Energy is a vital tool in economic growth and development. However, the world continues to experience the effects of climate change due to high greenhouse gas emission levels mainly derived from fossil fuel consumption and human activities. The need for energy and effective transportation increases with economic expansion. Clean energy has the potential to mitigate climate change by reducing reliance on fossil fuels. This study examined the mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in 22 African countries from 2001 to 2020. The findings suggest that a 1% increase in nonrenewable energy increases CO2 emissions by 0.34%. The mediating effect regression shows a direct effect of 0.184, an indirect effect of 0.168, and a total effect of 0.352. The findings reveal that nonrenewable energy increases transport energy consumption by 0.93%. Transport energy is a significant mediator, which is stronger in resource-intensive countries. Clean energy reduces the adverse effects of nonrenewable energy usage. When clean energy increases, there is a reduction in CO2 emissions. Therefore, stakeholders should implement stringent environmental measures, develop efficient transportation and energy systems, and increase investment in clean energy to mitigate greenhouse gas emissions.
Citation: Margaret Jane Sylva. The mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in Africa[J]. AIMS Environmental Science, 2025, 12(2): 193-222. doi: 10.3934/environsci.2025009
[1] | Fang Wang, Weiguo Li, Wendi Bao, Li Liu . Greedy randomized and maximal weighted residual Kaczmarz methods with oblique projection. Electronic Research Archive, 2022, 30(4): 1158-1186. doi: 10.3934/era.2022062 |
[2] | Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075 |
[3] | Koung Hee Leem, Jun Liu, George Pelekanos . A regularized eigenmatrix method for unstructured sparse recovery. Electronic Research Archive, 2024, 32(7): 4365-4377. doi: 10.3934/era.2024196 |
[4] | Qin Guo, Binlei Cai . Learning capability of the rescaled pure greedy algorithm with non-iid sampling. Electronic Research Archive, 2023, 31(3): 1387-1404. doi: 10.3934/era.2023071 |
[5] | John Daugherty, Nate Kaduk, Elena Morgan, Dinh-Liem Nguyen, Peyton Snidanko, Trung Truong . On fast reconstruction of periodic structures with partial scattering data. Electronic Research Archive, 2024, 32(11): 6481-6502. doi: 10.3934/era.2024303 |
[6] | Zhengyu Liu, Yufei Bao, Changhai Wang, Xiaoxiao Chen, Qing Liu . A fast matrix completion method based on truncated L2,1 norm minimization. Electronic Research Archive, 2024, 32(3): 2099-2119. doi: 10.3934/era.2024095 |
[7] | Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210 |
[8] | Daochang Zhang, Dijana Mosić, Liangyun Chen . On the Drazin inverse of anti-triangular block matrices. Electronic Research Archive, 2022, 30(7): 2428-2445. doi: 10.3934/era.2022124 |
[9] | Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055 |
[10] | Jiange Liu, Yu Chen, Xin Dai, Li Cao, Qingwu Li . MFCEN: A lightweight multi-scale feature cooperative enhancement network for single-image super-resolution. Electronic Research Archive, 2024, 32(10): 5783-5803. doi: 10.3934/era.2024267 |
Energy is a vital tool in economic growth and development. However, the world continues to experience the effects of climate change due to high greenhouse gas emission levels mainly derived from fossil fuel consumption and human activities. The need for energy and effective transportation increases with economic expansion. Clean energy has the potential to mitigate climate change by reducing reliance on fossil fuels. This study examined the mediating effect of transport energy consumption on the relationship between nonrenewable energy consumption and CO2 emissions in 22 African countries from 2001 to 2020. The findings suggest that a 1% increase in nonrenewable energy increases CO2 emissions by 0.34%. The mediating effect regression shows a direct effect of 0.184, an indirect effect of 0.168, and a total effect of 0.352. The findings reveal that nonrenewable energy increases transport energy consumption by 0.93%. Transport energy is a significant mediator, which is stronger in resource-intensive countries. Clean energy reduces the adverse effects of nonrenewable energy usage. When clean energy increases, there is a reduction in CO2 emissions. Therefore, stakeholders should implement stringent environmental measures, develop efficient transportation and energy systems, and increase investment in clean energy to mitigate greenhouse gas emissions.
In this paper, we aim to develop a novel weak Galerkin (WG) finite element method for the biharmonic equation that is applicable to non-convex polytopal meshes and eliminates the need for traditional stabilizers. To this aim, we consider the biharmonic equation with Dirichlet and Neumann boundary conditions. The goal is to find an unknown function u satisfying
Δ2u=f,inΩ,u=ξ,on∂Ω,∂u∂n=ν,on∂Ω, | (1.1) |
where Ω⊂Rd is an open bounded domain with a Lipschitz continuous boundary ∂Ω. The domain Ω considered in this paper can be of any dimension d≥2. For the sake of clarity in presentation, we will focus on the case where d=2 throughout this paper. However, the analysis presented here can be readily extended to higher dimensions (d≥3) without significant modifications.
The variational formulation of the model problem (1.1) is as follows: Find an unknown function u∈H2(Ω) satisfying u|∂Ω=ξ and ∂u∂n|∂Ω=ν, and the following equation
2∑i,j=1(∂2iju,∂2ijv)=(f,v),∀v∈H20(Ω), | (1.2) |
where ∂2ij denotes the second order partial derivative with respect to xi and xj, and H20(Ω)={v∈H2(Ω):v|∂Ω=0,∇v|∂Ω=0}.
The WG finite element method offers an innovative framework for the numerical solution of partial differential equations (PDEs). This approach approximates differential operators within a structure inspired by the theory of distributions, particularly for piecewise polynomial functions. Unlike traditional methods, WG reduces the regularity requirements on approximating functions through the use of carefully designed stabilizers. Extensive studies have highlighted the versatility and effectiveness of WG methods across a wide range of model PDEs, as demonstrated by numerous references [1,2,3,4,5,6] for an incomplete list, establishing WG as a powerful tool in scientific computing. The defining feature of WG methods lies in their innovative use of weak derivatives and weak continuities to construct numerical schemes based on the weak forms of the underlying PDEs. This unique structure provides WG methods with exceptional flexibility, enabling them to address a wide variety of PDEs while ensuring both stability and accuracy in their numerical solutions.
This paper presents a simplified formulation of the WG finite element method, capable of handling both convex and non-convex elements in finite element partitions. A key innovation of our method is the elimination of stabilizers through the use of higher-degree polynomials for computing weak second-order partial derivatives. This design preserves the size and global sparsity of the stiffness matrix while substantially reducing the programming complexity associated with traditional stabilizer-dependent methods. The method leverages bubble functions as a critical analytical tool, representing a significant improvement over existing stabilizer-free WG methods [7], which are limited to convex polytopal meshes. Our approach is versatile, accommodating arbitrary dimensions and polynomial degrees in the discretization process. In contrast, prior stabilizer-free WG methods [7] often require specific polynomial degree combinations and are restricted to 2D or 3D settings. Theoretical analysis establishes optimal error estimates for the WG approximations in both the discrete H2 norm and an L2 norm.
This paper is organized as follows. Section 2 provides a brief review of the definition of the weak-second order partial derivative and its discrete counterpart. In Section 3, we introduce an efficient WG scheme that eliminates the need for stabilization terms. Section 4 establishes the existence and uniqueness of the solution. The error equation for the proposed WG scheme is derived in Section 5. Section 6 focuses on obtaining the error estimate for the numerical approximation in the discrete H2 norm, while Section 7 extends the analysis to derive the error estimate in the L2 norm.
Throughout this paper, we adopt standard notations. Let D be any open, bounded domain with a Lipschitz continuous boundary in Rd. The inner product, semi-norm, and norm in the Sobolev space Hs(D) for any integer s≥0 are denoted by (⋅,⋅)s,D, |⋅|s,D and ‖⋅‖s,D respectively. For simplicity, when the domain D is Ω, the subscript D is omitted from these notations. In the case s=0, the notations (⋅,⋅)0,D, |⋅|0,D and ‖⋅‖0,D are further simplified as (⋅,⋅)D, |⋅|D and ‖⋅‖D, respectively.
This section provides a brief review of the definition of weak weak-second partial derivatives and their discrete counterparts, as introduced in [5].
Let T be a polygonal element with boundary ∂T. A weak function on T is represented as v={v0,vb,vg}, where v0∈L2(T), vb∈L2(∂T) and vg∈[L2(∂T)]2. The first component, v0, denotes the value of v within the interior of T, while the second component, vb, represents the value of v on the boundary of T. The third component vg∈R2 with components vgi (i=1,2) approximates the gradient ∇v on the boundary ∂T. In general, vb and vg are treated as independent of the traces of v0 and ∇v0, respectively.
The space of all weak functions on T, denote by W(T), is defined as
W(T)={v={v0,vb,vg}:v0∈L2(T),vb∈L2(∂T),vg∈[L2(∂T)]2}. |
The weak second order partial derivative, ∂2ij,w, is a linear operator mapping W(T) to the dual space of H2(T). For any v∈W(T), ∂2ij,wv is defined as a bounded linear functional on H2(T), given by:
(∂2ij,wv,φ)T=(v0,∂2jiφ)T−⟨vbni,∂jφ⟩∂T+⟨vgi,φnj⟩∂T,∀φ∈H2(T), |
where n, with components ni(i=1,2), represents the unit outward normal vector to ∂T.
For any non-negative integer r≥0, let Pr(T) denote the space of polynomials on T with total degree at most r. A discrete weak second order partial derivative, ∂2ij,w,r,T, is a linear operator mapping W(T) to Pr(T). For any v∈W(T), ∂2ij,w,r,Tv is the unique polynomial in Pr(T) satisfying
(∂2ij,w,r,Tv,φ)T=(v0,∂2jiφ)T−⟨vbni,∂jφ⟩∂T+⟨vgi,φnj⟩∂T,∀φ∈Pr(T). | (2.1) |
For a smooth v0∈H2(T), applying standard integration by parts to the first term on the right-hand side of (2.1) yields:
(∂2ij,w,r,Tv,φ)T=(∂2ijv0,φ)T−⟨(vb−v0)ni,∂jφ⟩∂T+⟨vgi−∂iv0,φnj⟩∂T, | (2.2) |
for any φ∈Pr(T).
Let Th be a finite element partition of the domain Ω⊂R2 into polygons. Assume that Th satisfies the shape regularity condition [8]. Let Eh represent the set of all edges in Th, and denote the set of interior edges by E0h=Eh∖∂Ω. For any element T∈Th, let hT be its diameter, and define the mesh size as h=maxT∈ThhT.
