulating the electricity spot market. In 2020 17th International Conference on the European Energy Market (EEM), pages 1–6. IEEE. |
| [126] | Sara Giarola, Shivika Mittal, Adam Hawkes, Paul Deane, et al. (2021) The MUSE integrated assessment model for global energy systems: An application of high-performance computing. Environ Modell Softw 137: 104929. |
| [127] |
Leila Niamir, Gregor Kiesewetter, Fabian Wagner, et al. (2020) Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Clim Change 158: 141–160. https://doi.org/10.1007/s10584-019-02566-8 doi: 10.1007/s10584-019-02566-8
|
| [128] | Karolina Safarzyńska (2021) Optimal climate policies under bounded rationality: A behavioral agent-based integrated assessment model. Environ Innov Soc Trans 41: 73–85. |
| [129] | Jinkun Dai, Jiajia Gao, Shuxian Zhou, et al. (2021) An agent-based model for simulating land use change in agricultural regions. Ecol Model 440: 109376. |
| [130] | Mohamed Shaaban, Zeina Nakat, Dima Ouahrani (2021) Combining qualitative scenarios with agent-based modeling for understanding the future of agri-food systems. Futures 131: 102771, 2021. |
| [131] |
Alessandro Di Noia, Ferdinando Villa (2021) Agent-based modeling for climate change adaptation planning in coastal zones: A systematic review. Ocean Coastal Manage 205: 105570. https://doi.org/10.2139/ssrn.4180554 doi: 10.2139/ssrn.4180554
|
| [132] | Karl Naumann-Woleske (2023) Agent-based integrated assessment models: Alternative foundations to the environment-energy-economics nexus. https://hal.science/hal-04238110v1, 2023. Preprint submitted on 11 Oct 2023. https://doi.org/10.2139/ssrn.4399363 |
| [133] | Ilona M. Otto, Marc Wiedermann, Roger Cremades, et al. (2017) Modeling the dynamics of climate change adaptation with large-scale agent-based models. Earth Syst Dynam 8: 177–195. |
| [134] | Stefan Pauliuk, Niken Mardiana Dhaniati, Daniel B. Müller (2017) Recycling and climate change mitigation: Potentials and limitations of material efficiency strategies in the global steel cycle. J Ind Ecol 21: 327–340. |
| [135] | Ugo Bardi, Anabela Carvalho Pereira (2021) The empty sea: The future of the blue economy. Springer Nature, 2021. |
| [136] |
Helmut Haberl, Dominik Wiedenhofer, Dénes Virág, et al. (2020) A systematic review of the evidence on decoupling of gdp, resource use and ghg emissions, part ii: synthesizing the insights. Environ Res Lett 15: 065003. https://doi.org/10.1088/1748-9326/ab842a doi: 10.1088/1748-9326/ab842a
|
| [137] |
Steve Pye, Dan Welsby, Will McDowall, et al. (2022) Regional uptake of direct reduction iron production using hydrogen under climate policy. Energy Clim Change 3: 100087. https://doi.org/10.1016/j.egycc.2022.100087 doi: 10.1016/j.egycc.2022.100087
|
| [138] |
Marian Leimbach, Anselm Schultes, Lavinia Baumstark, et al. (2017) Solution algorithms for regional interactions in large-scale integrated assessment models of climate change. Ann Oper Res 255: 29–45. https://doi.org/10.1007/s10479-016-2340-z doi: 10.1007/s10479-016-2340-z
|
| [139] | H von Stackelberg (1952) Markt form und gleichgewicht, julius springer, vienne/berlin. Traduction anglaise: The Theory of Market Economy (1952), William Hodge, Londres 1934. |
| [140] |
Stephen W Salant (1976) Exhaustible resources and industrial structure: A nash-cournot approach to the world oil market. J Polit Econ 84: 1079–1093. https://doi.org/10.1086/260497 doi: 10.1086/260497
|
| [141] | Tracy R Lewis, Richard Schmalensee (1980) Cartel and oligopoly pricing of nonreplenishable natural resources. In Dynam Optim Math Econ 133–156. |
| [142] |
Tracy R Lewis, Richard Schmalensee (1980) On oligopolistic markets for nonrenewable natural resources. Q J Econ 95: 475–491. https://doi.org/10.2307/1885089 doi: 10.2307/1885089
