Processing math: 100%
Research article Special Issues

Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties

  • Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols) contain nanoclay (allophane) with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone) to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.
    We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.

    Citation: Thierry Woignier, Florence Clostre, Philippe Cattan, Magalie Lesueur-Jannoyer. Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties[J]. AIMS Environmental Science, 2015, 2(3): 494-510. doi: 10.3934/environsci.2015.3.494

    Related Papers:

    [1] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . On generalized Hermite polynomials. AIMS Mathematics, 2024, 9(11): 32463-32490. doi: 10.3934/math.20241556
    [2] Mohra Zayed, Shahid Wani . Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials. AIMS Mathematics, 2023, 8(12): 30813-30826. doi: 10.3934/math.20231575
    [3] Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507
    [4] Gyung Won Hwang, Cheon Seoung Ryoo, Jung Yoog Kang . Some properties for 2-variable modified partially degenerate Hermite (MPDH) polynomials derived from differential equations and their zeros distributions. AIMS Mathematics, 2023, 8(12): 30591-30609. doi: 10.3934/math.20231564
    [5] Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226
    [6] Yunbo Tian, Sheng Chen . Prime decomposition of quadratic matrix polynomials. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576
    [7] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [8] Mdi Begum Jeelani . On employing linear algebra approach to hybrid Sheffer polynomials. AIMS Mathematics, 2023, 8(1): 1871-1888. doi: 10.3934/math.2023096
    [9] Young Joon Ahn . An approximation method for convolution curves of regular curves and ellipses. AIMS Mathematics, 2024, 9(12): 34606-34617. doi: 10.3934/math.20241648
    [10] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
  • Pest control technology was introduced into the tropics without considering the specificity of their ecosystems and the risk of pollution was underestimated. Some volcanic soils (andosols) contain nanoclay (allophane) with a unique structure and porous properties compared to crystalline clays. Andosols are characterized by large pore volume and pore size distribution, a high specific surface area, and a fractal structure. These soils are more polluted than the other kinds of tropical soils but release less pollutants (chlordecone) to water and plants. The literature shows that the allophane microstructure favors accumulation and sequestration of chlordecone, an organochlorine pesticide, in andosols.
    We used a numerical model to simulate the structure of allophane aggregates. The algorithm is based on a cluster-cluster aggregation model. From the simulated data, we derived the structural features, pore volume and tortuosity, and its transport properties, hydraulic conductivity and diffusion. We show that transport properties decrease because of the presence of allophane. We propose that low hydraulic conductivity and diffusion are important parameters to explain the high concentrations and trapping of pollutants in andosols.


    In this paper, we are concerned with the sharp decay rates of solutions to the Cauchy problem for the isentropic Navier-Stokes equations:

    $ {tρ+div(ρu)=0,(t,x)R+×R3,t(ρu)+div(ρuu)+p(ρ)=divT,(t,x)R+×R3,lim|x|ρ=ˉρ,lim|x|u=0,tR+,(ρ,u)|t=0=(ρ0,u0),xR3, $ (1.1)

    which governs the motion of a isentropic compressible viscous fluid. The unknown functions $ \rho $ and $ u $ represent the density and velocity of the fluid respectively. The pressure $ p = p(\rho) $ is a smooth function in a neighborhood of a positive constant $ \bar \rho $ s.t. $ p'(\bar \rho)>0 $. $ T $ is the viscosity stress tensor given by $ T = \mu({\nabla} u+({\nabla} u)^t)+\nu({\mathop{{\rm{div}}}\nolimits} u)I $ with $ I $ the identity matrix. We assume that the constant viscosity coefficients $ \mu>0 $ and $ \nu $ satisfy $ \nu+\frac23 \mu>0 $. Throughout this article, by optimal time decay rate, we refer to the best possible decay rate in upper bound as many literatures, and the sharp time decay rate includes the best possible upper and lower bounds.

    Using the classical spectral method, the optimal time decay rate (upper bound) of the linearized equations of the isentropic Navier-Stokes equations are well known. One may then expect that the small solution of the nonlinear equations (1.1) have the same decay rate as the linear one. Our work is devoted to proving the sharp time decay rate (for both upper and lower bound) for the nonlinear system.

    In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed analysis of the solution to a class of hyperbolic-parabolic system through point-wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the $ H^s $ global existence and time-decay rate of strong solutions with the initial perturbation small in $ H^s \cap L^1 $ are obtained in whole space first by A. Matsumura and T. Nishida [17], [18]. When the small initial perturbation belongs to $ H^3 $ only, using a weighted energy method, A. Matsumura [16] showed the time-decay rate $ (1+t)^{-\frac34} $ of upper bound in $ L^\infty $-norm. Since then, there are concrete development on the upper bound time-decay estimates: the optimal $ L^p $ (with $ 2\leq p \leq \infty $) upper bound decay rate was proved by G. Ponce [19], combining the spectral analysis on linearized system and the energy method for small initial perturbation in $ L^1 $. For the isentropic Navier-Stokes equations with artificial viscosity, D. Hoff and K. Zumbrun [6], [7] studied the Green's function and derived the $ L^p $ ($ 1 \leq p\leq\infty $) upper bound time decay rate of diffusive waves for the small initial perturbation belongs to $ H^m \cap L^1 $ with $ m\geq4 $. Liu and Wang [14] studied the point-wise estimates of the Green function of the linearized isentropic Navier-Stokes system in 3D and then analyzed the coupling of nonlinear diffusion waves, obtained the optimal (upper bound) decay rate. These results were further extended to the exterior problem [12], [11], or the half space problem [9], [10], [8]. Recently, Guo and Wang in [5] developed a new general energy method for proving the optimal (upper bound) time decay rates of the solutions to the dissipative equations in the whole space, using a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis.

    When additional external force is taken into account, the external force does affect the long time behavior of solutions. The upper bound of time decay rates were studied intensively, see for instance [1] and [2] on unbounded domain, [22], [23] on the convergence of the non-stationary flow to the corresponding steady flow when the initial date are small in $ H^3 \cap L^{\frac65} $, and [4], [3], on the optimal $ L^p-L^q $ upper bound decay rates for potential forces.

    The main goal of current paper is to establish the sharp decay rate, on both upper and lower bounds, to the solutions of (1.1) using relatively simple energy method. We remark that similar results had been pursued by M. Schonbek [20], [21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13] for isentropic Navier-Stokes-Poisson system. Although they share the same spirit in obtaining the lower bound decay rates, the feature of the spectrum near zero exhibits quite different behaviors, leading to different analysis. For instance, we explored the elegant structure of the higher order nonlinear terms of Navier-Stokes, when choosing conservative variables: density and momentum. The conservative form of the sharp equations provided a natural derivative structure in these terms, leading to the possibility of a faster decay rate estimate. We will make a more detailed comparison later in this paper.

    Define $ n = \rho- \bar \rho $, and let $ m = \rho u = (n+ \bar \rho)u $ be the momentum. We rewrite (1.1) as

    $ {tn+divm=0,(t,x)R+×R3,tm+c2nˉμm(ˉμ+ˉν)divm=F,(t,x)R+×R3,lim|x|n=0,lim|x|m=0,tR+,(n,m)|t=0=(ρ0ˉρ,ρ0u0),xR3, $ (1.2)

    where $ \bar\mu = \frac{\mu}{\bar\rho} $, $ \bar\nu = \frac{\nu}{\bar\rho} $, $ c = \sqrt{p'(\bar \rho)}>0 $ is the sound speed, and

    $ F=div{mmn+ˉρ+ˉμ(nmn+ˉρ)}{(ˉμ+ˉν)div(nmn+ˉρ)+(p(n+ˉρ)p(ˉρ)c2n)}. $

    It is this structure of $ F $ that plays an important role in our analysis.

    Our aim is to obtain a clear picture of the large time behavior of $ U = (n, m) $ in $ L^2({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $ when $ U_0 = (\rho_0-\bar \rho,\rho_0 u_0) $ is sufficiently smooth and small. We introduce the following initial value problem of the linearized Navier-Stokes system corresponding to (1.2):

    $ {t˜n+div˜m=0,(t,x)R+×R3,t˜m+c2˜nˉμ˜m(ˉμ+ˉν)div˜m=0,(t,x)R+×R3,lim|x|˜n=0,lim|x|˜m=0,tR+,(˜n,˜m)|t=0=(ρ0ˉρ,ρ0u0),xR3, $ (1.3)

    where $ \bar\mu = \frac{\mu}{\bar\rho} $, $ \bar\nu = \frac{\nu}{\bar\rho} $, $ c = \sqrt{p'(\bar \rho)} $. It is known that the $ L^2 $-norm of $ \widetilde U = (\widetilde{n} , \widetilde{m} ) $ decays at the optimal upper bound rate $ (1+t)^{-\frac34} $ for generic small initial data, see for instance [18]. A detailed proof on the optimal lower and upper bound rate will be given in the section 3 of this paper. In section 4, we prove that $ \|(U-\widetilde U)(\cdot, t)\|_{L^2} $ decays at a faster rate than $ \|\widetilde U(\cdot, t)\|_{L^2} $, under some reasonable conditions on the initial data. Therefore, $ \|U(\cdot, t)\|_{L^2} $ shares the sharp decay rate of $ (1+t)^{-\frac34} $.

    Notation. For $ a \lesssim b $, we mean that there is a uniform constant $ C $, which may be different on different lines, such that $ a \leq Cb $. And $ a \approx b $ stands for $ a \lesssim b $ and $ b\lesssim a $.

    We now state our main result.