Let k, p and q be integers such that k≥p≥q≥1. For any element T∈Th, the local weak finite element space is defined as:
V(k,p,q,T)={{v0,vb,vg}:v0∈Pk(T),vb∈Pp(e),vg∈[Pq(e)]2,e⊂∂T}. |
By combining the local spaces V(k,p,q,T) across all elements T∈Th and ensuring continuity of vb and vg along the interior edges E0h, we obtain the global weak finite element space:
Vh={{v0,vb,vg}: {v0,vb,vg}|T∈V(k,p,q,T),∀T∈Th}. |
The subspace of Vh consisting of functions with vanishing boundary values on ∂Ω is defined as:
V0h={v∈Vh:vb|∂Ω=0,vg|∂Ω=0}. |
For simplicity, the discrete weak second order partial derivative ∂2ij,wv is used to denote the operator ∂2ij,w,r,Tv defined in (2.1) on each element T∈Th, as:
(∂2ij,wv)|T=∂2ij,w,r,T(v|T),∀T∈Th. |
On each element T∈Th, let Q0 denote the L2 projection onto Pk(T). On each edge e⊂∂T, let Qb and Qn denote the L2 projection operators onto Pp(e) and Pq(e), respectively. For any w∈H2(Ω), the L2 projection into the weak finite element space Vh is denoted by Qhw, defined as:
(Qhw)|T:={Q0(w|T),Qb(w|∂T),Qn(∇w|∂T)},∀T∈Th. |
The simplified WG numerical scheme, free from stabilization terms, for solving the biharmonic equation (1.1) is formulated as follows:
Weak Galerkin Algorithm 3.1. Find uh={u0,ub,ug}∈Vh such that ub=Qbξ, ug⋅n=Qnν and {{\mathbf{u}}}_g\cdot{\boldsymbol{\tau}} = Q_n(\nabla\xi\cdot{\boldsymbol{\tau}}) on \partial\Omega , and satisfy:
\begin{equation} (\partial^2_{w} u_h, \partial^2_{w} v) = (f, v_0), \qquad\forall v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h^0, \end{equation} | (3.1) |
where {\boldsymbol{\tau}}\in \mathbb R^2 is the tangential direction along \partial\Omega , and the terms are defined as:
(\partial^2_{w} u_h, \partial^2_{w} v) = \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 (\partial^2_{ij, w} u_h, \partial^2_{ij, w} v)_T, |
(f, v_0) = \sum\limits_{T\in {\mathcal{T}}_h}(f, v_0)_T. |
Recall that {\mathcal{T}}_h is a shape-regular finite element partition of the domain \Omega . Consequently, for any T\in {\mathcal{T}}_h and \phi\in H^1(T) , the following trace inequality holds [8]:
\begin{equation} \|\phi\|^2_{\partial T} \leq C(h_T^{-1}\|\phi\|_T^2+h_T \|\nabla \phi\|_T^2). \end{equation} | (4.1) |
If \phi is a polynomial on the element T\in {\mathcal{T}}_h , a simpler form of the trace inequality applies [8]:
\begin{equation} \|\phi\|^2_{\partial T} \leq Ch_T^{-1}\|\phi\|_T^2. \end{equation} | (4.2) |
For any v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , define the norm:
\begin{equation} ||| v||| = (\partial^2_{w} v, \partial^2_{ w} v) ^{\frac{1}{2}}, \end{equation} | (4.3) |
and introduce the discrete H^2 - semi-norm:
\begin{equation} \|v\|_{2, h} = \Big( \sum\limits_{T\in {\mathcal{T}}_h} \|\sum\limits_{i,j = 1}^2\partial^2_{ij} v_0\|_T^2+h_T^{-3}\|v_0-v_b\|_{\partial T}^2+h_T^{-1}\|\nabla v_0-{{\mathbf{v}}}_g\|_{\partial T}^2\Big)^{\frac{1}{2}}. \end{equation} | (4.4) |
Lemma 4.1. For v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , there exists a constant C such that for i, j = 1, 2 ,
\|\partial^2_{ij} v_0\|_T\leq C\|\partial^2_{ij, w} v\|_T. |
Proof. Let T\in {\mathcal{T}}_h be a polytopal element with N edges denoted as e_1, \cdots , e_N . Importantly, T can be non-convex. On each edge e_i , construct a linear function l_i(x) satisfying l_i(x) = 0 on e_i as:
l_i(x) = \frac{1}{h_T}\overrightarrow{AX}\cdot {{\mathbf{n}}}_i, |
where A is a fixed point on e_i , X is any point on e_i , {{\mathbf{n}}}_i is the normal vector to e_i , and h_T is the diameter of T .
Define the bubble function for T as:
\Phi_B = l^2_1(x)l^2_2(x)\cdots l^2_N(x) \in P_{2N}(T). |
It is straightforward to verify that \Phi_B = 0 on \partial T . The function \Phi_B can be scaled such that \Phi_B(M) = 1 where M is the barycenter of T . Additionally, there exists a subdomain \hat{T}\subset T such that \Phi_B\geq \rho_0 for some constant \rho_0 > 0 .
For v = \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let r = 2N+k-2 and choose \varphi = \Phi_B \partial^2_{ij} v_0\in P_r(T) in (2.2). This yields:
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}v, \Phi_B \partial^2_{ij} v_0)_T\\ = &\; (\partial^2_{ij}v_0, \Phi_B \partial^2_{ij} v_0)_T- \langle (v_b-v_0) n_i, \partial_j (\Phi_B \partial^2_{ij} v_0 )\rangle_{\partial T} \\&+\langle v_{gi}-\partial_i v_0, \Phi_B \partial^2_{ij} v_0 n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}v_0, \Phi_B \partial^2_{ij} v_0)_T, \end{split} \end{equation} | (4.5) |
where we applied \Phi_B = 0 on \partial T .
Using the domain inverse inequality [8], there exists a constant C such that
\begin{equation} (\partial^2_{ij} v_0, \Phi_B \partial^2_{ij} v_0)_T \geq C (\partial^2_{ij} v_0, \partial^2_{ij} v_0)_T. \end{equation} | (4.6) |
By applying the Cauchy-Schwarz inequality to (4.5) and (4.6), we obtain
\begin{equation*} \begin{split} & (\partial^2_{ij} v_0, \partial^2_{ij} v_0)_T\leq C (\partial^2_{ij, w} v, \Phi_B \partial^2_{ij} v_0)_T \\ &\leq C \|\partial^2_{ij, w} v\|_T \|\Phi_B \partial^2_{ij} v_0\|_T \leq C \|\partial^2_{ij, w} v\|_T \|\partial^2_{ij} v_0\|_T, \end{split} \end{equation*} |
which implies:
\|\partial^2_{ij}v_0\|_T\leq C\|\partial^2_{ij, w} v\|_T. |
This completes the proof.
Remark 4.1. If the polytopal element T is convex, the bubble function in Lemma 4.1 can be simplified to:
\Phi_B = l_1(x)l_2(x)\cdots l_N(x). |
This simplified bubble function satisfies 1) \Phi_B = 0 on \partial T , 2) there exists a subdomain \hat{T}\subset T such that \Phi_B\geq \rho_0 for some constant \rho_0 > 0 . The proof of Lemma 4.1 follows the same approach, using this simplified bubble function. In this case, we set r = N+k-2 .
By constructing an edge-based bubble function,
\varphi_{e_k} = \Pi_{i = 1, \cdots, N, i\neq k}l_i^2(x), |
it can be easily verified that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , and 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . Let \varphi = (v_b-v_0)l_k \varphi_{e_k} . It is straightforward to verify the following properties: 1) \varphi = 0 on each edge e_i for i = 1, \cdots, N , 2) \nabla \varphi = 0 on each edge e_i for i \neq k , and 3) \nabla \varphi = (v_0-v_b)(\nabla l_k) \varphi_{e_k} = \mathcal{O}(\frac{ (v_0-v_b)\varphi_{e_k}}{h_T}\textbf{C}) on e_k , where \textbf{C} is a constant vector.
Lemma 4.2. [9] For \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let \varphi = (v_b-v_0)l_k \varphi_{e_k} . The following inequality holds:
\begin{equation} \|\varphi\|_T ^2 \leq Ch_T \int_{e_k}(v_b-v_0)^2ds. \end{equation} | (4.7) |
Lemma 4.3. For \{v_0, v_b, {{\mathbf{v}}}_g\}\in V_h , let \varphi = (v_{gi} -\partial_i v_0) \varphi_{e_k} . The following inequality holds:
\begin{equation} \|\varphi\|_T ^2 \leq Ch_T \int_{e_k}(v_{gi} -\partial_i v_0 )^2ds. \end{equation} | (4.8) |
Proof. Define the extension of {{\mathbf{v}}}_g , originally defined on the edge e_k , to the entire polytopal element T as:
{{\mathbf{v}}}_g(X) = {{\mathbf{v}}}_g(Proj_{e_k} (X)), |
where X = (x_1, x_2) is any point in T , Proj_{e_k} (X) denotes the orthogonal projection of X onto the plane H\subset\mathbb R^2 containing e_k . If Proj_{e_k} (X) is not on e_k , {{\mathbf{v}}}_g(Proj_{e_k} (X)) is defined as the extension of {{\mathbf{v}}}_g from e_k to H . The extension preserves the polynomial nature of {{\mathbf{v}}}_g as demonstrated in [9].
Let v_{trace} denote the trace of v_0 on e_k . Define its extension to T as:
v_{trace} (X) = v_{trace}(Proj_{e_k} (X)). |
This extension is also polynomial, as demonstrated in [9].
Let \varphi = (v_{gi} -\partial_i v_0) \varphi_{e_k} . Then,
\begin{equation*} \begin{split} \|\varphi\|^2_T = \int_T \varphi^2dT = &\; \int_T ((v_{gi} -\partial_i v_0 )(X) \varphi_{e_k})^2dT\\ \leq &\; Ch_T \int_{e_k} ((v_{gi} -\partial_i v_0 )(Proj_{e_k} (X)) \varphi_{e_k})^2dT\\ \\\leq &\; Ch_T \int_{e_k} (v_{gi} -\partial_i v_0 ) ^2ds, \end{split} \end{equation*} |
where we used the facts that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 , and applied the properties of the projection.
This completes the proof of the lemma.