|
| [143] | Roger L Tobin (1992) Uniqueness results and algorithm for stackelberg-cournot-nash equilibria. Ann Oper Res 34: 21–36. |
| [144] |
E. Saltari, W. Semmler, G Di Bartolomeo (2022) A nash equilibrium for differential games with moving-horizon strategies. Comput Econ 60: 1041–1054. https://doi.org/10.1007/s10614-021-10177-8 doi: 10.1007/s10614-021-10177-8
|
| [145] |
Bruno Nkuiya (2015) Transboundary pollution game with potential shift in damages. J Environ Econ Manage 72: 1–14. https://doi.org/10.1016/j.jeem.2015.04.001 doi: 10.1016/j.jeem.2015.04.001
|
| [146] |
Michael Finus (2008) Game theoretic research on the design of international environmental agreements: insights, critical remarks, and future challenges. International Review of environmental and resource economics 2: 29–67. https://doi.org/10.1561/101.00000011 doi: 10.1561/101.00000011
|
| [147] |
Giovanni Di Bartolomeo, Behnaz Minooei Fard, Willi Semmler (2023) Greenhouse gases mitigation: global externalities and short-termism. Environment and Development Economics 28: 230–241. https://doi.org/10.1017/S1355770X22000249 doi: 10.1017/S1355770X22000249
|
| [148] | Nicola Acocella, Giovanni Di Bartolomeo (2019) Natural resources and environment preservation: Strategic substitutability vs. complementarity in global and local public good provision. 2019. https://doi.org/10.1561/101.00000109 |
| [149] |
Chuyu Sun, Jing Wei, Xiaoli Zhao, et al. (2022) Impact of carbon tax and carbon emission trading on wind power in china: based on the evolutionary game theory. Frontiers in Energy Research 9: 811234. https://doi.org/10.3389/fenrg.2021.811234 doi: 10.3389/fenrg.2021.811234
|
| [150] |
Kai Kang, Bing Qing Tan (2023) Carbon emission reduction investment in sustainable supply chains under cap-and-trade regulation: An evolutionary game-theoretical perspective. Expert Syst Appl 227: 120335. https://doi.org/10.1016/j.eswa.2023.120335 doi: 10.1016/j.eswa.2023.120335
|
| [151] |
Ming Zhong, Jingjing Yu, Jun Xiao, et al. (2024) Dynamic stepwise carbon trading game scheduling with accounting and demand-side response. Appl Math Nonlinear Sci 9. https://doi.org/10.2478/amns-2024-0410 doi: 10.2478/amns-2024-0410
|
| [152] |
Rui Zhao, Gareth Neighbour, Jiaojie Han, et al. (2012) Using game theory to describe strategy selection for environmental risk and carbon emissions reduction in the green supply chain. J Loss Prev Process Ind 25: 927–936. https://doi.org/10.1016/j.jlp.2012.05.004 doi: 10.1016/j.jlp.2012.05.004
|
| [153] |
Kourosh Halat, Ashkan Hafezalkotob (2019) Modeling carbon regulation policies in inventory decisions of a multi-stage green supply chain: A game theory approach. Comput Ind Eng 128: 807–830. https://doi.org/10.1016/j.cie.2019.01.009 doi: 10.1016/j.cie.2019.01.009
|
| [154] |
Reyer Gerlagh, Eline van der Heijden (2024) Going green: Framing effects in a dynamic coordination game. Journal of Behavioral and Experimental Economics 108: 102148. https://doi.org/10.1016/j.socec.2023.102148 doi: 10.1016/j.socec.2023.102148
|
| [155] |
Michael Finus, Francesco Furini, Anna Viktoria Rohrer (2024) The stackelberg vs. nash-cournot folk-theorem in international environmental agreements. Economics Letters 234: 111481. https://doi.org/10.1016/j.econlet.2023.111481 doi: 10.1016/j.econlet.2023.111481
|
| [156] |
Rui Bai, Boqiang Lin (2024) Green finance and green innovation: Theoretical analysis based on game theory and empirical evidence from china. International Review of Economics & Finance 89: 760–774. https://doi.org/10.1016/j.iref.2023.07.046 doi: 10.1016/j.iref.2023.07.046
|
| [157] |
Yuxuan Cao, Wanyu Ren, Li Yue (2024) Environmental regulation and carbon emissions: New mechanisms in game theory. Cities 149: 104945. https://doi.org/10.1016/j.cities.2024.104945 doi: 10.1016/j.cities.2024.104945