    Theorem 1.1. Assume that $ (n_0, m_0)\in L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)\cap H^3({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $, $ \delta_0 = : \|(n_0,m_0)\|_{L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)\cap H^3({\mathop{\mathbb R\kern 0pt}\nolimits}^3)} $ is sufficiently small, and

    $ R3(n0,m0)dx0, $ (1.4)

    then there is a unique global classical solution $ \widetilde U = (\widetilde{n}, \widetilde{m})\in \mathcal C([0,\infty); H^3({\mathop{\mathbb R\kern 0pt}\nolimits}^3)) $ of the linearized system (1.3) satisfying for some positive constant $ C $

    $ C1(1+t)34k2k˜n(t)L2(R3)C(1+t)34k2,k=0,1,2,3,C1(1+t)34k2k˜m(t)L2(R3)C(1+t)34k2,k=0,1,2,3, $

    and the initial value problem (1.2) has a unique solution $ U = (n, m)\in \mathcal C([0,\infty); H^3({\mathop{\mathbb R\kern 0pt}\nolimits}^3)) $. Moreover, let $ n_h = n-\widetilde{n} $ and $ m_h = m-\widetilde{m} $, then it holds that

    $ k(nh,mh)(t)L2(R3)δ20(1+t)54k2,k=0,1,2,3mh(t)L2(R3)δ20(1+t)114,3nh(t)L2(R3)δ0(1+t)74. $

    As a consequence, there exists a positive constant $ C_1 $ such that

    $ C11(1+t)34k2kn(t)L2(R3)C1(1+t)34k2,k=0,1,2,C11(1+t)34k2km(t)L2(R3)C1(1+t)34k2,k=0,1,2,3. $

    Remark 1.1. We remark that this theorem is valid under the condition (1.4) which is important in the lower bound estimate to the linearized problem. When (1.4) fails, the decay rate of the linearized system (1.3) depends on the order of the degeneracy of moments. Assume $ (n_0, m_0)\in L^1\cap H^3 $ and belong to certain appropriate weighted $ L^p $ spaces, similar situation happened also in the incompressible Navier-Stokes equations, c.f. [20], [21]. We also note that our condition (1.4) is weaker than those in most of previous results where the differentiability of Fourier transform of initial disturbance is required in general.

    Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of the linearized isentropic Navier-Stokes-Poisson system, they only require $ |\widehat n_0(\xi)|>c_0>0 $ for $ |\xi|\ll 1 $ with $ c_0 $ a constant due to the special structure of the spectrum from the help of the Poisson term. This condition is proposed in Fourier space, similar to (1.4) in some sense. In our case, the spectrum is different and the different structure leads to different sharp decay rates.

    In what follows, we will set $ n = \rho-\bar \rho $, $ u = u-0 $. We rewrite (1.1) in the perturbation form as

    $ {tn+ˉρdivu=ndivuun,tu+γˉρnˉμu(ˉμ+ˉν)divu=uuˉμf(n)u(ˉμ+ˉν)f(n)divug(n)n,lim|x|n=0,lim|x|u=0,(n,u)|t=0=(ρ0ˉρ,u0), $ (2.1)

    where $ \bar \mu = \frac{\mu}{ \bar \rho } $, $ \bar \nu = \frac{\nu}{ \bar \rho } $, $ \gamma = \frac{p'(\bar \rho)}{\bar \rho^2} $, and the nonlinear functions $ f $ and $ g $ are defined by

    $ f(n):=nn+ˉρ,g(n):=p(n+ˉρ)n+ˉρp(ˉρ)ˉρ. $ (2.2)

    We assume that there exist a time of existence $ T>0 $ and sufficiently small $ \delta>0 $, such that a priori estimate

    $ n(t)H3+u(t)H3δ, $ (2.3)

    holds for any $ t\in[0,T] $. First of all, by (2.3) and Sobolev's inequality, we obtain that

    $ ˉρ2n+ˉρ2ˉρ. $

    Hence, we immediately have

    $ |f(n)|,|g(n)|C|n|,|kf(n)|,|kg(n)|CkN+, $ (2.4)

    where $ f(n) $ and $ g(n) $ are nonlinear functions of $ n $ defined by (2.2).

    Next, we begin with the energy estimates including $ n $ and $ u $ themselves. The following results is essentially due to A. Matsumura and T. Nishida [17], [18].

    Theorem 2.1. Assume that $ (n_0, u_0)\in H^3({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $, then there exists a constant $ \delta_0>0 $ such that if

    $ n0H3+u0H3δ0, $

    then the problem (2.1) admits a unique global solution $ (n(t), u(t)) $ satisfying that for all $ t\geq0 $,

    $ n(t)2H3+u(t)2H3+t0(n(τ)2H2+u(τ)2H3)dτC(n02H3+u02H3), $

    where $ C $ is a positive constant independent of time.

    The proof of this theorem is divided into several subsections.

    For $ k = 0 $, multiplying the first equation in (2.1) by $ \gamma n $ and the second equation in (2.1) by $ u $, summing up and then integrating the result over $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $ by parts. By virtue of Hölder's inequality, Sobolev's inequality and the fact (2.4), we obtain that

    $ 12ddtR3(γ|n|2+|u|2)dx+R3(ˉμ|u|2+(ˉμ+ˉν)|divu|2)dx=R3γ(ndivuun)n(uu+ˉμf(n)u+(ˉμ+ˉν)f(n)divu+g(n)n)udxnL3uL2nL6+(uL3uL2+nL3nL2)uL6+(uLnL2+nLuL2)uL2(nL3+uL3+nL+uL)(n2L2+u2L2). $ (2.5)

    Now for $ 1\leq k \leq 3 $, applying $ {\nabla}^k $ to (2.1) and then multiplying the first equation by $ \gamma{\nabla}^k n $ and the second equation by $ {\nabla}^k u $, summing up and integrating over $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. For $ k = 1 $ we have

    $ 12ddtR3(γ|n|2+|u|2)dx+R3(ˉμ|2u|2+(ˉμ+ˉν)|divu|2)dx(nL+uL+nL+uL)(n2L2+u2L2+2u2L2). $ (2.6)

    For $ k = 2 $ we have

    $ 12ddtR3(γ|2n|2+|2u|2)dx+R3(ˉμ|3u|2+(ˉμ+ˉν)|2divu|2)dx(nL+uL+nL+uL)(2n2L2+2u2L2+3u2L2). $ (2.7)

    For $ k = 3 $ we have

    $ 12ddtR3(γ|3n|2+|3u|2)dx+R3(ˉμ|4u|2+(ˉμ+ˉν)|3divu|2)dx(nL+uL+nL+uL)(3n2L2+3u2L2+4u2L2)+nL34uL22nL6+uL34uL22uL6+2nL3(3nL2+4uL2)2uL6. $ (2.8)

    Summing up the above estimates, noting that $ \delta>0 $ is small, we obtain that

    $ ddt0k3(γkn2L2+ku2L2)+C11k4ku2L2C2δ1k3kn2L2. $ (2.9)

    For $ 0\leq k \leq 2 $, applying $ {\nabla} ^k $ to the second equation in (2.1) and then multiplying by $ {\nabla}^{k+1} n $. The key idea is to integrate by parts in the $ t $-variable and to use the continuity equation. Thus integrating the results by parts for both the $ t $- and $ x $-variables, we obtain for $ k = 0 $ that

    $ ddtR3undx+γˉρR3|n|2dxu2L2+nL22uL2+(nL+uL)(n2L2+u2L2), $ (2.10)

    for $ k = 1 $, we get

    $ ddtR3u2ndx+γˉρR3|2n|2dx2u2L2+2nL23uL2+((n,u)L+(n,u)L)×(n2L2+2n2L2+2u2L2), $ (2.11)

    and for $ k = 2 $ we have

    $ ddtR32u3ndx+γˉρR3|3n|2dx3u2L2+3nL24uL2+((n,u)L+(n,u)L)×(2n2L2+2u2L2+3n2L2+3u2L2). $ (2.12)

    Plugging the above estimates, using the smallness of $ \delta>0 $, we obtain that

    $ ddt0k2R3kuk+1ndx+C31k3kn2L2C41k4ku2L2. $ (2.13)

    Proof of Theorem 2.1. Multiplying (2.13) by $ \frac{2C_2\delta}{C_3} $, adding it with (2.9), with the help of smallness of $ \delta>0 $, we deduce that there exists a constant $ C_5>0 $ such that

    $ ddt{0k3(γkn2L2+ku2L2)+2C2δC30k2R3kuk+1ndx}+C5{1k3kn2L2+1k4ku2L2}0. $ (2.14)

    Next, we define $ \mathcal E(t) $ to be $ C_5^{-1} $ times the expression under the time derivative in (2.14). Then we may write (2.14) as

    $ ddtE(t)+n(t)2H2+u(t)2H30. $ (2.15)

    Observe that since $ \delta $ is small, then there exists a constant $ C_6>0 $ such that

    $ C16(n(t)2H3+u(t)2H3)E(t)C6(n(t)2H3+u(t)2H3). $

    Then integrating (2.15) directly in time, we get

    $ sup0tT(n(t)2H3+u(t)2H3)+C6T0(n(τ)2H2+u(τ)2H3)dτC26(n02H3+u02H3). $

    Using a standard continuity argument along with classical local wellposedness theory, this closes the a priori assumption (2.3) if we assume $ \|n_0\|_{H^3}+\|u_0\|_{H^3}\leq\delta_0 $ is sufficiently small. We can then extend the solution globally in time and complete the proof of Theorem 2.1.