Lemma 4.4. There exist two positive constants, C_1 and C_2 , such that for any v = \{v_0, v_b, {{\mathbf{v}}}_g\} \in V_h , the following equivalence holds:
\begin{equation} C_1\|v\|_{2, h}\leq ||| v||| \leq C_2\|v\|_{2, h}. \end{equation} | (4.9) |
Proof. Consider the edge-based bubble function defined as
\varphi_{e_k} = \Pi_{i = 1, \cdots, N, i\neq k}l_i^2(x). |
First, extend v_b from the edge e_k to the element T . Similarly, let v_{trace} denote the trace of v_0 on the edge e_k and extend v_{trace} to the element T . For simplicity, we continue to use v_b and v_0 to represent their respective extensions. Details of these extensions can be found in Lemma 4.3. Substituting \varphi = (v_b-v_0)l_k\varphi_{e_k} into (2.2), we obtain
\begin{equation} \begin{split} (\partial^2_{ij, w}v, \varphi)_T = &\; (\partial^2_{ij}v_0, \varphi)_T- \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, \varphi n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}v_0, \varphi)_T + Ch_T^{-1}\int_{e_k} |v_b- v_0|^2 \varphi_{e_k} ds, \end{split} \end{equation} | (4.10) |
where we used 1) \varphi = 0 on each edge e_i for i = 1 , \cdots , N , 2) \nabla \varphi = 0 on each edge e_i for i \neq k , and 3) \nabla \varphi = (v_0-v_b)(\nabla l_k) \varphi_{e_k} = \mathcal{O}(\frac{ (v_0-v_b)\varphi_{e_k}}{h_T}\textbf{C}) on e_k , where \textbf{C} is a constant vector.
Recall that 1) \varphi_{e_k} = 0 on each edge e_i for i \neq k , and 2) there exists a subdomain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . Using Cauchy-Schwarz inequality, the domain inverse inequality [8], (4.10) and Lemma 4.2, we deduce:
\begin{equation*} \begin{split} \int_{e_k}|v_b- v_0|^2 ds\leq &\; C\int_{e_k} |v_b- v_0|^2 \varphi_{e_k} ds \\ \leq&\; C h_T(\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T){ \| \varphi\|_T}\\ \leq &\; C { h_T^{\frac{3}{2}}} (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T){ (\int_{e_k}|v_b- v_0|^2ds)^{\frac{1}{2}}}, \end{split} \end{equation*} |
which, from Lemma 4.1, leads to:
\begin{equation} h_T^{-3}\int_{e_k}|v_b- v_0|^2 ds \leq C (\|\partial^2_{ij, w} v\|^2_T+\|\partial^2_{ij} v_0\|^2_T)\leq C\|\partial^2_{ij, w} v\|^2_T. \end{equation} | (4.11) |
Next, extend {{\mathbf{v}}}_g from the edge e_k to the element T , denoting the extension by the same symbol for simplicity. Details of this extension are in Lemma 4.3. Substituting \varphi = (v_{gi}-\partial_i v_0)\varphi_{e_k} into (2.2), we obtain:
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}v, \varphi)_T\\ = &\; (\partial^2_{ij}v_0, \varphi)_T- \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, \varphi n_j\rangle_{\partial T}\\ = & \; (\partial^2_{ij}v_0, \varphi)_T - \langle (v_b-v_0) n_i, \partial_j \varphi \rangle_{\partial T}+\int_{e_k} |v_{gi}-\partial_i v_0|^2 \varphi_{e_k}ds, \end{split} \end{equation} | (4.12) |
where we used \varphi_{e_k} = 0 on edge e_i for i \neq k , and the fact that there exists a sub-domain \widehat{e_k}\subset e_k such that \varphi_{e_k} \geq \rho_1 for some constant \rho_1 > 0 . This, together with Cauchy-Schwarz inequality, the domain inverse inequality [8], the inverse inequality, the trace inequality (4.2), (4.11) and Lemma 4.3, gives
\begin{equation*} \begin{split} & \; \int_{e_k}|v_{gi}-\partial_i v_0|^2 ds\\\leq &\; C \int_{e_k}|v_{gi}-\partial_i v_0|^2 \varphi_{e_k}ds\\ \leq &\; C (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T)\| \varphi\|_T+ C\|v_0-v_b\|_{\partial T}\|\partial_j \phi\|_{\partial T}\\ \leq & \; C h_T^{\frac{1}{2}} (\|\partial^2_{ij, w} v\|_T+\|\partial^2_{ij} v_0\|_T)(\int_{e_k}|v_{gi}-\partial_i v_0|^2ds)^{\frac{1}{2}} + C h_T^{\frac{3}{2}} \|\partial^2_{ij, w} v\|_T h_T^{-1}(\int_{e_k}|v_{gi}-\partial_i v_0|^2ds)^{\frac{1}{2}}. \end{split} \end{equation*} |
Applying Lemma 4.1, gives
\begin{equation} h_T^{-1}\int_{e_k}|v_{gi}-\partial_i v_0|^2 ds \leq C (\|\partial^2_{ij, w} v\|^2_T+\|\partial^2_{ij} v_0\|^2_T)\leq C\|\partial^2_{ij, w} v\|^2_T. \end{equation} | (4.13) |
Using Lemma 4.1, Eqs (4.11), (4.13), (4.3) and (4.4), we deduce:
C_1\|v\|_{2, h}\leq ||| v|||. |
Finally, using the Cauchy-Schwarz inequality, inverse inequalities, and the trace inequality (4.2) in (2.2), we derive:
\begin{equation*} \begin{split} \Big| (\partial^2_{ij, w}v, \varphi)_T\Big| \leq &\; \|\partial^2_{ij}v_0\|_T \| \varphi\|_T+ \|(v_b-v_0) n_i\|_{\partial T} \| \partial_j\varphi\|_{\partial T}+\|v_{gi}-\partial_i v_0\|_{\partial T} \|\varphi n_j\|_{\partial T} \\ \leq &\; \|\partial^2_{ij}v_0\|_T \| \varphi\|_T+ h_T^{-\frac{3}{2}}\|v_b-v_0\|_{\partial T} \| \varphi\|_{ T}+h_T^{-\frac{1}{2}}\|v_{gi}-\partial_i v_0\|_{\partial T} \|\varphi \|_{T}, \end{split} \end{equation*} |
which gives:
\| \partial^2_{ij, w}v\|_T^2\leq C( \|\partial^2_{ij}v_0\|^2_T + h_T^{-3}\|v_b-v_0\|^2_{\partial T}+h_T^{-1}\|v_{gi}-\partial_i v_0\|^2_{\partial T}), |
and further gives
||| v||| \leq C_2\|v\|_{2, h}. |
This completes the proof.
Theorem 4.5. The WG scheme 3.1 admits a unique solution.
Proof. Assume that u_h^{(1)}\in V_h and u_h^{(2)}\in V_h are two distinct solutions of the WG scheme 3.1. Define \eta_h = u_h^{(1)}-u_h^{(2)}\in V_h^0 . Then, \eta_h satisfies
( \partial^2_{ij, w} \eta_h, \partial^2_{ij, w} v) = 0, \qquad \forall v\in V_h^0. |
Choosing v = \eta_h yields ||| \eta_h||| = 0 . From the equivalence of norms in (4.9), it follows that \|\eta_h\|_{2, h} = 0 , which yields \partial^2_{ij} \eta_0 = 0 for i, j = 1, 2 on each T , \eta_0 = \eta_b and \nabla \eta_0 = {\boldsymbol{\eta}}_g on each \partial T . Consequently, \eta_0 is a linear function on each element T and \nabla \eta_0 = C on each T .
Since \nabla \eta_0 = {\boldsymbol{\eta}}_g on each \partial T , it follows that \nabla \eta_0 is continuous across the entire domain \Omega . Thus, \nabla \eta_0 = C throughout \Omega . Furthermore, the condition {\boldsymbol{\eta}}_g = 0 on \partial\Omega implies \nabla \eta_0 = 0 in \Omega and {\boldsymbol{\eta}}_g = 0 on each \partial T . Therefore, \eta_0 is a constant on each element T .
Since \eta_0 = \eta_b on \partial T , the continuity of \eta_0 over \Omega implies \eta_0 is globally constant. From \eta_b = 0 on \partial\Omega , we conclude \eta_0 = 0 throughout \Omega . Consequently, \eta_b = \eta_0 = 0 on each \partial T , which implies \eta_h\equiv 0 in \Omega . Thus, u_h^{(1)}\equiv u_h^{(2)} , proving the uniqueness of the solution.
Let Q_r denote the L^2 projection operator onto the finite element space of piecewise polynomials of degree at most r .
Lemma 5.1. The following property holds:
\begin{equation} \partial^2_{ij, w}u = Q_r(\partial^2_{ij} u), \qquad \forall u\in H^2(T). \end{equation} | (5.1) |
Proof. For any u\in H^2(T) , using (2.2), we have
\begin{equation*} \begin{split} &\; (\partial^2_{ij, w}u, \varphi)_T\\ = &\; (\partial^2_{ij}u, \varphi)_T- \langle (u|_{\partial T}-u|_T) n_i, \partial_j \varphi \rangle_{\partial T}+\langle (\nabla u|_{\partial T})_{i} -\partial_i (u|_{T}), \varphi n_j\rangle_{\partial T}\\ = &\; (\partial^2_{ij}u, \varphi)_T = (Q_r(\partial^2_{ij}u), \varphi)_T, \end{split} \end{equation*} |
for all \varphi\in P_r(T) . This completes the proof.
Let u be the exact solution of the biharmonic equation (1.1), and u_h \in V_{h} its numerical approximation obtained from the WG scheme 3.1. The error function, denoted by e_h , is defined as
\begin{equation} e_h = u-u_h. \end{equation} | (5.2) |
Lemma 5.2. The error function e_h defined in (5.2) satisfies the following error equation:
\begin{equation} (\partial_{w}^2 e_h, \partial_{w}^2 v) = \ell (u, v), \qquad \forall v\in V_h^0, \end{equation} | (5.3) |
where
\ell (u, v) = \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}. |
Proof. Using (5.1), standard integration by parts, and substituting \varphi = Q_r \partial_{ij}^2 u into (2.2), we obtain
\begin{equation} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 u, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(Q_r \partial_{ij}^2 u, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij}v_0, Q_r \partial_{ij}^2 u)_T- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij}v_0, \partial_{ij}^2 u)_T- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 ((\partial^2_{ij})^2u, v_0)_T+\langle \partial_{ij}^2 u, \partial_i v_0\cdot n_j\rangle_{\partial T}-\langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_0\rangle_{\partial T}\\ &- \langle (v_b-v_0) n_i, \partial_j (Q_r \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, Q_r \partial_{ij}^2 u n_j\rangle_{\partial T}\\ = &\; (f, v_0)+\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}, \end{split} \end{equation} | (5.4) |
where we used (1.1), \partial_{ij}^2 v_0\in P_{k-2}(T) and r = 2N+k-2\geq k-2 , \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_{ij}^2 u, v_{gi}\cdot n_j\rangle_{\partial T} = \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_{ij}^2 u, v_{gi}\cdot n_j\rangle_{\partial \Omega} = 0 since v_{gi} = 0 on \partial \Omega , and \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_b\rangle_{\partial T} = \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial_{ij}^2u)\cdot n_i, v_b\rangle_{\partial \Omega} = 0 since v_{b} = 0 on \partial \Omega .