|
| [158] |
Rafaela Vital Caetano, António Cardoso Marques (2023) Could energy transition be a game changer for the transfer of polluting industries from developed to developing countries? an application of game theory. Struct Change Econ Dyn 65: 351–363. https://doi.org/10.1016/j.strueco.2023.03.007 doi: 10.1016/j.strueco.2023.03.007
|
| [159] |
Songying Fang, Amy Myers Jaffe, Ted Loch-Temzelides, et al. (2024) Electricity grids and geopolitics: A game-theoretic analysis of the synchronization of the baltic states' electricity networks with continental europe. Energy Policy 188: 114068. https://doi.org/10.1016/j.enpol.2024.114068 doi: 10.1016/j.enpol.2024.114068
|
| [160] |
Steven A. Gabriel, Florian U. Leuthold (2010) Solving discretely-constrained mpec problems with applications in electric power markets. Energy Econ 32: 3–14. https://doi.org/10.1016/j.eneco.2009.03.008 doi: 10.1016/j.eneco.2009.03.008
|
| [161] |
Benteng Zou, Stéphane Poncin, Luisito Bertinelli (2022) The us-china supply competition for rare earth elements: a dynamic game view. Environ Model Assess 27: 883–900. https://doi.org/10.1007/s10666-022-09819-4 doi: 10.1007/s10666-022-09819-4
|
| [162] |
Maciej Filip Bukowski (2023) Pax climatica: the nash equilibrium and the geopolitics of climate change. Journal of Environmental Management 348: 119217. https://doi.org/10.1016/j.jenvman.2023.119217 doi: 10.1016/j.jenvman.2023.119217
|
| [163] |
W. Semmler, G. Di Bartolomeo, B. M. Fard, et al. (2022) Limit pricing and entry game of renewable energy firms into the energy sector. Struc Change Econo Dyn 61: 179–190. https://doi.org/10.1016/j.strueco.2022.01.008 doi: 10.1016/j.strueco.2022.01.008
|
| [164] |
Hassan Benchekroun, Gerard van der Meijden, Cees Withagen (2023) Economically exhaustible resources in an oligopoly-fringe model with renewables. J Enviro Econ Manage 121: 102853. https://doi.org/10.1016/j.jeem.2023.102853 doi: 10.1016/j.jeem.2023.102853
|
| [165] |
F. Groot, C. Withagen, A. de Zeeuw (2003) Strong time-consistency in the cartel-versus-fringe model. J Econo Dyn Control 28: 287–306. https://doi.org/10.1016/S0165-1889(02)00154-9 doi: 10.1016/S0165-1889(02)00154-9
|
| [166] |
B. Minooei Fard, W. Semmler, G. Di Bartolomeo. Rare earth elements. a game between china and the rest of the world. SSRN Electron J 2023. https://doi.org/10.2139/ssrn.4365405 doi: 10.2139/ssrn.4365405
|
| [167] |
Jiuh-Biing Sheu, Yenming J Chen (2012) Impact of government financial intervention on competition among green supply chains. Int J Prod Econ 138: 201–213. https://doi.org/10.1016/j.ijpe.2012.03.024 doi: 10.1016/j.ijpe.2012.03.024
|
| [168] |
Seyed Reza Madani, Morteza Rasti-Barzoki (2017) Sustainable supply chain management with pricing, greening and governmental tariffs determining strategies: A game-theoretic approach. Comput Ind Eng 105: 287–298. https://doi.org/10.1016/j.cie.2017.01.017 doi: 10.1016/j.cie.2017.01.017
|
| [169] |
Xin Chen, Jiannan Li, Decai Tang, et al. (2024) Stackelberg game analysis of government subsidy policy in green product market. Environ Dev Sustain, 26: 13273–13302. https://doi.org/10.1007/s10668-023-04176-y doi: 10.1007/s10668-023-04176-y
|
| [170] | Valentina Bosetti, Carlo Carraro, Enrica De Cian, et al. (2009) The Incentives to Participate in, and the Stability of, International Climate Coalitions: A Game-theoretic Analysis Using the Witch Model. Working Papers 2009.64, Fondazione Eni Enrico Mattei, August 2009. https://doi.org/10.2139/ssrn.1463244 |
| [171] | Shunwu Huang Lili Wang, Rui Zhuang, Yong Zhao. Quality competition versus price competition: Why does china dominate the global solar photo-voltaic market? Emerg Mark Financ Trade 55: 1326–1342. https://doi.org/10.1080/1540496X.2018.1507905 |