    In this section, we consider the initial value problem for the linearized Navier-Stokes system

    $ {t˜n+div˜m=0,(t,x)R+×R3,t˜m+c2˜nˉμ˜m(ˉμ+ˉν)div˜m=0,(t,x)R+×R3,lim|x|˜n=0,lim|x|˜m=0,tR+,(˜n,˜m)|t=0=(ρ0ˉρ,ρ0u0),xR3, $ (3.1)

    where $ \bar\mu = \frac{\mu}{\bar\rho} $, $ \bar\nu = \frac{\nu}{\bar\rho} $, $ c = \sqrt{p'(\bar \rho)} $.

    In terms of the semigroup theory for evolutionary equations, the solution $ (\widetilde{n}, \widetilde{m}) $ of the linearized Navier-Stokes problem (3.1) can be expressed for $ \widetilde U = (\widetilde{n}, \widetilde{m})^ t $ as

    $ ˜Ut=B˜U,t0,˜U(0)=˜U0, $

    which gives rise to

    $ ˜U(t)=S(t)˜U0=etB˜U0,t0, $

    where $ B $ is defined as

    $ B = {\left( 0divc2ˉμangle+(ˉμ+ˉν)div \right).} $

    What left is to analyze the differential operator $ B $ in terms of its Fourier expression $ A(\xi) $ and show the long time properties of the semigroup $ S(t) $. Applying the Fourier transform to system (3.1), we have

    $ tˆ˜U(t,ξ)=A(ξ)ˆ˜U(t,ξ),t0,ˆ˜U(0,ξ)=ˆ˜U0(ξ), $

    where $ \xi = (\xi_1,\xi_2,\xi_3)^t $, and $ A(\xi) $ is defined as

    $ A(ξ)=(0iξtc2iξˉμ|ξ|2I3×3(ˉμ+ˉν)ξξ). $

    The eigenvalues of the matrix $ A $ can be computed by

    $ det(A(ξ)λI)=(λ+ˉμ|ξ|2)2(λ2+(2ˉμ+ˉν)|ξ|2λ+c2|ξ|2)=0, $

    which implies

    $ λ0=ˉμ|ξ|2(double),λ1=λ1(|ξ|),λ2=λ2(|ξ|). $

    The semigroup $ e^{tA} $ is expressed as

    $ etA=eλ0tP0+eλ1tP1+eλ2tP2, $

    where the project operators $ P_i $ can be computed as

    $ Pi=ijA(ξ)λjIλiλj. $

    By a direct computation, we can verify the exact expression for the Fourier transform $ \widehat G(t,\xi) $ of Green's function $ G(t,x) = e^{tB} $ as

    $ ˆG(t,ξ)=etA=(λ1eλ2tλ2eλ1tλ1λ2iξt(eλ1teλ2t)λ1λ2c2iξ(eλ1teλ2t)λ1λ2eλ0t(Iξξ|ξ|2)+ξξ|ξ|2λ1eλ1tλ2eλ2tλ1λ2)=(ˆNˆM). $

    Indeed, we can make the following decomposition for $ (\widetilde n, \widetilde m) = G \ast \widetilde U_0 $ as

    $ ˆ˜n=ˆNˆ˜U0=(ˆN+ˆN)ˆ˜U0,ˆ˜m=ˆMˆ˜U0=(ˆM+ˆM)ˆ˜U0, $

    where

    $ ˆN=(λ1eλ2tλ2eλ1tλ1λ20),ˆN=(0iξt(eλ1teλ2t)λ1λ2),ˆM=(c2iξ(eλ1teλ2t)λ1λ20),ˆM=(0eλ0t(Iξξ|ξ|2)+ξξ|ξ|2λ1eλ1tλ2eλ2tλ1λ2). $

    We further decompose the Fourier transform $ \widehat N $, $ \widehat M $ into low frequency term and high frequency term below.

    Define

    $ ˆN=ˆN1+ˆN2,ˆN=ˆN1+ˆN2,ˆM=ˆM1+ˆM2,ˆM=ˆM1+ˆM2, $

    where $ (\cdot)_1 = \chi(\xi)(\cdot) $, $ (\cdot)_2 = (1-\chi(\xi))(\cdot) $, and $ \chi(\xi) $ is a smooth cut off function such that

    $ χ(ξ)={1,|ξ|R,0,|ξ|R+1. $

    Then we have the following decomposition for $ (\widetilde n, \widetilde m) = G \ast \widetilde U_0 $ as

    $ ˆ˜n=ˆNˆ˜U0=ˆN1ˆ˜U0+ˆN2ˆ˜U0=(ˆN1+ˆN1)ˆ˜U0+(ˆN2+ˆN2)ˆ˜U0,ˆ˜m=ˆMˆ˜U0=ˆM1ˆU0+ˆM2ˆ˜U0=(ˆM1+ˆM1)ˆ˜U0+(ˆM2+ˆM2)ˆ˜U0. $ (3.2)

    To derive the long time decay rate of solution, we need to use accurate approximation to the Fourier transform $ \widehat G(t,x) $ of Green's function for both lower frequency and high frequency. In terms of the definition of the eigenvalues, we are able to obtain that it holds for $ |\xi|\leq\eta $ for some small positive constant $ \eta $ that

    $ λ1=2ˉμ+ˉν2|ξ|2+i24c2|ξ|2(2ˉμ+ˉν)2|ξ|4=a+bi,λ2=2ˉμ+ˉν2|ξ|2i24c2|ξ|2(2ˉμ+ˉν)2|ξ|4=abi, $ (3.3)

    and we have

    $ λ1eλ2tλ2eλ1tλ1λ2=e12(2ˉμ+ˉν)|ξ|2t[cos(bt)+12(2ˉμ+ˉν)|ξ|2sin(bt)b]O(1)e12(2ˉμ+ˉν)|ξ|2t,|ξ|η, $
    $ λ1eλ1tλ2eλ2tλ1λ2=e12(2ˉμ+ˉν)|ξ|2t[cos(bt)12(2ˉμ+ˉν)|ξ|2sin(bt)b]O(1)e12(2ˉμ+ˉν)|ξ|2t,|ξ|η, $
    $ eλ1teλ2tλ1λ2=e12(2ˉμ+ˉν)|ξ|2tsin(bt)bO(1)1|ξ|e12(2ˉμ+ˉν)|ξ|2t,|ξ|η, $

    where

    $ b=124c2|ξ|2(2ˉμ+ˉν)2|ξ|4c|ξ|+O(|ξ|3),|ξ|η. $

    For the high frequency $ |\xi|\geq\eta $, we are also able to obtain that it holds for $ |\xi|\geq\eta $ that

    $ λ1=2ˉμ+ˉν2|ξ|212(2ˉμ+ˉν)2|ξ|44c2|ξ|2=ab,λ2=2ˉμ+ˉν2|ξ|2+12(2ˉμ+ˉν)2|ξ|44c2|ξ|2=a+b, $ (3.4)

    and we have

    $ λ1eλ2tλ2eλ1tλ1λ2=12e(a+b)t[1+e2bt]a2be(a+b)t[1e2bt]O(1)eR0t,|ξ|η, $
    $ λ1eλ1tλ2eλ2tλ1λ2=a+b2be(a+b)t[1e2bt]+e(ab)tO(1)eR0t,|ξ|η, $
    $ eλ1teλ2tλ1λ2=12be(a+b)t[1e2bt]O(1)1|ξ|2eR0t,|ξ|η, $

    where

    $ b=12(2ˉμ+ˉν)2|ξ|44c2|ξ|212(2ˉμ+ˉν)|ξ|22c22ˉμ+ˉν+O(|ξ|2),|ξ|η. $

    Here $ R_0 $, $ \eta $ are some fixed positive constants.

    In this section, we apply the spectral analysis to the semigroup for the linearized Navier-Stokes system. We will establish the $ L^2 $ and $ L^p $ ($ 2\leq p \leq \infty $) time decay rate of the global solutions for the linearized Navier-Stokes system.

    With the help of the formula for Green's function in Fourier space and the asymptotic analysis on its elements, we are able to establish the $ L^2 $ time decay rate. Indeed, we have the $ L^2 $-time decay rate of the global strong solution to the problem for the linearized Navier-Stokes system as follows.

    Proposition 4.1. Let $ U_0 = (n_0, m_0)\in L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)\cap H^l({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $ with $ l\geq3 $, then $ (\widetilde n,\widetilde m) $ solves the linearized Navier-Stokes system (3.1) and satisfies for $ 0\leq k\leq l $ that

    $ k(˜n,˜m)(t)L2(R3)C(1+t)34k2(U0L1(R3)+kU0L2(R3)), $

    where $ C $ is a positive constant independent of time.

    Proof. A straightforward computation together with the formula of the Green's function $ \widehat G(t,\xi) $ gives

    $ ˆ˜n(t,ξ)=λ1eλ2tλ2eλ1tλ1λ2ˆn0iξˆm0(eλ1teλ2t)λ1λ2{O(1)e12(2ˉμ+ˉν)|ξ|2t(|ˆn0|+|ˆm0|),|ξ|η,O(1)eR0t(|ˆn0|+|ˆm0|),|ξ|η,ˆ˜m(t,ξ)=c2iξ(eλ1teλ2t)λ1λ2ˆn0+eλ0tˆm0+(λ1eλ1tλ2eλ2tλ1λ2eλ0t)ξ(ξˆm0)|ξ|2{O(1)eˉμ|ξ|2t(|ˆn0|+|ˆm0|),|ξ|η,O(1)eR0t(|ˆn0|+|ˆm0|),|ξ|η, $

    here and below, $ R_0 $, $ \eta $ are some fixed positive constants. Therefore, we have the $ L^2 $-decay rate for $ (\widetilde n, \widetilde m) $ as

    $ (ˆ˜n,ˆ˜m)(t)2L2(R3)=|ξ|η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+|ξ|η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ|ξ|ηe2ˉμ|ξ|2t(|ˆn0|2+|ˆm0|2)dξ+|ξ|ηe2R0t(|ˆn0|2+|ˆm0|2)dξ(1+t)32(n0,m0)2L1(R3)L2(R3). $

    And the $ L^2 $-decay rate on the derivatives of $ (\widetilde n,\widetilde m) $ as

    $ (^k˜n,^k˜m)(t)2L2(R3)=|ξ|η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+|ξ|η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ|ξ|ηe2ˉμ|ξ|2t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ+|ξ|ηe2R0t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ(1+t)32k((n0,m0)2L1(R3)+(kn0,km0)2L2(R3)). $

    The proof of the Proposition 4.1 is completed.