Subtracting (3.1) from (5.4) yields
\begin{equation*} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 e_h, \partial_{ij, w}^2 v)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}+\langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}. \end{split} \end{equation*} |
This concludes the proof.
Lemma 6.1. [5] Let {\mathcal{T}}_h be a finite element partition of the domain \Omega satisfying the shape regularity assumption specified in [8]. For any 0\leq s \leq 2 and 1\leq m \leq k , the following estimates hold:
\begin{eqnarray} \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 h_T^{2s}\|\partial_{ij}^2 u- Q_r \partial_{ij}^2 u\|^2_{s,T}&\leq& C h^{2(m-1)}\|u\|^2_{m+1}, \end{eqnarray} | (6.1) |
\begin{eqnarray} \sum\limits_{T\in {\mathcal{T}}_h}h_T^{2s}\|u- Q _0u\|^2_{s,T}&\leq& C h^{2(m+1)}\|u\|^2_{m+1}. \end{eqnarray} | (6.2) |
Lemma 6.2. If u\in H^{k+1}(\Omega) , then there exists a constant C such that
\begin{equation} ||| u-Q_hu ||| \leq Ch^{k-1}\|u\|_{k+1}. \end{equation} | (6.3) |
Proof. Utilizing (2.2), the trace inequalities (4.1) and (4.2), the inverse inequality, and the estimate (6.2) for m = k and s = 0, 1, 2 , we analyze the following summation for any \varphi\in P_r(T) :
\begin{equation*} \begin{split} &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w}(u-Q_hu), \varphi)_T\\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2 (\partial^2_{ij}(u-Q_0u), \varphi)_T- \langle (Q_0u-Q_bu) n_i, \partial_j \varphi \rangle_{\partial T}\\&+\langle (\partial_i u- Q_n (\partial_i u))-\partial_i (u-Q_0u), \varphi n_j\rangle_{\partial T}\\ \leq &\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|\partial^2_{ij}(u-Q_0u)\|^2_T\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}\\& + \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2\|(Q_0u-Q_bu) n_i\|_{\partial T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{ j = 1}^2\|\partial_j \varphi\|_{\partial T}^2\Big)^{\frac{1}{2}}\\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2\| \partial_i (Q_0u)- Q_n (\partial_i u) \|_{\partial T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{ j = 1}^2 \| \varphi n_j\|_{\partial T}^2\Big)^{\frac{1}{2}}\\ \leq &\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|\partial^2_{ij}(u-Q_0u)\|^2_T\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}\\& + \Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1}\| Q_0u- u \|_{ T}+h_T \| Q_0u- u \|_{1, T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-3}\| \varphi\|_{ T}^2\Big)^{\frac{1}{2}}\\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i = 1}^2h_T^{-1}\| \partial_i (Q_0u)- \partial_i u \|_{ T} ^2+h_T \| \partial_i (Q_0u)- \partial_i u \|_{1, T} ^2\Big)^{\frac{1}{2}}\Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1} \| \varphi \|_{T}^2\Big)^{\frac{1}{2}}\\ \leq&\; Ch^{k-1}\|u\|_{k+1}\Big(\sum\limits_{T\in {\mathcal{T}}_h} \|\varphi\|_T^2\Big)^{\frac{1}{2}}. \end{split} \end{equation*} |
Letting \varphi = \partial^2_{ij, w}(u-Q_hu) gives
\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij, w}(u-Q_hu), \partial^2_{ij, w}(u-Q_hu))_T\leq Ch^{k-1}\|u\|_{k+1}||| u-Q_hu |||. |
This completes the proof.
Theorem 6.3. Suppose the exact solution u of the biharmonic equation (1.1) satisfies u\in H^{k+1}(\Omega) . Then, the error estimate satisfies:
\begin{equation} ||| u-u_h||| \leq Ch^{k-1}\|u\|_{k+1}. \end{equation} | (6.4) |
Proof. Note that r\geq 1 . For the first term on the right-hand side of the error equation (5.3), using Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 1, 2 , and (4.9), we have
\begin{equation} \begin{split} &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (v_b-v_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}\Big|\\ \leq &\; C(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-3}\|(v_b-v_0) n_i\|^2_{\partial T} )^{\frac{1}{2}} \cdot(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T^3\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{\partial T})^{\frac{1}{2}}\\\leq &\; C \| v\|_{2,h} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T^2\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{T}+h_T^4\|\partial_j ((Q_r-I) \partial_{ij}^2 u) \|^2_{1, T})^{\frac{1}{2}}\\ \leq &\; Ch^{k-1} \|u\|_{k+1} ||| v|||. \end{split} \end{equation} | (6.5) |
For the second term on the right-hand side of the error equation (5.3), using the Cauchy-Schwarz inequality, the trace inequality (4.1), the estimate (6.1) with m = k and s = 0, 1 , and (4.9), we have
\begin{equation} \begin{split} &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 \langle v_{gi}-\partial_i v_0, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}\Big|\\ \leq &\; C(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-1}\| v_{gi}-\partial_i v_0\|^2_{\partial T} )^{\frac{1}{2}} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2h_T\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{\partial T})^{\frac{1}{2}}\\ \leq &\; C \| v\|_{2,h} (\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{ T}+h_T^2\|(Q_r-I) \partial_{ij}^2 u n_j\|^2_{1, T})^{\frac{1}{2}}\\ \leq &\; C \| v\|_{2,h} h^{k-1}\|u\|_{k+1}\\ \leq &\; Ch^{k-1}\|u\|_{k+1} ||| v|||. \end{split} \end{equation} | (6.6) |
Substituting (6.5) and (6.6) into (5.3) gives
\begin{equation} (\partial^2_{ij, w} e_h, \partial^2_{ij, w} v)\leq Ch^{k-1} \|u\|_{k+1} ||| v|||. \end{equation} | (6.7) |
Using Cauchy-Schwarz inequality, letting v = Q_hu-u_h in (6.7), the error estimate (6.3) gives
\begin{equation*} \begin{split} & \; ||| u-u_h|||^2\\ = &\; \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial^2_{ij, w} (u-u_h), \partial^2_{ij, w} (u-Q_hu))_T+(\partial^2_{ij, w} (u-u_h), \partial^2_{ij, w} (Q_hu-u_h))_T\\ \leq &\; ||| u-u_h ||| ||| u-Q_hu |||+ Ch^{k-1} \|u\|_{k+1} ||| Q_hu-u_h||| \\ \leq &\; ||| u-u_h ||| ||| u-Q_hu ||| + Ch^{k-1} \|u\|_{k+1} (||| Q_hu-u|||+||| u-u_h|||) \\ \leq &\; ||| u-u_h ||| ||| u-Q_hu ||| + Ch^{k-1}\|u\|_{k+1} h^{k-1} \|u\|_{k+1} +Ch^{k-1} \|u\|_{k+1} ||| u-u_h|||, \end{split} \end{equation*} |
which further gives
\begin{equation*} \begin{split} ||| u-u_h||| \leq ||| u-Q_hu |||+Ch^{k-1} \|u\|_{k+1} \leq Ch^{k-1} \|u\|_{k+1}. \end{split} \end{equation*} |
This completes the proof.
To derive the error estimate in the L^2 norm, we use the standard duality argument. The error is expressed as e_h = u-u_h = \{e_0, e_b, {{\mathbf{e}}}_g\} , and we define \zeta_h = Q_hu - u_h = \{\zeta_0, \zeta_b, {{\boldsymbol{\zeta}}}_g\}\in V_h^0 . Consider the dual problem associated with the biharmonic equation (1.1), which seeks a function w \in H_0^2(\Omega) satisfying:
\begin{equation} \begin{split} \Delta^2 w& = \zeta_0, \qquad \text{in}\ \Omega,\\ w& = 0, \qquad \text{on}\ \partial\Omega,\\ \frac{\partial w}{\partial {{\mathbf{n}}}}& = 0, \qquad \text{on}\ \partial\Omega. \end{split} \end{equation} | (7.1) |
We assume the following regularity condition for the dual problem:
\begin{equation} \|w\|_4\leq C\|\zeta_0\|. \end{equation} | (7.2) |
Theorem 7.1. Let u\in H^{k+1}(\Omega) be the exact solution of the biharmonic equation (1.1), and let u_h\in V_h denote the numerical solution obtained using the weak Galerkin scheme 3.1. Assume that the H^4 -regularity condition (7.2) holds. Then, there exists a constant C such that
\begin{equation*} \|e_0\|\leq Ch^{k+1}\|u\|_{k+1}. \end{equation*} |
Proof. Testing the dual problem (7.1) with \zeta_0 and applying integration by parts, we derive:
\begin{equation} \begin{split} \|\zeta_0\|^2 = &\; (\Delta^2 w, \zeta_0)\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij} w, \partial^2_{ij}\zeta_0)_T-\langle \partial^2_{ij} w, \partial_i\zeta_0 \cdot n_j \rangle_{\partial T}+\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_0 \rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij} w, \partial^2_{ij}\zeta_0)_T-\langle \partial^2_{ij} w, (\partial_i\zeta_0-\zeta_{gi}) \cdot n_j \rangle_{\partial T}+\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_0-\zeta_b \rangle_{\partial T}, \end{split} \end{equation} | (7.3) |
where we used \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial^2_{ij} w, \zeta_{gi} \cdot n_j \rangle_{\partial T} = \sum_{i, j = 1}^2\langle \partial^2_{ij} w, \zeta_{gi} \cdot n_j \rangle_{\partial \Omega} = 0 due to {{\boldsymbol{\zeta}}}_g = 0 on \partial\Omega , and \sum_{T\in {\mathcal{T}}_h} \sum_{i, j = 1}^2 \langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_b \rangle_{\partial T} = \sum_{i, j = 1}^2\langle \partial_j(\partial^2_{ij} w)\cdot n_i, \zeta_b \rangle_{\partial \Omega} = 0 due to \zeta_b = 0 on \partial\Omega .