| [172] |
Bruno Turnheim, Mike Asquith, Frank W. Geels (2020) Making sustainability transitions research policy-relevant: Challenges at the science-policy interface. Environ Innov Soc Trans 34: 116–120. https://doi.org/10.1016/j.eist.2019.12.009 doi: 10.1016/j.eist.2019.12.009
|
| [173] | Bruno Turnheim, Frank W. Geels (2012) Regime destabilisation as the flipside of energy transitions: Lessons from the history of the british coal industry (1913–1997). Energy Policy 50: 35–49. Special Section: Past and Prospective Energy Transitions - Insights from History. https://doi.org/10.1016/j.enpol.2012.04.060 |
| [174] |
Bruno Turnheim (2023) The historical dismantling of tramways as a case of destabilisation and phase-out of established system. Proc Nati Acad Sci 120: e2206227120. https://doi.org/10.1073/pnas.2206227120 doi: 10.1073/pnas.2206227120
|
| [175] | Anders Enggaard Bødker (2018) From climate science and scenarios to energy policy. Master's thesis, International Business and Politics, Copenhagen Business School, 2018. |
| [176] |
Mert Duygan, Aya Kachi, Pinar Temocin, et al. (2023) A tale of two coal regimes: An actor-oriented analysis of destabilisation and maintenance of coal regimes in germany and japan. Energy Res Soc Sci 105: 103297. https://doi.org/10.1016/j.erss.2023.103297 doi: 10.1016/j.erss.2023.103297
|
| [177] |
Hirokazu Takizawa (2017) Masahiko aoki's conception of institutions. Evol Inst Econ Rev 14: 523–540. https://doi.org/10.1007/s40844-017-0087-0 doi: 10.1007/s40844-017-0087-0
|
| [178] |
Masahiko Aoki (2007) Endogenizing institutions and institutional changes. J Inst Econ 3: 1–31. https://doi.org/10.1017/S1744137406000531 doi: 10.1017/S1744137406000531
|
| [179] | Masahiko Aoki (2000) Institutional evolution as punctuated equilibria. Institutions, contracts and organizations: Perspectives from new institutional economics 11–33. |
| [180] |
Asjad Naqvi, Engelbert Stockhammer (2018) Directed technological change in a post-keynesian ecological macromodel. Ecol Econ 154: 168–188. https://doi.org/10.1016/j.ecolecon.2018.07.008 doi: 10.1016/j.ecolecon.2018.07.008
|
| [181] |
Darlington Akam, Oluwasegun Owolabi, Solomon Nathaniel (2021) Linking external debt and renewable energy to environmental sustainability in heavily indebted poor countries: new insights from advanced panel estimators. Environ Sci Pollut Res 28: 1–13. https://doi.org/10.1007/s11356-021-15191-9 doi: 10.1007/s11356-021-15191-9
|
| [182] |
Xingyuan Yao, Xiaobo Tang (2021) Does financial structure affect co2 emissions? evidence from g20 countries. Finance Res Lett 41: 101791. https://doi.org/10.1016/j.frl.2020.101791 doi: 10.1016/j.frl.2020.101791
|
| [183] |
Tian Zhao, Zhixin Liu (2022) Drivers of co2 emissions: A debt perspective. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19031847 doi: 10.3390/ijerph19031847
|
| [184] |
Fatima Farooq, Aurang Zaib, Dr Faheem, et al. (2023) Public debt and environment degradation in oic countries: the moderating role of institutional quality. Environ Sci Pollut Res 30: 1–18. https://doi.org/10.1007/s11356-023-26061-x doi: 10.1007/s11356-023-26061-x
|
| [185] |
Marina Dabic, Vladimir Cvijanović, Miguel Gonzalez-Loureiro (2011) Keynesian, post-keynesian versus schumpetenan, neo-schumpeterian an integrated approach to the innovation theory. Manag Decis 49: 195–207. https://doi.org/10.1108/00251741111109115 doi: 10.1108/00251741111109115
|
| [186] |
Luke Petach, Daniele Tavani (2022) Aggregate demand externalities, income distribution, and wealth inequality. Struct Change Econo Dyn 60: 433–446. https://doi.org/10.1016/j.strueco.2022.01.002 doi: 10.1016/j.strueco.2022.01.002
|