    It should be noted that the $ L^2 $-time decay rates derived above are optimal.

    Proposition 4.2. Let $ U_0 = ( n_0, m_0)\in L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)\cap H^l({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $ with $ l\geq3 $, assume that $ M_n = \int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3}n_0(x) d x $ and $ M_m = \int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} m_0(x) dx $ satisfies that $ M_n $, $ M_m $ are at least not all zeros, then the solution $ (\widetilde n,\widetilde m) $ of the linearized Navier-Stokes system (3.1) given by Proposition 4.1 satisfies for $ 0\leq k\leq l $

    $ C1(1+t)34k2k˜n(t)L2(R3)C(1+t)34k2,C1(1+t)34k2k˜m(t)L2(R3)C(1+t)34k2, $

    where $ C $ is a positive constant independent of time.

    Proof. We only show the case of $ k = 0 $ for simplicity, the argument applies to the other orders of derivatives. From the formula of the Green's function $ \widehat G(t,\xi) $, we deduce that

    $ ˆ˜n(t,ξ)=λ1eλ2tλ2eλ1tλ1λ2ˆn0iξˆm0(eλ1teλ2t)λ1λ2=e12(2ˉμ+ˉν)|ξ|2t[cos(bt)ˆn0iξˆm0sin(bt)b]+e12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bˆn0]=T1+T2,for|ξ|η, $
    $ ˆ˜m(t,ξ)=c2iξ(eλ1teλ2t)λ1λ2ˆn0+eλ0tˆm0+(λ1eλ1tλ2eλ2tλ1λ2eλ0t)ξ(ξˆm0)|ξ|2=[e12(2ˉμ+ˉν)|ξ|2t[cos(bt)ξ(ξˆm0)|ξ|2c2iξsin(bt)bˆn0]+eˉμ|ξ|2t[ˆm0ξ(ξˆm0)|ξ|2]]e12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bξ(ξˆm0)|ξ|2]=S1+S2,for|ξ|η, $

    here and below, $ \eta $ is a sufficiently small but fixed constant.

    It is easy to check that

    $ ˆ˜n(t,ξ)2L2=|ξ|η|ˆ˜n(t,ξ)|2dξ+|ξ|η|ˆ˜n(t,ξ)|2dξ|ξ|η|T1+T2|2dξ|ξ|η12|T1|2|T2|2dξ. $ (4.1)

    We then calculate that

    $ |ξ|η|T2|2dξˆn02L|ξ|ηe(2ˉμ+ˉν)|ξ|2t|ξ|4(sin(bt)b)2dξˆn02L|ξ|ηe(2ˉμ+ˉν)|ξ|2t|ξ|2dξ(1+t)52n02L1. $ (4.2)

    Since $ n_0(x) \in L^1 $ implies $ \widehat{n}_0(\xi) \in C({{\mathop{\mathbb R\kern 0pt}\nolimits}^3}) $. If $ \widehat{n}_0(0) = \int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3}n_0(x) d x\neq 0 $, we deduce that $ \widehat{n}_0(\xi)\neq 0 $ for $ |\xi|\leq\eta $ when $ \eta $ is sufficiently small. One finds that, when $ M_n\neq 0 $,

    $ |ˆn0(ξ)|21C|R3n0(x)dx|2M2nC,for|ξ|η. $

    For $ \widehat{m}_0 $, a similar argument yields that, when $ M_m\neq 0 $, we have

    $ |ξˆm0(ξ)|2|ξ|2|ξMm|2C|ξ|2,for|ξ|η. $

    When $ M_n\neq 0 $, $ M_m\neq 0 $, with the help of the above analysis, using $ b\sim c|\xi|+O(|\xi|^3) $ for $ |\xi|\leq \eta $, we obtain that

    $ |ξ|η|T1|2dξM2nC|ξ|ηe(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+1C|ξ|η|ξMm|2b2e(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ $
    $ min{M2n,M2m3c2}C|ξ|ηe(2ˉμ+ˉν)|ξ|2t(cos2(bt)+sin2(bt))dξC1|ξ|ηe(2ˉμ+ˉν)|ξ|2tdξC1(1+t)32. $ (4.3)

    If $ M_n\neq 0 $, $ M_m = 0 $, and by the conituinity of $ \widehat{m}_0 $ near $ \xi = 0 $, there exists a small enough constant $ \epsilon $ such that $ \epsilon\to0 $ as $ \xi\to 0 $, and

    $ |ˆm0(ξ)|2<ϵ,for|ξ|η. $

    We thus use the help of spherical coordinates and the change of variables $ r = |\xi|\sqrt{t} $ to obtain that

    $ |ξ|η|T1|2dξM2nC|ξ|ηe(2ˉμ+ˉν)|ξ|2tcos2(bt)dξϵCc2|ξ|ηe(2ˉμ+ˉν)|ξ|2tsin2(bt)dξM2nCt32ηt0e(2ˉμ+ˉν)r2cos2(crt)r2drϵCc2t32ηt0e(2ˉμ+ˉν)r2sin2(crt)r2drM2nCt32[cηtπ]1k=0kπ+π4ctkπcte(2ˉμ+ˉν)r2cos2(crt)r2drϵCc2(1+t)32M2n2Ct32[cηtπ]1k=0kπ+π4ctkπcte(2ˉμ+ˉν)r2r2drϵCc2(1+t)32C11(1+t)32C12ϵ(1+t)32.C1(1+t)32 $ (4.4)

    In the case of $ M_n = 0 $, $ M_m\neq0 $, we can use a similar argument to obtain that

    $ |ξ|η|T1|2dξϵC|ξ|ηe(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+M2m3Cc2|ξ|ηe(2ˉμ+ˉν)|ξ|2tsin2(bt)dξC1(1+t)32. $ (4.5)

    Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the lower bound of the time decay rate for $ {\widetilde n}(t,x) $ as

    $ ˜n(t,x)2L2=ˆ˜n(t,ξ)2L2C1(1+t)32. $

    The lower bound of the time decay rate for $ {\widetilde m}(t,x) $ can be shown in a similar fashion. It is not difficult to derive that

    $ ˆ˜m(t,ξ)2L2|ξ|η12|S1|2|S2|2dξ, $ (4.6)

    then we find that

    $ |ξ|η|S2|2dξ(1+t)52m02L1. $ (4.7)

    We then calculate that

    $ |ξ|η|S1|2dξ{c4M2nC|ξ|η|ξ|2b2e(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ+1C|ξ|η|ξMm|2|ξ|2e(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ}+{|ξ|ηe12(4ˉμ+ˉν)|ξ|2tcos(bt)ξ(ξˆm0)|ξ|2(ˆm0ξ(ξˆm0)|ξ|2)dξ}=J1+J2. $

    A direct computation gives rise to

    $ J1C1(1+t)32,J2=0. $ (4.8)

    Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of the time decay rate for $ {\widetilde m}(t,x) $ as

    $ ˜m(t,x)2L2=ˆ˜m(t,ξ)2L2C1(1+t)32. $

    Then the proof of Proposition 4.2 is completed.

    In this subsection, we establish the following $ L^p $-time decay rate of the global strong solution to the linearized Navier-Stokes system with $ p \in [2,+\infty] $.

    Proposition 4.3. Let $ U_0 = (n_0,m_0)\in L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^3)\cap W^{l,p}({\mathop{\mathbb R\kern 0pt}\nolimits}^3) $ with $ l\geq 3 $, then $ (\widetilde n,\widetilde m) $ solves the linearized Navier-Stokes system (3.1) and satisfies for $ 0\leq k\leq l $ and $ p \in [2,+\infty] $ that

    $ k(˜n,˜m)(t)Lp(R3)C(1+t)32(11p)k2(U0L1(R3)+kU0Lp(R3)), $

    where $ C $ is a positive constant independent of time.

    To prove Proposition 4.3, the following two lemmas in [6] are helpful.

    Lemma 4.1. Let $ n\geq 1 $ and assume that $ \hat f(\xi) \in L^\infty \cap C^{n+1}({\mathop{\mathbb R\kern 0pt}\nolimits}^n/\{0\}) $, with

    $ |αξˆf(ξ)|C{|ξ||α|+σ1,|ξ|R,|α|=n,|ξ||α|σ2,|ξ|R,|α|=n1,n,n+1, $

    where $ \sigma_1, \sigma_2>0 $ and $ n>2-2\sigma_2 $. Then $ \hat f(\xi) $ is continuous at $ 0 $ and $ \infty $, and

    $ f=m1+m2δ, $

    where $ m_1\in L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^n) $ satisfies $ \|m_1\|_{L^1({\mathop{\mathbb R\kern 0pt}\nolimits}^n)} \leq C(C') $, $ m_2 $ is the constant

    $ m2=(2π)n2lim|ξ|ˆf(ξ), $

    and $ \delta $ is the Dirac distribution. In particular, $ \hat f(\xi) $ is a strong $ L^p $ multiplier, $ 1\leq p \leq \infty $, in the sense that, for any $ g\in L^p $,

    $ fgLpCgLp,1p, $

    where $ C $ depends only on $ |m_2|\leq \| \hat f\|_{L^\infty} $ and the constant $ C' $ above.