Letting u = w and v = \zeta_h in (5.4) gives
\begin{equation*} \begin{split} & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T \\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij}^2 w, \partial_{ij}^2 \zeta_0)_T - \langle (\zeta_b-\zeta_0) n_i, \partial_j (Q_r \partial_{ij}^2 w) \rangle_{\partial T}+\langle \zeta_{gi}-\partial_i \zeta_0, Q_r \partial_{ij}^2 w n_j\rangle_{\partial T}, \end{split} \end{equation*} |
which is equivalent to
\begin{equation*} \begin{split} & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij}^2 w, \partial_{ij}^2 \zeta_0)_T \\ = &\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T +\langle (\zeta_b-\zeta_0) n_i, \partial_j (Q_r \partial_{ij}^2 w) \rangle_{\partial T}-\langle \zeta_{gi}-\partial_i \zeta_0, Q_r \partial_{ij}^2 w n_j\rangle_{\partial T}. \end{split} \end{equation*} |
Substituting the above equation into (7.3) and using (5.3) gives
\begin{equation} \begin{split} \|\zeta_0\|^2 = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 \zeta_h)_T +\langle (\zeta_b-\zeta_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 w) \rangle_{\partial T}\\&-\langle \zeta_{gi} -\partial_i \zeta_0, (Q_r-I) \partial_{ij}^2 w n_j\rangle_{\partial T}\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 w, \partial_{ij, w}^2 e_h)_T+(\partial_{ij, w}^2 w, \partial_{ij, w}^2 (Q_hu-u))_T-\ell(w, \zeta_h)\\ = & \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 Q_hw, \partial_{ij, w}^2 e_h)_T+(\partial_{ij, w}^2 (w-Q_hw), \partial_{ij, w}^2 e_h)_T\\&+(\partial_{ij, w}^2 w, \partial_{ij, w}^2 (Q_hu-u))_T-\ell(w, \zeta_h)\\ = &\; \ell(u, Q_hw) + \sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2(\partial_{ij, w}^2 (w-Q_hw), \partial_{ij, w}^2 e_h)_T\\&+(\partial_{ij, w}^2w, \partial_{ij, w}^2(Q_hu-u))_T-\ell(w, \zeta_h)\\ = &\; J_1+J_2+J_3+J_4. \end{split} \end{equation} | (7.4) |
We will estimate the four terms J_i \; (i = 1 , \cdots , 4) on the last line of (7.4) individually.
For J_1 , using the Cauchy-Schwarz inequality, the trace inequality (4.1), the inverse inequality, the estimate (6.1) with m = k and s = 0, 1, 2 , the estimate (6.2) with m = 3 and s = 0, 1, 2 , gives
\begin{equation} \begin{split} &J_1 = \ell(u, Q_hw)\\ \leq &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (Q_bw-Q_0w) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 u) \rangle_{\partial T}\\&+\langle Q_n(\partial_i w) -\partial_i Q_0w, (Q_r-I) \partial_{ij}^2 u n_j\rangle_{\partial T}\Big|\\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|(Q_bw-Q_0w) n_i\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|Q_n(\partial_i w) -\partial_i Q_0w\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 u n_j\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h} h_T^{-1}\| w-Q_0w \|_{ T}^2+h_T \|w-Q_0w \|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^{-1}\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{T}^2+h_T\|\partial_j ((Q_r-I) \partial_{ij}^2 u)\|_{1, T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2h_T^{-1}\| \partial_i w -\partial_i Q_0w\|_{T}^2+h_T \| \partial_i w -\partial_i Q_0w\|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^{-1}\|(Q_r-I) \partial_{ij}^2 u n_j\|_{T}^2+h_T\|(Q_r-I) \partial_{ij}^2 u n_j\|_{1, T}^2\Big)^{\frac{1}{2}} \\ \leq &\; Ch^{k+1}\|u\|_{k+1}\|w\|_4. \end{split} \end{equation} | (7.5) |
For J_2 , using Cauchy-Schwarz inequality, (6.3) with k = 3 and (6.4) gives
\begin{equation} \begin{split} J_2\leq ||| w-Q_hw||| ||| e_h|||\leq Ch^{k-1}\|u\|_{k+1}h^2\|w\|_4\leq Ch^{k+1}\|u\|_{k+1}\|w\|_4. \end{split} \end{equation} | (7.6) |
For J_3 , denote by Q^1 a L^2 projection onto P_1(T) . Using (2.1) gives
\begin{equation} \begin{split} &\; (\partial^2_{ij, w}(Q_hu-u), Q^1\partial^2_{ij, w} w)_T\\ = &\; (Q_0u-u, \partial^2_{ji} ( Q^1\partial^2_{ij, w} w))_T-\langle Q_bu-u, \partial_j (Q^1\partial^2_{ij, w} w)\rangle_{\partial T}+ \langle Q_n(\partial_i u)-\partial_i u, Q^1\partial^2_{ij, w} w n_j\rangle_{\partial T}\\ = &\; 0, \end{split} \end{equation} | (7.7) |
where we used \partial^2_{ji} (Q^1\partial^2_{ij, w} w) = 0 , \partial_j (Q^1\partial^2_{ij, w} w) = C and the property of the projection operators Q_b and Q_n and p\geq q\geq 1 .
Using (7.7), Cauchy-Schwarz inequality, (5.1) and (6.3), gives
\begin{equation} \begin{split} J_3\leq &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w} w, \partial^2_{ij, w} (Q_hu-u))_T| \\ = &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(\partial^2_{ij, w} w-Q^1\partial^2_{ij, w} w, \partial^2_{ij, w} (Q_hu-u))_T|\\ = &\; |\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2(Q_r\partial^2_{ij} w-Q^1 Q_r\partial^2_{ij} w, \partial^2_{ij, w} (Q_hu-u))_T|\\ \leq & \; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i, j = 1}^2\|Q_r\partial^2_{ij} w-Q^1 Q^r\partial^2_{ij} w\|_T^2\Big)^{\frac{1}{2}} ||| Q_hu-u |||\\ \leq & \; Ch^{k+1}\|u\|_{k+1} \|w\|_4. \end{split} \end{equation} | (7.8) |
For J_4 , using Cauchy-Schwarz inequality, the trace inequality (4.1), Lemma 4.4, the estimate (6.1) with m = 3 and s = 0, 1 , (6.3), (6.4) gives
\begin{equation} \begin{split} J_4 = &\; \ell(w, \zeta_h)\\ \leq &\; \Big|\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2 - \langle (\zeta_b-\zeta_0) n_i, \partial_j ((Q_r-I) \partial_{ij}^2 w) \rangle_{\partial T}\\&+\langle \zeta_{gi}-\partial_i \zeta_0, (Q_r-I) \partial_{ij}^2 w n_j\rangle_{\partial T}\Big| \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|(\zeta_b-\zeta_0) n_i\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|\partial_j ((Q_r-I) \partial_{ij}^2 w) \|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2\|\zeta_{gi}-\partial_i \zeta_0\|_{\partial T}^2\Big)^{\frac{1}{2}} \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2\|(Q_r-I) \partial_{ij}^2 w n_j\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ \leq&\; \Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i,j = 1}^2h_T^2 \|\partial_j ((Q_r-I) \partial_{ij}^2 w)\|_{T}^2+h_T^4 \| \partial_j ((Q_r-I) \partial_{ij}^2 w)\|_{1, T}^2\Big)^{\frac{1}{2}} \\&\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}h_T^{-3}\|\zeta_0-\zeta_b\|_{\partial T}^2\Big)^{\frac{1}{2}} \\ &+ \Big(\sum\limits_{T\in {\mathcal{T}}_h} \sum\limits_{i,j = 1}^2 \|(Q_r-I) \partial_{ij}^2 w n_j\|_{T}^2+h_T^2 \|(Q_r-I) \partial_{ij}^2 w n_j\|_{1, T}^2\Big)^{\frac{1}{2}} \\ &\cdot\Big(\sum\limits_{T\in {\mathcal{T}}_h}\sum\limits_{i = 1}^2 h_T^{-1}\|\zeta_{gi}-\partial_i \zeta_0\|_{\partial T}^2\Big)^{\frac{1}{2}} \\\leq &\; Ch^2\|w\|_{4}|||\zeta_h||| \\ \leq &\; Ch^2\|w\|_{4}(||| u-u_h|||+||| u-Q_hu|||) \\ \leq &\; Ch^{k+1}\|w\|_4\|u\|_{k+1}. \end{split} \end{equation} | (7.9) |
Substituting (7.5), (7.6), (7.8) and (7.9) into (7.4), and using (7.2), gives
\|\zeta_0\|^2\leq Ch^{k+1}\|w\|_4\|u\|_{k+1}\leq Ch^{k+1} \|u\|_{k+1} \|\zeta_0\|. |
This gives
\|\zeta_0\|\leq Ch^{k+1} \|u\|_{k+1}, |
which, using the triangle inequality and (6.2) with m = k and s = 0 , gives
\|e_0\|\leq \|\zeta_0\|+\|u-Q_0u\|\leq Ch^{k+1}\|u\|_{k+1}. |
This completes the proof of the theorem.
The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.
The research of Chunmei Wang was partially supported by National Science Foundation Grant DMS-2136380.
The author declares there is no conflict of interest.