    Lemma 4.2. Let $ \hat g(t,\xi) = \hat K(t,\xi)\hat f(\xi) $, where $ \hat K(t,\xi) = e^{-\vartheta|\xi|^2 t} $, $ \hat f(\xi)\in L^\infty\cap C^{n+1}({\mathop{\mathbb R\kern 0pt}\nolimits}^n) $, and

    $ |βξˆf(ξ)|C|ξ||β|,|β|n+1. $

    Then $ {\nabla}_x ^\alpha g(t,\cdot)\in L^p $ for $ t>0 $, and for all $ \alpha $, $ 1\leq p \leq \infty $, we have

    $ αxg(t,)LpC(|α|)tn2(11p)|α|2. $

    In particular, $ \widehat{{\nabla}_x ^\alpha g(t,x)} = (i\xi)^\alpha \hat g(t,\xi) $ is a strong $ L^p $ multiplier, with norm bounded by $ C(|\alpha|,\vartheta)C't^{-\frac{|\alpha|}2} $, where the constant $ C(|\alpha|,\vartheta) $ depends only on $ |\alpha| $ and $ \vartheta $.

    Now let us turn to the proof of Proposition 4.3.

    Proof of Proposition 4.3. We first analyze above higher frequency terms denoted by $ \widehat {(\cdot)}_2 $. Recall that

    $ λ1=(2ˉμ+ˉν)|ξ|2+2c22ˉμ+ˉν+O(|ξ|2),λ2=2c22ˉμ+ˉν+O(|ξ|2),|ξ|η. $

    We shall prove that the higher frequency terms are $ L^p $ Fourier multipliers with an exponential time decay coefficient $ C e^{-c_1t} $ for some constants $ c_1>0 $. For simplicity, we only show that $ \widehat {\mathcal N}_2 $ is an $ L^p $ Fourier multiplier at higher frequency as follows. It holds

    $ λ1eλ2tλ2eλ1tλ1λ2=eλ2t+λ2eλ2tλ1λ2λ2eλ1tλ1λ2. $

    By a direct computation, it is easy to verify

    $ |kξλ2||ξ|2k,|ξ|η, $

    which gives rise to

    $ |kξ[(1χ())eλ2t]|,|kξ[(1χ())λ2eλ2tλ1λ2]|{0,|ξ|R,ec1t|ξ|2k,|ξ|R, $

    here and below, $ R>0 $ is a given constant. Thus, from Lemma 4.1 it follows that the inverse Fourier transform of the term $ (1-\chi(\cdot))\left(e^{\lambda_2 t}+\frac{\lambda_2 e^{\lambda_2 t}}{\lambda_1-\lambda_2}\right) $ is an $ L^p $ multiplier with the coefficient $ Ce^{-c_1t} $. The other part of $ \widehat {\mathcal N}_2 $ at higher frequency can be written as

    $ (1χ())λ2eλ1tλ1λ2e12(2ˉμ+ˉν)|ξ|2t[(1χ())e(λ212(2ˉμ+ˉν)|ξ|2)tλ1λ2]. $

    We can regard $ e^{-\frac12 (2\bar\mu+\bar\nu) |\xi|^2 t} $ as the function $ K(t,\xi) $ of Lemma 4.2, and the rest term satisfies the condition. Thus, the inverse Fourier transform of $ (1-\chi(\cdot))\frac{\lambda_2 e^{\lambda_1 t}}{\lambda_1-\lambda_2} $ is also an $ L^p $ multiplier with the coefficient $ Ce^{-c_1t} $. These facts imply that $ \widehat {\mathcal N}_2 $ at higher frequency is an $ L^p $ multiplier with the coefficient $ Ce^{-c_1t} $. Applying the similar analysis to the terms $ \widehat {\mathfrak N}_2 $, $ \widehat {\mathcal M}_2 $, and $ \widehat {\mathfrak M}_2 $, we can show that their inverse Fourier transform are all $ L^p $ multiplier with the constant coefficient $ Ce^{-c_1t} $. Then

    $ (kx(N2f),kx(N2f),kx(M2f),kx(M2f))(t)LpCec1tkxfLp, $ (4.9)

    for all integer $ k\geq 0 $, and $ p\in[2,\infty] $.

    We also need to deal with the corresponding lower frequency terms denoted by $ \widehat {(\cdot)}_1 $. Recall that

    $ λ1eλ2tλ2eλ1tλ1λ2,λ1eλ1tλ2eλ2tλ1λ2,|ξ|(eλ1teλ2t)λ1λ2O(1)e12(2ˉμ+ˉν)|ξ|2t,|ξ|η, $

    which imply that for $ |\xi|\leq\eta $ that

    $ |ˆN1|O(1)ec2|ξ|2t,|ˆN1|O(1)ec2|ξ|2t,|ˆM1|O(1)ec2|ξ|2t,|ˆM1|O(1)ec2|ξ|2t, $

    for some constants $ c_2>0 $. Thus, by Hausdroff-Young's inequality with $ p\in[2, +\infty] $, we can obtain

    $ (kN1,kN1,kM1,kM1)(t)LpC(|ξ|η||ξ|kec2|ξ|2t|qdξ)1qC(1+t)32(11p)k2. $ (4.10)

    Combining (4.9) and (4.10), we finally have for $ t>0 $ that

    $ (k(Nf),k(Mf))(t)Lp=(k((N1+N2)f),k((M1+M2)f))(t)LpC(1+t)32(11p)k2fL1+Cec1tkfLpC(1+t)32(11p)k2(fL1+kfLp). $

    The proof of Proposition 4.3 is completed.

    We are ready to prove Theorem 1.1 on the sharp time decay rate of the global solution to the initial value problem for the nonlinear Navier-Stokes system.

    In what follows, we will set $ n_h = n-\widetilde n $ and $ m_h = m-\widetilde m $, then we have

    $ {tnh+divmh=0,(t,x)R+×R3,tmh+c2nhˉμmh(ˉμ+ˉν)divmh=F,(t,x)R+×R3,lim|x|nh=0,lim|x|mh=0,tR+,(nh,mh)|t=0=(0,0),xR3, $ (5.1)

    where $ \bar\mu = \frac{\mu}{\bar\rho} $, $ \bar\nu = \frac{\nu}{\bar\rho} $, $ c = \sqrt{p'(\bar \rho)} $, and

    $ F=div{(mh+˜m)(mh+˜m)nh+˜n+ˉρ+ˉμ((nh+˜n)(mh+˜m)nh+˜n+ˉρ)}{(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)p(ˉρ)c2(nh+˜n))}. $

    Denote $ U_h = (n_h, m_h)^t $, we have the equivalent form of system (5.1) in vector form

    $ tUh=BUh+H,t0,Uh(0)=0, $

    where the nonlinear term $ H(\widetilde U, U_h) = (0, F(\widetilde U, U_h))^t $. Thus, we can represent the solution in term of the semigroup

    $ Uh(t)=S(t)Uh(0)+t0S(tτ)H(˜U,Uh)(τ)dτ, $

    which $ (n_h, m_h) $ can be decomposed as

    $ nh=NUh(0)+t0N(tτ)H(τ)dτ, $ (5.2)
    $ mh=MUh(0)+t0M(tτ)H(τ)dτ. $ (5.3)

    Furthermore, in view of the above definition for $ \widehat{\mathfrak N}(\xi) $ and $ \widehat{\mathfrak M}(\xi) $, it is easy to verify for some constants $ c_3>0 $, $ c_4>0 $, $ R_0>0 $, we discover that

    $ |ˆN(ξ)|O(1)ec3|ξ|2t,|ˆM(ξ)|O(1)ec3|ξ|2t,|ξ|η, $
    $ |ˆN(ξ)|O(1)1|ξ|eR0t,|ˆM(ξ)|O(1)1|ξ|2eR0t+O(1)ec4|ξ|2t,|ξ|η. $

    Thus, applying a similar argument as in the proof of Proposition 4.1, we have

    $ (kNH,kMH)(t)L2C(1+t)32(1q12)12k2(QLq+k+1QL2),q=1,2, $ (5.4)
    $ (kNH,kMH)(t)L2C(1+t)32(1q12)12k2(QLq+kQL2),q=1,2, $ (5.5)
    $ kMH(t)L2C(1+t)32(1q12)12k2(QLq+k1QL2),q=1,2, $ (5.6)

    for any non-negative integer $ k $ and

    $ Q=|(mh+˜m)(mh+˜m)nh+˜n+ˉρ+ˉμ((nh+˜n)(mh+˜m)nh+˜n+ˉρ)|+|(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)p(ˉρ)c2(nh+˜n))|. $ (5.7)

    For readers' convenience, we show how to estimate $ \|{\nabla}^k {\mathfrak M}\ast H(t)\|_{L^2} $ as an example. The other two estimates can be obtained by the similar argument. Indeed,

    $ kMH(t)2L2|ξ|ηe2c3|ξ|2t|ξ|2k|ˆH|2dξ+|ξ|ηe2R0t|ξ|2k4|ˆH|2dξ+|ξ|ηe2c4|ξ|2t|ξ|2k|ˆH|2dξ|ξ|ηe2c3|ξ|2t|ξ|2k+2|ˆQ|2dξ+|ξ|ηe2R0t|ξ|2k2|ˆQ|2dξ+|ξ|ηe2c4|ξ|2t|ξ|2k+2|ˆQ|2dξ(1+t)3(1q12)1k(Q2Lq(R3)+˜kQ2L2(R3)),q=1,2,k1˜kN+. $

    In this subsection, we establish the faster decay rate for $ (n_h, m_h) $. We will start with an a priori assumption on a carefully chosen quantity $ \Lambda(t) $ defined in (5.8), and then later prove a better estimate with the help of the smallness of initial data.

    We begin with following Lemma.

    Lemma 5.1. Let $ r_1, r_2>0 $ be real, one has

    $ t20(1+tτ)r1(1+τ)r2dτ=t20(1+t2+τ)r1(1+t2τ)r2dτ{(1+t)r1,forr2>1,(1+t)(r1ϵ),forr2=1,(1+t)(r1+r21),forr2<1, $

    and

    $ tt2(1+tτ)r1(1+τ)r2dτ=t20(1+tτ)r2(1+τ)r1dτ{(1+t)r2,forr1>1,(1+t)(r2ϵ),forr1=1,(1+t)(r1+r21),forr1<1, $

    where $ \epsilon>0 $ is a small but fixed constant.

    Proposition 5.1. Under the assumptions of Theorem 1.1, the solution $ (n_h, m_h) $ of the nonlinear system (5.1) satisfies for $ k = 0,1,2 $ that

    $ (knh,kmh)L2Cδ20(1+t)54k2,3mhL2Cδ20(1+t)114,3nhL2Cδ0(1+t)74, $

    where $ C $ is a positive constant independent of time.

    From (5.7), we deduce

    $ Q(˜U,Uh)=Q1+Q2+Q3+Q4, $

    which implies for a smooth solution $ (n,m) $ satisfying $ \|(n,m)\|_{H^3}<\infty $ that

    $ Q1=Q1(˜U,Uh)O(1)(n2h+mhmh+˜n2+˜m˜m),Q2=Q2(˜U,Uh)O(1)(˜nnh+˜mmh),Q3=Q3(˜U,Uh)O(1)((nhmh)+(˜n˜m)),Q4=Q4(˜U,Uh)O(1)((˜nmh)+(nh˜m)). $

    Define

    $ Λ(t)=:sup0st{2k=0(1+s)54+k2δ034(knh,kmh)(s)L2+(1+s)74(3nh,3mh)(s)L2}. $ (5.8)

    Proposition 5.2. Under the assumptions of Theorem 1.1, if for some $ T>0 $, $ \Lambda(t) \leq \delta_0^{\frac12} $ for any $ t\in[0,T] $, then it holds that

    $ Λ(t)Cδ340,t[0,T], $

    where $ C $ is a positive constant independent of time.

    The proof of this Proposition 5.2 consists of following three steps.

    Starting with (5.4), (5.5), (5.6) and (5.8), we have after a complicate but straightforward computation that

    $ (nh,mh)L2t0(N(tτ)H(τ),M(tτ)H(τ))L2dτt0(1+tτ)54(Q(τ)L1+Q(τ)L2)dτ(δ20+δ320Λ2(t))t0(1+tτ)54(1+τ)32dτ(1+t)54(δ20+δ320Λ2(t)). $ (5.9)

    It is easy to verify that

    $ Q(t)L1Q1L1+Q2L1+Q3L1+Q4L1(˜n,˜m)2L2+(nh,mh)2L2+(nh,mh)L2((˜n,˜m)L2+(nh,mh)L2)+(˜n,˜m)L2((˜n,˜m)L2+(nh,mh)L2)(1+t)32(δ20+δ320Λ2(t)). $

    Indeed, by virtue of Hölder's inequality and Gagliardo-Nirenberg's inequality, we obtain that

    $ uLu12L22u12L2, $

    which implies that

    $ Q(t)L2(˜n,˜m)L((˜n,˜m)L2+(˜n,˜m)L2+(nh,mh)L2+(nh,mh)L2)+(nh,mh)L((nh,mh)L2+(nh,mh)L2)+(˜n,˜m)L(nh,mh)L2(1+t)94(δ20+δ320Λ2(t)). $

    Furthermore, exactly as in the estimate of the high order derivatives, we have

    $ (nh,mh)L2t20(N,M)(tτ)H(τ)L2dτ+tt2(N,M)(tτ)H(τ)L2dτt20(1+tτ)74(Q(τ)L1+Q(τ)L2)dτ+tt2(1+tτ)12Q(τ)L2dτ(δ20+δ980Λ2(t))(t20(1+tτ)74(1+τ)32dτ+tt2(1+tτ)12(1+τ)114dτ)(1+t)74(δ20+δ980Λ2(t)), $ (5.10)

    Similarly, it holds that

    $ Q(t)L2(˜n,˜m)L((˜n,˜m)L2+(2˜n,2˜m)L2+(nh,mh)L2 $
    $ +(2nh,2mh)L2)+(˜n,˜m)L((˜n,˜m)L2+(nh,mh)L2+(nh,mh)L2)+(nh,mh)L((2˜n,2˜m)L2+(nh,mh)L2+(2nh,2mh)L2)+(nh,mh)L(nh,mh)L2(1+t)114(δ20+δ980Λ2(t)). $

    Thus, we also get that

    $ (2nh,2mh)(t)L2t20(2N,2M)(tτ)H(τ)L2dτ+tt2(N,M)(tτ)2H(τ)L2dτt20(1+tτ)94(Q(τ)L1+2Q(τ)L2)dτ+tt2(1+tτ)122Q(τ)L2dτ(δ20+δ0Λ(t)+δ340Λ2(t))(t20(1+tτ)94(1+τ)32dτ+tt2(1+tτ)12(1+τ)134dτ)(1+t)94(δ20+δ0Λ(t)+δ340Λ2(t)). $ (5.11)

    Finally, we have

    $ 2Q(t)L2((˜n,˜m)L+(nh,mh)L)((3˜n,3˜m)L2+(3nh,3mh)L2)+((˜n,˜m)L+(nh,mh)L)((˜n,˜m)L2+(nh,mh)L2)+((˜n,˜m)L+(nh,mh)L+(˜n,˜m)L+(nh,mh)L)×((2˜n,2˜m)L2+(2nh,2mh)L2)(1+t)134(δ20+δ0Λ(t)+δ340Λ2(t)). $

    In this subsection, we will close the a priori estimates and complete the proof of Proposition 5.2. For this purpose, we need to derive the time decay rate of higher order derivatives of $ (n_h,m_h) $. We will establish the following lemma.

    Lemma 5.2. Under the assumption of Theorem 1.1, one has

    $ 2n(t)H1+2u(t)H1(1+t)74(δ0+δ340Λ(t)). $

    In particular, it holds that

    $ 3(nh,mh)(t)L2(1+t)74(δ0+δ340Λ(t)). $

    Proof. First of all, in view of (2.12), recovering the dissipation estimate for $ n $, we see that

    $ ddtR32u3ndx+C13n2L2dxC2(3u2L2+4u2L2)+C(1+t)32(δ0+δ380Λ(t))×(2n2L2+2u2L2+3u2L2). $ (5.12)

    Summing up (2.7) and (2.8) in the energy estimate for $ (n,u) $, we can directly derive

    $ ddtR3(γ|2n|2+|2u|2+γ|3n|2+|3u|2)dx+C3(3u|2L2+4u2L2)C(1+t)32(δ0+δ380Λ(t))(2n2L2+2u2L2+3n2L2). $ (5.13)

    Multiplying (5.12) by $ \epsilon_1\frac{C_3}{C_2} $ with $ \epsilon_1>0 $ a small but fixed constant, adding it with (5.13), we deduce that there exists a constant $ C_4>0 $ such that

    $ ddt{2k3(γkn2L2+ku2L2)+ϵ1C3C2R32u3ndx}+C4(3n2L2+3k4ku2L2)C(1+t)32(δ0+δ380Λ(t))(2n2L2+2u2L2). $

    Next, we define

    $ \mathcal E_1(t) = \bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}. $

    Observe that since $ \epsilon_1\frac{C_3}{C_2} $ is small, then there exists a constant $ C_5>0 $ such that

    $ C15(2n(t)2H1+2u(t)2H1)E1(t)C5(2n(t)2H1+2u(t)2H1). $

    Then we arrive at

    $ ddtE1(t)+C4(3n(t)2L2+3u(t)2H1)C(1+t)5(δ0+δ380Λ(t))(δ20+δ320Λ2(t)). $

    Denote $ S(t) = \Big\{\xi\big| |\xi| \leq \sqrt{\frac{3(1+\gamma)}{C_4}}(1+t)^{-\frac12}\Big\} $ the time-dependent $ n $-dimensional sphere. This decomposition allows us to estimate $ L^2 $ time decay depend on $ (\widehat {n}, \widehat {u}) $ for frequency values $ \xi \in S(t) $, then we obtain that

    $ C433(n,u)(x)2L2C43S(t)c|ξ|6|(ˆn,ˆu)(ξ)|2dξ(1+γ)(1+t)1R3|ξ|4|(ˆn,ˆu)(ξ)|2dξ(1+γ)(1+t)1S(t)|ξ|4|(ˆn,ˆu)(ξ)|2dξ. $

    Hence we have

    $ ddtE1(t)+(1+t)1E1(t)+3n2L2+3u2H1(1+t)5(δ0+δ380Λ(t))(δ20+δ320Λ2(t))+(1+t)1S(t)|ξ|4|(ˆn,ˆu)(ξ)|2dξ+(1+t)1R32u3ndx. $

    Multiplying the above equation by $ (1+t)^5 $, we obtain that

    $ ddt{(1+t)5E1(t)}+(1+t)5(3n2L2+3u2H1)(1+t)12(δ20+δ320Λ2(t)). $

    Integrating it with respect to time from $ 0 $ to $ T $, then we have

    $ (1+t)5E1(t)+T0(1+t)5(3n2L2+3u2H1)dtE1(0)+(1+t)32(δ20+δ320Λ2(t)), $

    which implies that

    $ 3n2L2+3u2L2E1(t)(1+t)5δ20+(1+t)72(δ20+δ320Λ2(t)). $

    Finally, we have

    $ 3nhL2+3mhL2(1+t)74(δ0+δ340Λ(t)). $

    This completes the proof of this Lemma.