[1] |
Filonchyk M, Peterson MP, Yan H, et al. (2024) Greenhouse gas emissions and reduction strategies for the world's largest greenhouse gas emitters. Sci Total Environ 944: 173895. https://doi.org/10.1016/j.scitotenv.2024.173895 doi: 10.1016/j.scitotenv.2024.173895
![]() |
[2] | Intergovernmental Panel for Climate Change (2023) Climate change 2023: Synthesis report, contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change, Geneva, Switzerland. Available from: https://doi:10.59327/IPCC/AR6-9789291691647 |
[3] |
Alves MR, Moutinho V, Macedo P (2015) A new frontier approach to model the eco-efficiency in European countries. J Clean Prod 103: 562–573. https://doi:10.1016/j.jclepro.2015.01.038 doi: 10.1016/j.jclepro.2015.01.038
![]() |
[4] |
Álvarez MAG, Montañés A (2023) CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship. Econ Model 121: 106195. https://doi.org/10.1016/j.econmod.2023.106195 doi: 10.1016/j.econmod.2023.106195
![]() |
[5] |
Agoundedemba M, Kim CK, Kim HG (2023) Energy status in Africa: Challenges, progress and sustainable pathways. Energies 16: 7708. https://doi:10.3390/en16237708 doi: 10.3390/en16237708
![]() |
[6] |
İnal V, Addi HM, Çakmak EE, et al. (2022) The nexus between renewable energy, CO2 emissions, and economic growth: Empirical evidence from African oil-producing countries. Energy Rep 8: 1634–1643. https://doi.org/10.1016/j.egyr.2021.12.051 doi: 10.1016/j.egyr.2021.12.051
![]() |
[7] | Ouki M (2023) Prospects for a potential African gas renaissance en route to a "just energy transition", The Oxford Institute for Energy Studies, 185. |
[8] | Giwa SO, Taziwa RT (2024) Adoption of advanced coal gasification: A panacea to carbon footprint reduction and hydrogen economy transition in South Africa. Int J Hydrogen Energ 77,301–323. https://doi.org/10.1016/J.IJHYDENE.2024.06.190 |
[9] |
Mirzania P, Gordon JA, Ozkan NB, et al. (2023) Barriers to powering past coal: Implications for a just energy transition in South Africa. Energy Res Soc Sci 101: 103122. https://doi.org/10.1016/j.erss.2023.103122 doi: 10.1016/j.erss.2023.103122
![]() |
[10] |
Muttitt G, Price J, Pye S, et al. (2023) Socio-political feasibility of coal power phase-out and its role in mitigation pathways. Nat Clim Change 13: 140–147. https://doi.org/10.1038/s41558-022-01576-2 doi: 10.1038/s41558-022-01576-2
![]() |
[11] | IEA (2023) Fossil fuels consumption subsidies 2022, Paris. Available from: https://www.iea.org/reports/fossil-fuels-consumption-subsidies-2022. |
[12] | UNFCCC (2021) Conference of the Parties serving as the meeting of the Parties to the Paris Agreement. Third Session Glasgow 31. |
[13] |
Udeh BA, Kidak R (2019) The excessive use of fossil fuel and its impact to climate change in Africa. Curr J Appl Sci Technol 32: 1–4. https://doi:10.9734/cjast/2019/41680 doi: 10.9734/cjast/2019/41680
![]() |
[14] | Egana-delSol PA (2021) Energy consumption: Strategies to foster sustainable energy consumption, In: Filho WL, Azul AM, Brandli L, et al. Eds., Affordable and Clean Energy, Cham: Springer, 1–10. https://doi.org/10.1007/978-3-319-95864-4_35 |
[15] | Noussan M, Hafner M, Tagliapietra S (2020) The evolution of transport across world regions, In: The Future of Transport between Digitalization and Decarbonization: Trends, Strategies and Effects on Energy Consumption, Cham: Springer, 1–28. https://doi.org/10.1007/978-3-030-37966-7_1 |
[16] | IEA (2025) International Energy Agency. Available from: https://www.iea.org/energy-system/transport. |
[17] |
Mutezo G, Mulopo J (2021) A review of Africa's transition from fossil fuels to renewable energy using circular economy principles. Renew Sust Energ Rev 137: 110609. https://doi:10.1016/j.rser.2020.110609 doi: 10.1016/j.rser.2020.110609
![]() |
[18] |
Kelly AM, Radler RDNN (2024) Does energy consumption matter for climate change in Africa? New insights from panel data analysis. Innov Green Dev 3: 100132. https://doi:10.1016/j.igd.2024.100132 doi: 10.1016/j.igd.2024.100132
![]() |
[19] | The Renewable Energy Transition in Africa. Available from: https://www.irena.org/publications/2021/March/The-Renewable-Energy-Transition-in-Africa. |
[20] | Climate Resilience and a Just Energy Transition in Africa. African Development Bank, 2022. Available from: https://www.afdb.org/sites/default/files/2022/05/25/aeo22_chapter2_eng.pdf. |
[21] |
Hanto J, Schroth A, Krawielicki L, et al. (2022) South Africa's energy transition–Unraveling its political economy. Energy Sustain Dev 69: 164–178. https://doi:10.1016/j.esd.2022.06.006 doi: 10.1016/j.esd.2022.06.006
![]() |
[22] |
Li B, Haneklaus N (2022) The role of clean energy, fossil fuel consumption and trade openness for carbon neutrality in China. Energy Rep 8: 1090–1098. https://doi.org/10.1016/j.egyr.2022.02.092 doi: 10.1016/j.egyr.2022.02.092
![]() |
[23] |
Nwaiwu F (2021) Digitalisation and sustainable energy transitions in Africa: Assessing the impact of policy and regulatory environments on the energy sector in Nigeria and South Africa. Energy Sustain Soc 11: 48. https://doi:10.1186/s13705-021-00325-1 doi: 10.1186/s13705-021-00325-1
![]() |
[24] |
Wang Q, Li Y, Li R (2025) Integrating artificial intelligence in energy transition: A comprehensive review. Energy Strateg Rev 57: 101600. https://doi.org/10.1016/J.ESR.2024.101600 doi: 10.1016/J.ESR.2024.101600
![]() |
[25] |
Wang Q, Sun T, Li R (2025) Does Artificial Intelligence (AI) enhance green economy efficiency? The role of green finance, trade openness, and R & D investment. Hum Soc Sci Commun 12: 1–22. https://doi.org/10.1057/s41599-024-04319-0 doi: 10.1057/s41599-024-04319-0
![]() |
[26] | Jing H, Chen Y, Ma M, et al. (2024) Global carbon transition in the passenger transportation sector over 2000–2021. Sustain Prod Consump 51,556–571. https://doi.org/10.1016/J.SPC.2024.10.006 |
[27] |
Kurramovich KK, Abro AA, Vaseer AI, et al. (2022) Roadmap for carbon neutrality: the mediating role of clean energy development-related investments. Environ Sci Pollut R 29: 34055–34074. https://doi.org/10.1007/s11356-021-17985-3 doi: 10.1007/s11356-021-17985-3
![]() |
[28] | IEA, World Energy Outlooks special report Africa energy outlook 2022. International Energy Agency, 2022. Available from: https://www.iea.org/reports/africa-energy-outlook-2022. |
[29] |
Driscoll JC, Kraay AC (1998) Consistent covariance matrix estimation with spatially dependent panel data. Rev Econ Stat 80: 549–560. https://doi.org/10.1162/003465398557825 doi: 10.1162/003465398557825
![]() |
[30] |
Shah WUH, Hao G, Yan H, et al. (2024) Role of renewable, non-renewable energy consumption and carbon emission in energy efficiency and productivity change: Evidence from G20 economies. Geosci Front 15: 101631. https://doi:10.1016/j.gsf.2023.101631 doi: 10.1016/j.gsf.2023.101631
![]() |
[31] |
Chen C, Pinar M, Stengos T (2022) Renewable energy and CO2 emissions: New evidence with the panel threshold model. Renew Energ 194: 117–128. https://doi:10.1016/j.renene.2022.05.095 doi: 10.1016/j.renene.2022.05.095
![]() |
[32] |
AlNemer HA, Hkiri B, Tissaoui K (2023) Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis. Renew Energ 209: 340–356. https://doi:10.1016/j.renene.2023.03.084 doi: 10.1016/j.renene.2023.03.084
![]() |
[33] |
Wang Q, Li L, Li R (2022) The asymmetric impact of renewable and non-renewable energy on total factor carbon productivity in 114 countries: Do urbanization and income inequality matter? Energy Strateg Rev 44: 100942. https://doi:10.1016/j.esr.2022.100942 doi: 10.1016/j.esr.2022.100942
![]() |
[34] |
Hu K, Raghutla C, Chittedi KR, et al. (2021) The effect of energy resources on economic growth and carbon emissions: A way forward to carbon neutrality in an emerging economy. J Environ Manag 298: 113448. https://doi:10.1016/j.jenvman.2021.113448 doi: 10.1016/j.jenvman.2021.113448
![]() |
[35] |
Destek MA, Sinha A (2020) Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic co-operation and development countries. J Clean Prod 242: 118537. https://doi:10.1016/j.jclepro.2019.118537 doi: 10.1016/j.jclepro.2019.118537
![]() |
[36] |
Santos G (2017) Road transport and CO2 emissions: What are the challenges? Transport Policy 59: 71–74. https://doi:10.1016/j.tranpol.2017.06.007 doi: 10.1016/j.tranpol.2017.06.007
![]() |
[37] |
Wang H, Ou X, Zhang X (2017) Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050. Energ Policy 109: 719–733. https://doi:10.1016/j.enpol.2017.07.010 doi: 10.1016/j.enpol.2017.07.010
![]() |
[38] |
Yin X, Chen W, Eom J, et al. (2015) China's transportation energy consumption and CO2 emissions from a global perspective. Energ Policy 82: 233–248. https://doi:10.1016/j.enpol.2015.03.021 doi: 10.1016/j.enpol.2015.03.021
![]() |
[39] |
Ağbulut Ü (2022) Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain Prod Consump 29: 141–157. https://doi:10.1016/j.spc.2021.10.001 doi: 10.1016/j.spc.2021.10.001
![]() |
[40] |
Chandran VGR, Tang CF (2013) The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew Sust Energ Rev 24: 445–453. https://doi:10.1016/j.rser.2013.03.054 doi: 10.1016/j.rser.2013.03.054
![]() |
[41] |
Mraihi R, Abdallah KB, Abid M (2013) Road transport-related energy consumption: Analysis of driving factors in Tunisia. Energ Policy 62: 247–253. https://doi.org/10.1016/j.enpol.2013.07.007 doi: 10.1016/j.enpol.2013.07.007
![]() |
[42] |
Peng Z, Wu Q (2020) Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China' transport sector: The FMOLS and VECM approaches. Environ Dev Sustain 22: 6537–6561. https://doi.org/10.1007/s10668-019-00498-y doi: 10.1007/s10668-019-00498-y
![]() |
[43] |
Satrovic E, Cetindas A, Akben I (2024) Do natural resource dependence, economic growth and transport energy consumption accelerate ecological footprint in the most innovative countries? The moderating role of technological innovation. Gondwana Res 127: 116–130. https://doi.org/10.1016/j.gr.2023.04.008 doi: 10.1016/j.gr.2023.04.008
![]() |
[44] |
Wu Y, Zhu Q, Zhong L, et al. (2019) Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study. Struct Change Econ D 51: 349–360. https://doi.org/10.1016/j.strueco.2018.12.003 doi: 10.1016/j.strueco.2018.12.003
![]() |
[45] |
Yadav P, Davies PJ, Sarkodie SA (2021) Fuel choice and tradition: Why fuel stacking and the energy ladder are out of step? Sol Energy 214: 491–501. https://doi.org/10.1016/j.solener.2020.11.077 doi: 10.1016/j.solener.2020.11.077
![]() |
[46] |
Li S, Wang B, Zhou H (2024) Decarbonizing passenger transportation in developing countries: Lessons and perspectives1. Reg Sci Urban Econ 107: 103977. https://doi.org/10.1016/J.REGSCIURBECO.2024.103977 doi: 10.1016/J.REGSCIURBECO.2024.103977
![]() |
[47] | ITF, ITF Transport Outlook. International Transport Forum, 2021. Available from: https://www.oecd.org/en/publications/itf-transport-outlook-2021_16826a30-en.html. |
[48] | SLOCAT, Tracking Trends in a Time of Change: The Need for Radical Action Towards Sustainable Transport Decarbonisation. Transport and Climate Change Global Status Report, 2Eds., 2021. Available from: https://www.tcc-gsr.com. |
[49] |
Saidi S (2021) Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries? Econ Chang Restruct 54: 1119–1145. https://doi.org/10.1007/s10644-020-09296-3 doi: 10.1007/s10644-020-09296-3
![]() |
[50] |
Lopez NS, Chiu ASF, Biona JBM (2018) Decomposing drivers of transportation energy consumption and carbon dioxide emissions for the Philippines: The case of developing countries. Front Energy 12: 389–399. https://doi.org/10.1007/s11708-018-0578-7 doi: 10.1007/s11708-018-0578-7
![]() |
[51] | IEA (2024) Access and Affordability. Available from: https://www.iea.org/topics/access-and-affordability. |
[52] |
Chen L, Ma R (2024) Clean energy synergy with electric vehicles: Insights into carbon footprint. Energy Strateg Rev 53: 101394. https://doi.org/10.1016/j.esr.2024.101394 doi: 10.1016/j.esr.2024.101394
![]() |
[53] |
Cai Y, Sam CY, Chang T (2018) Nexus between clean energy consumption, economic growth and CO2 emissions. J Clean Prod 182: 1001–1011. https://doi:10.1016/j.jclepro.2018.02.035 doi: 10.1016/j.jclepro.2018.02.035
![]() |
[54] |
Gielen D, Boshell F, Saygin D, et al. (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24: 38–50. https://doi:10.1016/j.esr.2019.01.006 doi: 10.1016/j.esr.2019.01.006
![]() |
[55] |
Li B, Haneklaus N (2022) Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization. Energy Rep 8: 704–713. https://doi:10.1016/j.egyr.2022.01.238 doi: 10.1016/j.egyr.2022.01.238
![]() |
[56] |
Nkolo JC, Motel PC, Roux LL (2019) Stacking up the ladder: A panel data analysis of Tanzanian household energy choices. World Dev 115: 222–235. https://doi:10.1016/j.worlddev.2018.11.016 doi: 10.1016/j.worlddev.2018.11.016
![]() |
[57] |
Monserrate MAZ (2024) Clean energy production index and CO2 emissions in OECD countries. Sci Total Environ 907: 167852. https://doi.org/10.1016/j.scitotenv.2023.167852 doi: 10.1016/j.scitotenv.2023.167852
![]() |
[58] |
Xue C, Shahbaz M, Ahmed Z, et al. (2022) Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty? Renew Energ 184: 899–907. https://doi.org/10.1016/j.renene.2021.12.006 doi: 10.1016/j.renene.2021.12.006
![]() |
[59] |
Yang F, Wang C (2023) Clean energy, emission trading policy, and CO2 emissions: Evidence from China. Energy Environ 34: 1657–1673. https://doi.org/10.1177/0958305X221094581 doi: 10.1177/0958305X221094581
![]() |
[60] |
Wang Q, Li Y, Li R (2024) Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI). Hum Soc Sci Commun 11: 1–18. https://doi.org/10.1057/s41599-024-03520-5 doi: 10.1057/s41599-024-03520-5
![]() |
[61] |
Ahmed K, Apergis N, Bhattacharya M, et al. (2021) Electricity consumption in Australia: The role of clean energy in reducing CO2 emissions. Appl Econ 53: 5535–5548. https://doi.org/10.1080/00036846.2021.1925080 doi: 10.1080/00036846.2021.1925080
![]() |
[62] | Tangato KF (2024) The impact of clean technology adoption on carbon emissions: A global perspective. Clean Technol Envir 1–18. https://doi.org/10.1007/s10098-024-03066-9 |
[63] |
Bo X, You Q, Sang M, et al. (2023) The impacts of clean energy policies on air pollutants and CO2 emission reduction in Shaanxi, China. Atmos Pollut Res 14: 101937. https://doi.org/10.1016/j.apr.2023.101937 doi: 10.1016/j.apr.2023.101937
![]() |
[64] |
Ummalla M, Goyari P (2021) The impact of clean energy consumption on economic growth and CO2 emissions in BRICS countries: Does the environmental Kuznets curve exist? J Public Aff 21: e2126. https://doi.org/10.1002/pa.2126 doi: 10.1002/pa.2126
![]() |
[65] | IEA, Clean Energy Investment for Development in Africa. International Energy Agency, 2024. Available from: https://www.iea.org/reports/clean-energy-investment-for-development-in-africa. |
[66] | World Bank, DataBank. World Bank, 2024. Available from: https://databank.worldbank.org/home.aspx. |
[67] | IEA, Data and Statistics. International Energy Agency, 2024. Available from: https://www.iea.org/data-and-statistics/. |
[68] |
Li R, Wang Q, Li L (2023) Does renewable energy reduce per capita carbon emissions and per capita ecological footprint? New evidence from 130 countries. Energy Strateg Rev 49: 101121. https://doi:10.1016/j.esr.2023.101121 doi: 10.1016/j.esr.2023.101121
![]() |
[69] |
Bekun FV, Gyamfi BA, Onifade ST, et al. (2021) Beyond the environmental Kuznets Curve in E7 economies: Accounting for the combined impacts of institutional quality and renewables. J Clean Prod 314: 127924. https://doi.org/10.1016/j.jclepro.2021.127924 doi: 10.1016/j.jclepro.2021.127924
![]() |
[70] |
Sarkodie SA, Adams S (2018) Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci Total Environ 643: 1590–1601. https://doi.org/10.1016/j.scitotenv.2018.06.320 doi: 10.1016/j.scitotenv.2018.06.320
![]() |
[71] |
Selcuk M, Gormus S, Guven M (2021) Do agriculture activities matter for environmental Kuznets curve in the next eleven countries? Environ Sci Pollut R 28: 55623–55633. https://doi.org/10.1007/s11356-021-14825-2 doi: 10.1007/s11356-021-14825-2
![]() |
[72] |
Espoir DK, Sunge R (2021) CO2 emissions and economic development in Africa: Evidence from a dynamic spatial panel model. J Environ Manage 300: 113617. https://doi.org/10.1016/j.jenvman.2021.113617 doi: 10.1016/j.jenvman.2021.113617
![]() |
[73] |
Mentel G, Tarczyński W, Dylewski M, et al. (2022) Does renewable energy sector affect industrialization-CO2 emissions Nexus in Europe and Central Asia? Energies 15: 5877. https://doi.org/10.3390/en15165877 doi: 10.3390/en15165877
![]() |
[74] |
Amoah A, Kwablah E, Korle K, et al. (2020) Renewable energy consumption in Africa: The role of economic well-being and economic freedom. Energy Sustain Soc 10: 32. https://doi.org/10.1186/s13705-020-00264-3 doi: 10.1186/s13705-020-00264-3
![]() |
[75] |
Magazzino C, Cerulli G, Shahzad U, et al. (2023) The nexus between agricultural land use, urbanization, and greenhouse gas emissions: Novel implications from different stages of income levels. Atmos Pollut Res 14: 101846. https://doi.org/10.1016/j.apr.2023.101846 doi: 10.1016/j.apr.2023.101846
![]() |
[76] |
Raihan A, Begum RA, Nizam M, et al. (2022) Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Environ Ecol Stat 29: 477–507. https://doi.org/10.1007/s10651-022-00532-9 doi: 10.1007/s10651-022-00532-9
![]() |
[77] |
Haug AA, Ucal N (2019) The role of trade and FDI for CO2 emissions in Turkey: Nonlinear relationships. Energy Econ 81: 297–307. https://doi.org/10.1016/j.eneco.2019.04.006 doi: 10.1016/j.eneco.2019.04.006
![]() |
[78] |
Rehman E, Rehman S (2022) Modeling the nexus between carbon emissions, urbanization, population growth, energy consumption, and economic development in Asia: Evidence from grey relational analysis. Energy Rep 8: 5430–5442. https://doi.org/10.1016/j.egyr.2022.03.179 doi: 10.1016/j.egyr.2022.03.179
![]() |
[79] | Baron RM, Kenny DA (1986) The Moderator-Mediator variable distinction in social psychological research. Conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51: 1173. https://doi:10.1037/0022-3514.51.6.1173 |
[80] |
Breusch TS, Pagan AR (1980) The lagrange multiplier test and its applications to model specification in econometrics. Rev Econ Stud 47: 239–253. https://doi.org/10.2307/2297111 doi: 10.2307/2297111
![]() |
[81] |
Hausman JA (1978) Specification tests in econometrics. Econometrica 46: 1251–1271. https://doi.org/10.2307/1913827 doi: 10.2307/1913827
![]() |
[82] |
Chovancová J, Petruška I, Rovňák M, et al. (2024) Investigating the drivers of CO2 emissions in the EU: Advanced estimation with common correlated effects and common factors models. Energy Rep 11: 937–950. https://doi.org/10.1016/j.egyr.2023.12.057 doi: 10.1016/j.egyr.2023.12.057
![]() |
[83] | Baltagi BH, (2010) Fixed effects and random effects, In: Durlauf SN, Blume LE Eds., Microeconometrics, London: Palgrave Macmillan, 59–64. https://doi.org/10.1057/978-1-349-95121-5_2713-1 |
[84] |
Bell A, Jones K (2015) Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data. Polit Sci Res Meth 3: 133–153. https://doi.org/10.1017/psrm.2014.7 doi: 10.1017/psrm.2014.7
![]() |
[85] |
Borenstein M, Hedges LV, Higgins JPT, et al. (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1: 97–111. https://doi.org/10.1002/jrsm.12 doi: 10.1002/jrsm.12
![]() |
[86] |
Apergis N, Kuziboev B, Abdullaev I, et al. (2023) Investigating the association among CO2 emissions, renewable and non-renewable energy consumption in Uzbekistan: an ARDL approach. Environ Sci Pollut R 30: 39666–39679. https://doi.org/10.1007/s11356-022-25023-z doi: 10.1007/s11356-022-25023-z
![]() |
[87] |
Bekun FV, Alola AA, Sarkodie SA (2019) Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci Total Environ 657: 1023–1029. https://doi:10.1016/j.scitotenv.2018.12.104 doi: 10.1016/j.scitotenv.2018.12.104
![]() |
[88] |
Mahalik MK, Mallick H, Padhan H (2021) Do educational levels influence the environmental quality? The role of renewable and non-renewable energy demand in selected BRICS countries with a new policy perspective. Renew Energy 164: 419–432. https://doi:10.1016/j.renene.2020.09.090 doi: 10.1016/j.renene.2020.09.090
![]() |
[89] |
Wang J, Azam W (2024) Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geosci Front 15: 101757. https://doi:10.1016/j.gsf.2023.101757 doi: 10.1016/j.gsf.2023.101757
![]() |
[90] | UNEP, Emissions Gap Report 2024. United Nations Environment Programme. |
[91] |
Aslam B, Hu J, Shahab S, et al. (2021) The nexus of industrialization, GDP per capita and CO2 emission in China. Environ Technol Inno 23: 101674. https://doi:10.1016/j.eti.2021.101674 doi: 10.1016/j.eti.2021.101674
![]() |
[92] |
Nasreen S, Mbarek MB, Atiq-ur-Rehman M (2020) Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods. Energy 192: 116628. https://doi:10.1016/j.energy.2019.116628 doi: 10.1016/j.energy.2019.116628
![]() |
[93] |
Neves SA, Marques AC, Fuinhas JA (2017) Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis. Transport Policy 59: 64–70. https://doi:10.1016/j.tranpol.2017.07.004 doi: 10.1016/j.tranpol.2017.07.004
![]() |
[94] |
Alola AA, Bekun FV, Sarkodie SA (2019) Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci Total Environ 685: 702–709. https://doi:10.1016/j.scitotenv.2019.05.139 doi: 10.1016/j.scitotenv.2019.05.139
![]() |
[95] |
Ulucak R, Khan SUD (2020) Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain Cities Soc 54: 101996. https://doi:10.1016/j.scs.2019.101996 doi: 10.1016/j.scs.2019.101996
![]() |
[96] |
Sharma R, Sinha A, Kautish P (2021) Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. J Clean Prod 285: 124867. https://doi:10.1016/j.jclepro.2020.124867 doi: 10.1016/j.jclepro.2020.124867
![]() |
[97] |
Filonchyk M, Peterson MP, Zhang L, et al. (2024) Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci Total Environ 935: 173359. https://doi.org/10.1016/j.scitotenv.2024.173359 doi: 10.1016/j.scitotenv.2024.173359
![]() |
[98] |
Oladunni OJ, Mpofu K, Olanrewaju OA (2022) Greenhouse gas emissions and its driving forces in the transport sector of South Africa. Energy Rep 8: 2052–2061. https://doi.org/10.1016/j.egyr.2022.01.123 doi: 10.1016/j.egyr.2022.01.123
![]() |
[99] | Wooldridge JM (2002) Econometric analysis of cross section and panel data, 1 Eds., The MIT Press, 108: 245–254. |
[100] |
Baum CF (2001) Residual diagnostics for cross-section time series regression models. Stata J 1: 101–104. https://doi.org/10.1177/1536867x0100100108 doi: 10.1177/1536867x0100100108
![]() |
[101] | Pesaran MH (2004) General diagnostic tests for cross section dependence in panels. Empir Econ 13–50. https://doi.org/10.2139/ssrn.572504 |
[102] |
Wang H, Zhang R (2022) Effects of environmental regulation on CO2 emissions: An empirical analysis of 282 cities in China. Sustainain Prod Consump 29: 259–272. https://doi.org/10.1016/j.spc.2021.10.016 doi: 10.1016/j.spc.2021.10.016
![]() |
[103] |
Shi Q, Liang Q, Huo T, et al. (2023) Evaluation of CO2 and SO2 synergistic emission reduction: The case of China. J Clean Prod 433: 139784. https://doi.org/10.1016/j.jclepro.2023.139784 doi: 10.1016/j.jclepro.2023.139784
![]() |
[104] |
Wang Q, Zhang F, Li R, et al. (2024) Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. J Clean Prod 447: 141298. https://doi.org/10.1016/j.jclepro.2024.141298 doi: 10.1016/j.jclepro.2024.141298
![]() |
[105] |
Rai P, Gupta P, Saini N, et al. (2023) Assessing the impact of renewable energy and non-renewable energy use on carbon emissions: Evidence from select developing and developed countries. Environ Dev Sustain 27: 3059–3080. https://doi.org/10.1007/s10668-023-04001-6 doi: 10.1007/s10668-023-04001-6
![]() |
[106] |
Caldera Y, Ranthilake T, Gunawardana H, et al. (2024) Understanding the interplay of GDP, renewable, and non-renewable energy on carbon emissions: Global wavelet coherence and Granger causality analysis. PLoS One 19: e0308780. https://doi.org/10.1371/journal.pone.0308780 doi: 10.1371/journal.pone.0308780
![]() |
[107] | Merforth M, Wagner A, Winter C, et al. (2023) Fossil fuel dependency of urban transport systems: How can transport authorities and operators navigate through multiple risks and threats at times of global crisis? https://transformative-mobility.org/wp-content/uploads/2023/12/fossil-fuel-dependency-of-urban-transport-systems.pdf. |
[108] |
Neves SA, Marques AC, Fuinhas JA (2017) Is energy consumption in the transport sector hampering both economic growth and the reduction of CO2 emissions? A disaggregated energy consumption analysis. Transport Policy 59: 64–70. https://doi.org/10.1016/j.tranpol.2017.07.004 doi: 10.1016/j.tranpol.2017.07.004
![]() |
[109] |
Aba MM, Amado NB, Rodrigues AL, et al. (2023) Energy transition pathways for the Nigerian Road Transport: Implication for energy carrier, Powertrain technology, and CO2 emission. Sustain Prod Consump 38: 55–68. https://doi.org/10.1016/j.spc.2023.03.019 doi: 10.1016/j.spc.2023.03.019
![]() |
[110] |
Cinderby S, Haq G, Opiyo R, et al. (2024) Inclusive climate resilient transport challenges in Africa. Cities 146: 104740. https://doi.org/10.1016/j.cities.2023.104740 doi: 10.1016/j.cities.2023.104740
![]() |
[111] |
Akpolat AG, Bakırtaş T (2024) The nonlinear impact of renewable energy, fossil energy and CO2 emissions on human development index for the eight developing countries. Energy 312: 133466. https://doi.org/10.1016/j.energy.2024.133466 doi: 10.1016/j.energy.2024.133466
![]() |
[112] |
Ahmad M, Ahmed Z, Alvarado R, et al. (2024) Financial development, resource richness, eco-innovation, and sustainable development: Does geopolitical risk matter? J Environ Manage 351: 119824. https://doi.org/10.1016/j.jenvman.2023.119824 doi: 10.1016/j.jenvman.2023.119824
![]() |
[113] | ESI Africa, What Africa can learn from Kenya about geothermal energy, 2024. Available from: https://www.esi-africa.com/news/what-africa-can-learn-from-kenya-about-geothermal-energy/. |
[114] |
Naeem MA, Appiah M, Taden J, et al. (2023) Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies. Energy Econ 127: 107091. https://doi.org/10.1016/j.eneco.2023.107091 doi: 10.1016/j.eneco.2023.107091
![]() |
[115] | Zhou Y, Haseeb M, Batool M, et al. (2024) Achieving carbon-neutrality goals in Asian emerging economies: Role of investment in clean energy, eco-regulations, and green finance. Gondwana Res. https://doi.org/10.1016/J.GR.2024.06.017 |
[116] | Department of Mineral Resources and Energy, Government Gazette Staatskoerant Republic of South Africa, 2024. Available from: www.gpwonline.co.za. |
[117] | IRENA, Renewable Energy Market Analysis: Africa and its regions. International Renewable Energy Agency, 2022. |
[118] | AfDB, NOORo: the largest concentrated solar power complex in Africa increases the share of renewable energy in electricity generation in Morocco. African Development Bank, 2019. |
[119] | Nteranya JN, (2024). Natural resources use in the Democratic Republic of Congo. In: Brears R. Eds., The Palgrave Encyclopedia of Sustainable Resources and Ecosystem Resilience, Cham: Palgrave Macmillan, 1–22. https://doi.org/10.1007/978-3-030-67776-3_66-1 |
[120] |
Filho WL, Gatto A, Sharifi A, et al. (2024) Energy poverty in African countries: An assessment of trends and policies. Energy Res Soc Sci 117: 103664. https://doi.org/10.1016/J.ERSS.2024.103664 doi: 10.1016/J.ERSS.2024.103664
![]() |
[121] |
Jayachandran M, Gatla RK, Rao KP, et al. (2022) Challenges in achieving sustainable development goal 7: Affordable and clean energy in light of nascent technologies. Sustain Energy Techn 53: 102692. https://doi.org/10.1016/j.seta.2022.102692 doi: 10.1016/j.seta.2022.102692
![]() |
[122] |
Mohsin M, Jamaani F (2023) Unfolding impact of natural resources, economic growth, and energy nexus on the sustainable environment: Guidelines for green finance goals in 10 Asian countries. Resour Policy 86: 104238. https://doi.org/10.1016/j.resourpol.2023.104238 doi: 10.1016/j.resourpol.2023.104238
![]() |
[123] |
Huang Z Ren X (2024) Impact of natural resources, resilient economic growth, and energy consumption on CO2 emissions. Resour Policy 90: 104714. https://doi.org/10.1016/j.resourpol.2024.104714 doi: 10.1016/j.resourpol.2024.104714
![]() |
[124] | Chorev S, (2023) The Suez Canal: Forthcoming strategic and geopolitical challenges, In: Lutmar C, Rubinovitz Z Eds., The Suez Canal: Past Lessons and Future Challenges, Cham: Palgrave Macmillan. https://doi.org/10.1007/978-3-031-15670-0_1 |
[125] |
Walters J, Pisa N (2023) Review of South Africa's public transport system. Res Transp Econ 100: 101322. https://doi.org/10.1016/j.retrec.2023.101322 doi: 10.1016/j.retrec.2023.101322
![]() |
[126] | Munanga Y, Mafuku SH, (2021) Climate-resilient infrastructure for water and energy in greater Harare, In: Chirisa I, Chigudu A Eds., Resilience and Sustainability in Urban Africa, Singapore: Springer. https://doi.org/10.1007/978-981-16-3288-4_5 |
[127] | Aderibigbe OO, Fadare SO, Gumbo T (2024) Transport situation in the global south: Insights from Nigeria, South Africa and India, Emerging Technologies for Smart Cities, Cham: Springer. https://doi.org/10.1007/978-3-031-66943-9_3 |
[128] | Kwanya LM (2022) Impact of the standard gauge railway on the Kenyan economy. Int J Latest Technol Eng Manag Appl Sci 11: 1–7. |
[129] |
Bouraima MB, Alimo PK, Agyeman S, et al. (2023) Africa's railway renaissance and sustainability: Current knowledge, challenges, and prospects. J Transp Geogr 106: 103487. https://doi.org/10.1016/j.jtrangeo.2022.103487 doi: 10.1016/j.jtrangeo.2022.103487
![]() |
[130] | U.S Energy Information Administration, Hydropower made up 66% of Brazil's electricity generation in 2020. U.S Energy Information Administration, 2021. Available from: https://www.eia.gov/todayinenergy/detail.php?id=49436. |
[131] |
Quiñones G, Felbol C, Valenzuela C, et al. (2020) Analyzing the potential for solar thermal energy utilization in the Chilean copper mining industry. Sol Energy 197: 292–310. https://doi.org/10.1016/j.solener.2020.01.009 doi: 10.1016/j.solener.2020.01.009
![]() |
[132] |
Tan KM, Yong JY, Ramachandaramurthy VK, et al. (2023) Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles. Renew Sustain Energ Rev 184: 113582. https://doi.org/10.1016/j.rser.2023.113582 doi: 10.1016/j.rser.2023.113582
![]() |
[133] | GWEC, Global Offshore Wind Report. Global Wind Energy Council, 2024. Available from: https://gwec.net/global-offshore-wind-report-2024/. |
![]() |
![]() |