    In this subsection, we first combine the above a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the proof of the Proposition 5.2. In deed, for any $ t\in[0,T] $, we have shown that

    $ Λ(t)C(δ0+δ140Λ(t)+Λ2(t))Cδ340. $ (5.14)

    With the help of standard continuity argument, Proposition 5.2 and the smallness of $ \delta_0>0 $, implies that $ \Lambda(t)\leq C\delta_0^{\frac34} $ for any $ t>0 $. Moreover, we deduce the time decay estimate for $ (n_h, m_h) $ from (5.9), (5.10), (5.11), Lemma 5.2 and (5.14) that

    $ (knh,kmh)L2δ20(1+t)54k2,k=0,1,2(nh,mh)L2δ740(1+t)94,3(nh,mh)L2δ0(1+t)74. $

    Consequently, for any $ t\in[0,T] $ we have

    $ Λ(t)Cδ0. $ (5.15)

    From (5.11) and (5.15), thus we also get that

    $ 2(nh,mh)L2δ20(1+t)94. $

    For $ {\nabla}^3 m_h $, in view of the (5.6), we see that

    $ 3mh(t)L2t20(1+tτ)114(Q(τ)L1+2Q(τ)L2)dτ+tt2(1+tτ)122Q(τ)L2dτδ20(t20(1+tτ)114(1+τ)32dτ+tt2(1+tτ)12(1+τ)134dτ)δ20(1+t)114. $

    Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.

    Y. Chen is partially supported by the China Postdoctoral Science Foundation under grant 2019M663198, Guangdong Basic and Applied Basic Research Foundation under grant 2019A1515110733, NNSF of China under grants 11801586, 11971496 and China Scholarship Council. The research of R. Pan is partially supported by National Science Foundation under grants DMS-1516415 and DMS-1813603, and by National Natural Science Foundation of China under grant 11628103. L. Tong's research is partially supported by China Scholarship Council.

    [1] Cabidoche YM, Achard R, Cattan P, et al. (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157: 1697-1705. doi: 10.1016/j.envpol.2008.12.015
    [2] Levillain J, Cattan P, Colin F, et al. (2012) Analysis of environmental and farming factors of soil contamination by a persistent organic pollutant, chlordecone, in a banana production area of French West Indies. Agr Ecosyst Environ 159: 123-132. doi: 10.1016/j.agee.2012.07.005
    [3] Clostre F, Lesueur-Jannoyer M, Achard R, et al. (2014) Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Environ Sci Pollut Res 21: 1980-1992. doi: 10.1007/s11356-013-2095-x
    [4] Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of Harvested Organs in Root Crops Grown on Chlordecone-Polluted Soils. Pedosphere 22: 562-571. doi: 10.1016/S1002-0160(12)60041-1
    [5] Clostre F, Letourmy P, Lesueur-Jannoyer M (2015) Organochlorine (chlordecone) uptake by root vegetables. Chemosphere 118: 96-102. doi: 10.1016/j.chemosphere.2014.06.076
    [6] Jondreville C, Lavigne A, Clostre F, et al. Contamination of grazing ducks by chlordecone in Martinique. Book of abstract; 2013; Nantes, France. Wageningen Academic Publishers. pp. 166-166.
    [7] Coat S, Monti D, Legendre P, et al. (2011) Organochlorine pollution in tropical rivers (Guadeloupe): role of ecological factors in food web bioaccumulation. Environ Pollut 159: 1692-1701. doi: 10.1016/j.envpol.2011.02.036
    [8] Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J Contam Hydrol 108: 107-117. doi: 10.1016/j.jconhyd.2009.06.004
    [9] Multigner L, Ndong JR, Giusti A, et al. (2010) Chlordecone Exposure and Risk of Prostate Cancer. J Clin Oncol 28: 3457-3462. doi: 10.1200/JCO.2009.27.2153
    [10] Dallaire R, Muckle G, Rouget F, et al. (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118: 79-85. doi: 10.1016/j.envres.2012.07.006
    [11] Dubuisson C, Héraud F, Leblanc J-C, et al. (2007) Impact of subsistence production on the management options to reduce the food exposure of the Martinican population to Chlordecone. Regul Toxicol Pharm 49: 5-16. doi: 10.1016/j.yrtph.2007.04.008
    [12] Lesueur-Jannoyer M, Cattan P, Monti D, et al. (2012) Chlordécone aux Antilles : évolution des systèmes de culture et leur incidence sur la dispersion de la pollution. Agronomie Environnement & Sociétés 2: 45-58.
    [13] Cattan P, Ruy SM, Cabidoche YM, et al. (2009) Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate. J Hydrol 368: 251-261. doi: 10.1016/j.jhydrol.2009.02.020
    [14] Saison C, Cattan P, Louchart X, et al. (2008) Effect of Spatial Heterogeneities of Water Fluxes and Application Pattern on Cadusafos Fate on Banana-Cultivated Andosols. J Agr Food Chem 56: 11947-11955. doi: 10.1021/jf802435c
    [15] Charlier J-B, Cattan P, Voltz M, et al. (2009) Transport of a Nematicide in Surface and Groundwaters in a Tropical Volcanic Catchment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J Environ Qual 38: 1031-1041.
    [16] Clothier BE, Vogeler I, Magesan GN (2000) The breakdown of water repellency and solute transport through a hydrophobic soil. J Hydrol 231-232: 255-264. doi: 10.1016/S0022-1694(00)00199-2
    [17] Prado B, Duwig C, Etchevers J, et al. (2011) Nitrate fate in a Mexican Andosol: Is it affected by preferential flow? Agr Water Manage 98: 1441-1450. doi: 10.1016/j.agwat.2011.04.013
    [18] Accinelli C, Vicari A, Pisa PR, et al. (2002) Losses of atrazine, metolachlor, prosulfuron and triasulfuron in subsurface drain water. I. Field results. Agronomie 22: 399-411.
    [19] Schiavon M, Perrin-Ganier C, Portal J (1995) La pollution de l'eau par les produits phytosanitaires : état et origine. Agronomie 15: 157-170. doi: 10.1051/agro:19950301
    [20] Paton GI, Paterson CJ, Winton A, et al. (2004) Distribution, bioavailability and behavior of persistent organic pollutants in Andosols: with specific reference to Iceland. In: Arnalds HÓaÓ, editor. Volcanic Soil Resources in Europe. pp. 108-109.
    [21] Olvera-Velona A, Benoit P, Barriuso E, et al. (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sust Dev 28: 231-238. doi: 10.1051/agro:2008009
    [22] Prado B, Duwig C, Hidalgo C, et al. (2014) Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma 232-234: 628-639. doi: 10.1016/j.geoderma.2014.06.011
    [23] Fernandez Bayo J, Saison C, Geniez C, et al. (2013) Sorption characteristics of chlordecone and cadusafos in tropical agricultural soils. Curr Org Chem 17: 2976-2984. doi: 10.2174/13852728113179990121
    [24] Brunet D, Woignier T, Lesueur-Jannoyer M, et al. (2009) Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS). Environ Pollut 157: 3120-3125. doi: 10.1016/j.envpol.2009.05.026
    [25] Desprat J-F, Comte J-P, Chabrier C (2004) Cartographie du risque de pollution des sols de Martinique par les organochlorés : Rapport phase 3 : Synthèse. 25 p.
    [26] Tillieut O, Cabidoche Y-M (2006) Cartographie de la pollution des sols de Guadeloupe par la chlordécone : Rapport technique. Abymes, France: DAAF-SA & INRA-ASTRO. 23 p.
    [27] Charlier J-B, Cattan P, Moussa R, et al. (2008) Hydrological behaviour and modelling of a volcanic tropical cultivated catchment. Hydrol Process 22: 4355-4370. doi: 10.1002/hyp.7040
    [28] Woignier T, Clostre F, Fernandes P, et al. (2015) Sequestering Pesticide with Organic Fertilizer or Organic Amendment. In: Shishir Sinha KKP, S. Bajpai, J.N. Govil, editor. Fertilizer Technology. USA: Studium Press LLC. pp. 319-344.
    [29] Clostre F, Letourmy P, Turpin B, et al. (2014) Soil Type and Growing Conditions Influence Uptake and Translocation of Organochlorine (Chlordecone) by Cucurbitaceae Species. Water Air Soil Pollut 225: 1-11.
    [30] Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Interfac 76-77: 445-467. doi: 10.1016/S0001-8686(98)00055-4
    [31] Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112: 269-283. doi: 10.1016/S0269-7491(00)00099-3
    [32] Vlčková K, Hofman J (2012) A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Environ Pollut 160: 49-56. doi: 10.1016/j.envpol.2011.08.049
    [33] Peters R, Kelsey JW, White JC (2007) Differences in p,p′-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Environ Pollut 148: 539-545. doi: 10.1016/j.envpol.2006.11.030
    [34] Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48: 109-115. doi: 10.1016/S0045-6535(02)00045-0
    [35] Liu C, Li H, Teppen BJ, et al. (2009) Mechanisms Associated with the High Adsorption of Dibenzo-p-dioxin from Water by Smectite Clays. Environ Sci Technol 43: 2777-2783. doi: 10.1021/es802381z
    [36] Rana K, Boyd SA, Teppen BJ, et al. (2009) Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite. Phys Chem Chem Phys 11: 2976-2985.
    [37] Duwig C, Müller K, Vogeler I (2006) 2,4-D Movement in Allophanic Soils from Two Contrasting Climatic Regions. Commun Soil Sci Plan 37: 2841-2855. doi: 10.1080/00103620600832795
    [38] Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. Journal of Soil Science 40: 359-369. doi: 10.1111/j.1365-2389.1989.tb01280.x
    [39] Levard C, Doelsch E, Basile-Doelsch I, et al. (2012) Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma 183-184: 100-108. doi: 10.1016/j.geoderma.2012.03.015
    [40] Dœlsch E, Basile-Dœlsch I, Rose J, et al. (2006) New Combination of EXAFS Spectroscopy and Density Fractionation for the Speciation of Chromium within an Andosol. Environ Sci Technol 40: 7602-7608. doi: 10.1021/es060906q
    [41] Khan H, Matsue N, Henmi T (2006) Adsorption of Water on Nano-ball Allophane. Clay Sci 12: 261-266.
    [42] Reinert L, Ohashi F, Kehal M, et al. (2011) Characterization and boron adsorption of hydrothermally synthesised allophanes. Appl Clay Sci 54: 274-280. doi: 10.1016/j.clay.2011.10.002
    [43] Henmi T, Huang PM (1985) Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl Clay Sci 1: 133-144. doi: 10.1016/0169-1317(85)90569-1
    [44] Clark CJ, McBride MB (1984) Cation and anion retention by natural and synthetic allophane and imogolite. Clay Clay Miner 32: 291-299. doi: 10.1346/CCMN.1984.0320407
    [45] Arai Y, Sparks DL, Davis JA (2005) Arsenate Adsorption Mechanisms at the Allophane-Water Interface. Environ Sci Technol 39: 2537-2544. doi: 10.1021/es0486770
    [46] Opiso E, Sato T, Yoneda T (2009) Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. J Hazard Mater 170: 79-86. doi: 10.1016/j.jhazmat.2009.05.001
    [47] Calabi-Floody M, Velásquez G, Gianfreda L, et al. (2012) Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay. Chemosphere 89: 648 - 655. doi: 10.1016/j.chemosphere.2012.05.107
    [48] Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31: 697-710. doi: 10.1016/S0146-6380(00)00049-8
    [49] Arias-Estévez M, López-Periago E, Martínez-Carballo E, et al. (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123: 247-260. doi: 10.1016/j.agee.2007.07.011
    [50] Puglisi E, Cappa F, Fragoulis G, et al. (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67: 548-556. doi: 10.1016/j.chemosphere.2006.09.058
    [51] Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108: 103-112. doi: 10.1016/S0269-7491(99)00206-7
    [52] Wallace KB (1973) Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Geotechnique 23: 203-218. doi: 10.1680/geot.1973.23.2.203
    [53] Fieldes M (1966) The nature of allophane in soils., Part 1, Significance of structural randomness in pedogenesis. New Zeal J Sci 9: 599-607.
    [54] Wada K (1985) The distinctive properties of Andosol. Adv Soil Sci 2: 173-229. doi: 10.1007/978-1-4612-5088-3_4
    [55] Lindner GG, Nakazawa H, Hayashi S (1998) Hollow nanospheres, allophanes ‘All-organic’ synthesis and characterization. Micropor Mesopor Mat 21: 381-386. doi: 10.1016/S1387-1811(98)00002-X
    [56] Wells N, Theng BKG (1985) Factors affecting the flow behavior of soil allophane suspensions under low shear rates. J Colloid Interf Sci 104: 398-408. doi: 10.1016/0021-9797(85)90048-7
    [57] Calabi-Floody M, Bendall JS, Jara AA, et al. (2011) Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma 161: 159-167. doi: 10.1016/j.geoderma.2010.12.013
    [58] Garrido-Ramirez EG, Sivaiah MV, Barrault J, et al. (2012) Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio. Micropor Mesopor Mat 162: 189-198. doi: 10.1016/j.micromeso.2012.06.038
    [59] Woignier T, Pochet G, Doumenc H, et al. (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. J Sol-Gel Sci Techn 41: 25-30. doi: 10.1007/s10971-006-0120-y
    [60] Adachi Y, Karube J (1999) Application of a scaling law to the analysis of allophane aggregates. Colloid Surface A 151: 43-47. doi: 10.1016/S0927-7757(98)00581-0
    [61] Chevallier T, Woignier T, Toucet J, et al. (2008) Fractal structure in natural gels: effect on carbon sequestration in volcanic soils. J Sol-Gel Sci Techn 48: 231-238. doi: 10.1007/s10971-008-1795-z
    [62] Chevallier T, Woignier T, Toucet J, et al. (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159: 182-188. doi: 10.1016/j.geoderma.2010.07.010
    [63] Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91: 1-14. doi: 10.4141/cjss10008
    [64] Bird NRA, Bartoli F, Dexter AR (1996) Water retention models for fractal soil structures. Eur J Soil Sci 47: 1-6. doi: 10.1111/j.1365-2389.1996.tb01365.x
    [65] Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to natural gels : the allophanic soils. J Sol-Gel Sci Techn 40: 201-207. doi: 10.1007/s10971-006-7593-6
    [66] Primera J, Woignier T, Hasmy A (2005) Pore Structure Simulation of Gels with a Binary Monomer Size Distribution. J Sol-Gel Sci Techn 34: 273-280. doi: 10.1007/s10971-005-2524-5
    [67] Meakin P (1983) Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys Rev Lett 51: 1119-1122. doi: 10.1103/PhysRevLett.51.1119
    [68] Kolb M, Botet R, Jullien R (1983) Scaling of Kinetically Growing Clusters. Physical Review Letters 51: 1123-1126. doi: 10.1103/PhysRevLett.51.1123
    [69] Jullien R, Botet R (1987) Aggregation and Fractal Aggregates: World Scientific.
    [70] Evans JW (1993) Random and cooperative sequential adsorption. Rev Mod Phys 65: 1281-1329. doi: 10.1103/RevModPhys.65.1281
    [71] Primera J, Hasmy A, Woignier T (2003) Numerical Study of Pore Sizes Distribution in Gels. J Sol-Gel Sci Techn 26: 671-675. doi: 10.1023/A:1020765230983
    [72] Bielders CL, De Backer LW, Delvaux B (1990) Particle Density of Volcanic Soils as Measured with a Gas Pycnometer. Soil Sci Soc Am J 54: 822-826. doi: 10.2136/sssaj1990.03615995005400030034x
    [73] Woignier T, Braudeau E, Doumenc H, et al. (2005) Supercritical Drying Applied to Natural “Gels”: Allophanic Soils. J Sol-Gel Sci Techn 36: 61-68. doi: 10.1007/s10971-005-2659-4
    [74] Carman PC (1937) Fluid flow through granular beds. Transactions-IChemE 15: 150-166.
    [75] Woignier T, Primera J, M. L, et al. (2005) The use of silica aerogels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. J Non-Cryst Solids 350: 298-306.
    [76] Dullien FAL, Brenner H (1979) Porous Media: Fluid Transport and Pore Structure: Academic press. 396 p.
    [77] Wyllie MRJ, Spangler MB (1952) Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media. AAPG Bull 36: 359-403.
    [78] Stanley HE, Family F, Gould H (1985) Kinetics of aggregation and gelation. J Polym Sci Polym Symp 73: 19-37.
    [79] Courtens E, Pelous J, Phalippou J, et al. (1987) Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys Rev Lett 58: 128-131. doi: 10.1103/PhysRevLett.58.128
    [80] Vacher R, Courtens E, Coddens G, et al. (1990) Crossovers in the density of states of fractal silica aerogels. Phys Rev Lett 65: 1008-1011. doi: 10.1103/PhysRevLett.65.1008
    [81] Herrmann HJ, Stanley HE (1988) The fractal dimension of the minimum path in two- and three-dimensional percolation. J Phys A-Math Gen 21: L829. doi: 10.1088/0305-4470/21/17/003
    [82] Meakin P, Majid I, Havlin S, et al. (1984) Topological properties of diffusion limited aggregation and cluster-cluster aggregation. J Phys A-Math Gen 17: L975. doi: 10.1088/0305-4470/17/18/008
    [83] Ramanujan S, Pluen A, McKee TD, et al. (2002) Diffusion and Convection in Collagen Gels: Implications for Transport in the Tumor Interstitium. Biophys J 83: 1650-1660. doi: 10.1016/S0006-3495(02)73933-7
    [84] Anez L, Calas-Etienne S, Primera J, et al. (2014) Gas and liquid permeability in nano composites gels: Comparison of Knudsen and Klinkenberg correction factors. Micropor Mesopor Mat 200: 79-85. doi: 10.1016/j.micromeso.2014.07.049
    [85] Fosmoe A, Hench LL (1992) Gas permeability in porous gel-silica. In: L.L. Hench JKW, editor. Chemical Processing of Advanced Materials. New York: John Wiley and Sons Inc. pp. 897-905.
    [86] Gross J, Scherer G (1998) Structural Efficiency and Microstructural Modeling of Wet Gels and Aerogels. J Sol-Gel Sci Techn 13: 957-960. doi: 10.1023/A:1008643828073
    [87] Reichenauer G, Stumpf C, Fricke J (1995) Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion. J Non-Cryst Solids 186: 334-341. doi: 10.1016/0022-3093(95)00057-7
    [88] Dorel M, Roger-Estrade J, Manichon H, et al. (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manage 16: 133-140.
    [89] Fernandez-Bayo JD, Saison C, Voltz M, et al (2013). Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Total Environ 463-464: 395-403.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7416) PDF downloads(1167) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog