Citation: Thierry Woignier, Florence Clostre, Philippe Cattan, Magalie Lesueur-Jannoyer. Pollution of soils and ecosystems by a permanent toxic organochlorine pesticide: chlordecone—numerical simulation of allophane nanoclay microstructure and calculation of its transport properties[J]. AIMS Environmental Science, 2015, 2(3): 494-510. doi: 10.3934/environsci.2015.3.494
[1] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . On generalized Hermite polynomials. AIMS Mathematics, 2024, 9(11): 32463-32490. doi: 10.3934/math.20241556 |
[2] | Mohra Zayed, Shahid Wani . Exploring the versatile properties and applications of multidimensional degenerate Hermite polynomials. AIMS Mathematics, 2023, 8(12): 30813-30826. doi: 10.3934/math.20231575 |
[3] | Mohra Zayed, Taghreed Alqurashi, Shahid Ahmad Wani, Cheon Seoung Ryoo, William Ramírez . Several characterizations of bivariate quantum-Hermite-Appell Polynomials and the structure of their zeros. AIMS Mathematics, 2025, 10(5): 11184-11207. doi: 10.3934/math.2025507 |
[4] | Gyung Won Hwang, Cheon Seoung Ryoo, Jung Yoog Kang . Some properties for 2-variable modified partially degenerate Hermite (MPDH) polynomials derived from differential equations and their zeros distributions. AIMS Mathematics, 2023, 8(12): 30591-30609. doi: 10.3934/math.20231564 |
[5] | Mohra Zayed, Shahid Ahmad Wani . Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226 |
[6] | Yunbo Tian, Sheng Chen . Prime decomposition of quadratic matrix polynomials. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576 |
[7] | Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in $ q $-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303 |
[8] | Mdi Begum Jeelani . On employing linear algebra approach to hybrid Sheffer polynomials. AIMS Mathematics, 2023, 8(1): 1871-1888. doi: 10.3934/math.2023096 |
[9] | Young Joon Ahn . An approximation method for convolution curves of regular curves and ellipses. AIMS Mathematics, 2024, 9(12): 34606-34617. doi: 10.3934/math.20241648 |
[10] | Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506 |
In this paper, we are concerned with the sharp decay rates of solutions to the Cauchy problem for the isentropic Navier-Stokes equations:
$ {∂tρ+div(ρu)=0,(t,x)∈R+×R3,∂t(ρu)+div(ρu⊗u)+∇p(ρ)=divT,(t,x)∈R+×R3,lim|x|→∞ρ=ˉρ,lim|x|→∞u=0,t∈R+,(ρ,u)|t=0=(ρ0,u0),x∈R3, $ | (1.1) |
which governs the motion of a isentropic compressible viscous fluid. The unknown functions
Using the classical spectral method, the optimal time decay rate (upper bound) of the linearized equations of the isentropic Navier-Stokes equations are well known. One may then expect that the small solution of the nonlinear equations (1.1) have the same decay rate as the linear one. Our work is devoted to proving the sharp time decay rate (for both upper and lower bound) for the nonlinear system.
In the case of one space dimension, Zeng [24] and Liu-Zeng [15] offered a detailed analysis of the solution to a class of hyperbolic-parabolic system through point-wise estimate, including the isentropic Navier-Stokes system. For multi-dimensional Navier-Stokes equations (and/or Navier-Stokes-Fourier system), the
When additional external force is taken into account, the external force does affect the long time behavior of solutions. The upper bound of time decay rates were studied intensively, see for instance [1] and [2] on unbounded domain, [22], [23] on the convergence of the non-stationary flow to the corresponding steady flow when the initial date are small in
The main goal of current paper is to establish the sharp decay rate, on both upper and lower bounds, to the solutions of (1.1) using relatively simple energy method. We remark that similar results had been pursued by M. Schonbek [20], [21] for incompressible Navier-Stokes equations, and by Li, Matsumura-Zhang [13] for isentropic Navier-Stokes-Poisson system. Although they share the same spirit in obtaining the lower bound decay rates, the feature of the spectrum near zero exhibits quite different behaviors, leading to different analysis. For instance, we explored the elegant structure of the higher order nonlinear terms of Navier-Stokes, when choosing conservative variables: density and momentum. The conservative form of the sharp equations provided a natural derivative structure in these terms, leading to the possibility of a faster decay rate estimate. We will make a more detailed comparison later in this paper.
Define
$ {∂tn+divm=0,(t,x)∈R+×R3,∂tm+c2∇n−ˉμ△m−(ˉμ+ˉν)∇divm=F,(t,x)∈R+×R3,lim|x|→∞n=0,lim|x|→∞m=0,t∈R+,(n,m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, $ | (1.2) |
where
$ F=−div{m⊗mn+ˉρ+ˉμ∇(nmn+ˉρ)}−∇{(ˉμ+ˉν)div(nmn+ˉρ)+(p(n+ˉρ)−p(ˉρ)−c2n)}. $ |
It is this structure of
Our aim is to obtain a clear picture of the large time behavior of
$ {∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, $ | (1.3) |
where
Notation. For
We now state our main result.
Theorem 1.1. Assume that
$ ∫R3(n0,m0)dx≠0, $ | (1.4) |
then there is a unique global classical solution
$ C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2,k=0,1,2,3, $ |
and the initial value problem (1.2) has a unique solution
$ ‖∇k(nh,mh)(t)‖L2(R3)≲δ20(1+t)−54−k2,k=0,1,2,‖∇3mh(t)‖L2(R3)≲δ20(1+t)−114,‖∇3nh(t)‖L2(R3)≲δ0(1+t)−74. $ |
As a consequence, there exists a positive constant
$ C−11(1+t)−34−k2≤‖∇kn(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,C−11(1+t)−34−k2≤‖∇km(t)‖L2(R3)≤C1(1+t)−34−k2,k=0,1,2,3. $ |
Remark 1.1. We remark that this theorem is valid under the condition (1.4) which is important in the lower bound estimate to the linearized problem. When (1.4) fails, the decay rate of the linearized system (1.3) depends on the order of the degeneracy of moments. Assume
Remark 1.2. In [13], Li, Matsumura-Zhang proved the lower bound decay rate of the linearized isentropic Navier-Stokes-Poisson system, they only require
In what follows, we will set
$ {∂tn+ˉρdivu=−ndivu−u⋅∇n,∂tu+γˉρ∇n−ˉμ△u−(ˉμ+ˉν)∇divu=−u⋅∇u−ˉμf(n)△u−(ˉμ+ˉν)f(n)∇divu−g(n)∇n,lim|x|→∞n=0,lim|x|→∞u=0,(n,u)|t=0=(ρ0−ˉρ,u0), $ | (2.1) |
where
$ f(n):=nn+ˉρ,g(n):=p′(n+ˉρ)n+ˉρ−p′(ˉρ)ˉρ. $ | (2.2) |
We assume that there exist a time of existence
$ ‖n(t)‖H3+‖u(t)‖H3≤δ, $ | (2.3) |
holds for any
$ ˉρ2≤n+ˉρ≤2ˉρ. $ |
Hence, we immediately have
$ |f(n)|,|g(n)|≤C|n|,|∇kf(n)|,|∇kg(n)|≤C∀k∈N+, $ | (2.4) |
where
Next, we begin with the energy estimates including
Theorem 2.1. Assume that
$ ‖n0‖H3+‖u0‖H3≤δ0, $ |
then the problem (2.1) admits a unique global solution
$ ‖n(t)‖2H3+‖u(t)‖2H3+∫t0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C(‖n0‖2H3+‖u0‖2H3), $ |
where
The proof of this theorem is divided into several subsections.
For
$ 12ddt∫R3(γ|n|2+|u|2)dx+∫R3(ˉμ|∇u|2+(ˉμ+ˉν)|divu|2)dx=∫R3γ(−ndivu−u⋅∇n)n−(u⋅∇u+ˉμf(n)△u+(ˉμ+ˉν)f(n)∇divu+g(n)∇n)⋅udx≲‖n‖L3‖∇u‖L2‖n‖L6+(‖u‖L3‖∇u‖L2+‖n‖L3‖∇n‖L2)‖u‖L6+(‖u‖L∞‖∇n‖L2+‖n‖L∞‖∇u‖L2)‖∇u‖L2≲(‖n‖L3+‖u‖L3+‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2). $ | (2.5) |
Now for
$ 12ddt∫R3(γ|∇n|2+|∇u|2)dx+∫R3(ˉμ|∇2u|2+(ˉμ+ˉν)|∇divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇n‖2L2+‖∇u‖2L2+‖∇2u‖2L2). $ | (2.6) |
For
$ 12ddt∫R3(γ|∇2n|2+|∇2u|2)dx+∫R3(ˉμ|∇3u|2+(ˉμ+ˉν)|∇2divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3u‖2L2). $ | (2.7) |
For
$ 12ddt∫R3(γ|∇3n|2+|∇3u|2)dx+∫R3(ˉμ|∇4u|2+(ˉμ+ˉν)|∇3divu|2)dx≲(‖n‖L∞+‖u‖L∞+‖∇n‖L∞+‖∇u‖L∞)(‖∇3n‖2L2+‖∇3u‖2L2+‖∇4u‖2L2)+‖∇n‖L3‖∇4u‖L2‖∇2n‖L6+‖∇u‖L3‖∇4u‖L2‖∇2u‖L6+‖∇2n‖L3(‖∇3n‖L2+‖∇4u‖L2)‖∇2u‖L6. $ | (2.8) |
Summing up the above estimates, noting that
$ ddt∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+C1∑1≤k≤4‖∇ku‖2L2≤C2δ∑1≤k≤3‖∇kn‖2L2. $ | (2.9) |
For
$ ddt∫R3u⋅∇ndx+γˉρ∫R3|∇n|2dx≲‖∇u‖2L2+‖∇n‖L2‖∇2u‖L2+(‖n‖L∞+‖u‖L∞)(‖∇n‖2L2+‖∇u‖2L2), $ | (2.10) |
for
$ ddt∫R3∇u⋅∇2ndx+γˉρ∫R3|∇2n|2dx≲‖∇2u‖2L2+‖∇2n‖L2‖∇3u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇n‖2L2+‖∇2n‖2L2+‖∇2u‖2L2), $ | (2.11) |
and for
$ ddt∫R3∇2u⋅∇3ndx+γˉρ∫R3|∇3n|2dx≲‖∇3u‖2L2+‖∇3n‖L2‖∇4u‖L2+(‖(n,u)‖L∞+‖(∇n,∇u)‖L∞)×(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3n‖2L2+‖∇3u‖2L2). $ | (2.12) |
Plugging the above estimates, using the smallness of
$ ddt∑0≤k≤2∫R3∇ku⋅∇k+1ndx+C3∑1≤k≤3‖∇kn‖2L2≤C4∑1≤k≤4‖∇ku‖2L2. $ | (2.13) |
Proof of Theorem 2.1. Multiplying (2.13) by
$ ddt{∑0≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+2C2δC3∑0≤k≤2∫R3∇ku⋅∇k+1ndx}+C5{∑1≤k≤3‖∇kn‖2L2+∑1≤k≤4‖∇ku‖2L2}≤0. $ | (2.14) |
Next, we define
$ ddtE(t)+‖∇n(t)‖2H2+‖∇u(t)‖2H3≤0. $ | (2.15) |
Observe that since
$ C−16(‖n(t)‖2H3+‖u(t)‖2H3)≤E(t)≤C6(‖n(t)‖2H3+‖u(t)‖2H3). $ |
Then integrating (2.15) directly in time, we get
$ sup0≤t≤T(‖n(t)‖2H3+‖u(t)‖2H3)+C6∫T0(‖∇n(τ)‖2H2+‖∇u(τ)‖2H3)dτ≤C26(‖n0‖2H3+‖u0‖2H3). $ |
Using a standard continuity argument along with classical local wellposedness theory, this closes the a priori assumption (2.3) if we assume
In this section, we consider the initial value problem for the linearized Navier-Stokes system
$ {∂t˜n+div˜m=0,(t,x)∈R+×R3,∂t˜m+c2∇˜n−ˉμ△˜m−(ˉμ+ˉν)∇div˜m=0,(t,x)∈R+×R3,lim|x|→∞˜n=0,lim|x|→∞˜m=0,t∈R+,(˜n,˜m)|t=0=(ρ0−ˉρ,ρ0u0),x∈R3, $ | (3.1) |
where
In terms of the semigroup theory for evolutionary equations, the solution
$ ˜Ut=B˜U,t≥0,˜U(0)=˜U0, $ |
which gives rise to
$ ˜U(t)=S(t)˜U0=etB˜U0,t≥0, $ |
where
$ B = {\left( 0−div−c2∇ˉμ△angle+(ˉμ+ˉν)∇div \right).} $ |
What left is to analyze the differential operator
$ ∂tˆ˜U(t,ξ)=A(ξ)ˆ˜U(t,ξ),t≥0,ˆ˜U(0,ξ)=ˆ˜U0(ξ), $ |
where
$ A(ξ)=(0−iξt−c2iξ−ˉμ|ξ|2I3×3−(ˉμ+ˉν)ξ⊗ξ). $ |
The eigenvalues of the matrix
$ det(A(ξ)−λI)=−(λ+ˉμ|ξ|2)2(λ2+(2ˉμ+ˉν)|ξ|2λ+c2|ξ|2)=0, $ |
which implies
$ λ0=−ˉμ|ξ|2(double),λ1=λ1(|ξ|),λ2=λ2(|ξ|). $ |
The semigroup
$ etA=eλ0tP0+eλ1tP1+eλ2tP2, $ |
where the project operators
$ Pi=∏i≠jA(ξ)−λjIλi−λj. $ |
By a direct computation, we can verify the exact expression for the Fourier transform
$ ˆG(t,ξ)=etA=(λ1eλ2t−λ2eλ1tλ1−λ2−iξt(eλ1t−eλ2t)λ1−λ2−c2iξ(eλ1t−eλ2t)λ1−λ2e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2)=(ˆNˆM). $ |
Indeed, we can make the following decomposition for
$ ˆ˜n=ˆN⋅ˆ˜U0=(ˆN+ˆN)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=(ˆM+ˆM)⋅ˆ˜U0, $ |
where
$ ˆN=(λ1eλ2t−λ2eλ1tλ1−λ20),ˆN=(0−iξt(eλ1t−eλ2t)λ1−λ2),ˆM=(−c2iξ(eλ1t−eλ2t)λ1−λ20),ˆM=(0e−λ0t(I−ξ⊗ξ|ξ|2)+ξ⊗ξ|ξ|2λ1eλ1t−λ2eλ2tλ1−λ2). $ |
We further decompose the Fourier transform
Define
$ ˆN=ˆN1+ˆN2,ˆN=ˆN1+ˆN2,ˆM=ˆM1+ˆM2,ˆM=ˆM1+ˆM2, $ |
where
$ χ(ξ)={1,|ξ|≤R,0,|ξ|≥R+1. $ |
Then we have the following decomposition for
$ ˆ˜n=ˆN⋅ˆ˜U0=ˆN1⋅ˆ˜U0+ˆN2⋅ˆ˜U0=(ˆN1+ˆN1)⋅ˆ˜U0+(ˆN2+ˆN2)⋅ˆ˜U0,ˆ˜m=ˆM⋅ˆ˜U0=ˆM1⋅ˆU0+ˆM2⋅ˆ˜U0=(ˆM1+ˆM1)⋅ˆ˜U0+(ˆM2+ˆM2)⋅ˆ˜U0. $ | (3.2) |
To derive the long time decay rate of solution, we need to use accurate approximation to the Fourier transform
$ λ1=−2ˉμ+ˉν2|ξ|2+i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a+bi,λ2=−2ˉμ+ˉν2|ξ|2−i2√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4=a−bi, $ | (3.3) |
and we have
$ λ1eλ2t−λ2eλ1tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)+12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, $ |
$ λ1eλ1t−λ2eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)−12(2ˉμ+ˉν)|ξ|2sin(bt)b]∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, $ |
$ eλ1t−eλ2tλ1−λ2=e−12(2ˉμ+ˉν)|ξ|2tsin(bt)b∼O(1)1|ξ|e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, $ |
where
$ b=12√4c2|ξ|2−(2ˉμ+ˉν)2|ξ|4∼c|ξ|+O(|ξ|3),|ξ|≤η. $ |
For the high frequency
$ λ1=−2ˉμ+ˉν2|ξ|2−12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a−b,λ2=−2ˉμ+ˉν2|ξ|2+12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2=a+b, $ | (3.4) |
and we have
$ λ1eλ2t−λ2eλ1tλ1−λ2=12e(a+b)t[1+e−2bt]−a2be(a+b)t[1−e−2bt]∼O(1)e−R0t,|ξ|≥η, $ |
$ λ1eλ1t−λ2eλ2tλ1−λ2=a+b2be(a+b)t[1−e−2bt]+e(a−b)t∼O(1)e−R0t,|ξ|≥η, $ |
$ eλ1t−eλ2tλ1−λ2=12be(a+b)t[1−e−2bt]∼O(1)1|ξ|2e−R0t,|ξ|≥η, $ |
where
$ b=12√(2ˉμ+ˉν)2|ξ|4−4c2|ξ|2∼12(2ˉμ+ˉν)|ξ|2−2c22ˉμ+ˉν+O(|ξ|−2),|ξ|≥η. $ |
Here
In this section, we apply the spectral analysis to the semigroup for the linearized Navier-Stokes system. We will establish the
With the help of the formula for Green's function in Fourier space and the asymptotic analysis on its elements, we are able to establish the
Proposition 4.1. Let
$ ‖∇k(˜n,˜m)(t)‖L2(R3)≤C(1+t)−34−k2(‖U0‖L1(R3)+‖∇kU0‖L2(R3)), $ |
where
Proof. A straightforward computation together with the formula of the Green's function
$ ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2∼{O(1)e−12(2ˉμ+ˉν)|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η,ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2∼{O(1)e−ˉμ|ξ|2t(|ˆn0|+|ˆm0|),|ξ|≤η,O(1)e−R0t(|ˆn0|+|ˆm0|),|ξ|≥η, $ |
here and below,
$ ‖(ˆ˜n,ˆ˜m)(t)‖2L2(R3)=∫|ξ|≤η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32‖(n0,m0)‖2L1(R3)∩L2(R3). $ |
And the
$ ‖(^∇k˜n,^∇k˜m)(t)‖2L2(R3)=∫|ξ|≤η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ+∫|ξ|≥η|ξ|2k|(ˆ˜n,ˆ˜m)(t,ξ)|2dξ≲∫|ξ|≤ηe−2ˉμ|ξ|2t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ+∫|ξ|≥ηe−2R0t|ξ|2k(|ˆn0|2+|ˆm0|2)dξ≲(1+t)−32−k(‖(n0,m0)‖2L1(R3)+‖(∇kn0,∇km0)‖2L2(R3)). $ |
The proof of the Proposition 4.1 is completed.
It should be noted that the
Proposition 4.2. Let
$ C−1(1+t)−34−k2≤‖∇k˜n(t)‖L2(R3)≤C(1+t)−34−k2,C−1(1+t)−34−k2≤‖∇k˜m(t)‖L2(R3)≤C(1+t)−34−k2, $ |
where
Proof. We only show the case of
$ ˆ˜n(t,ξ)=λ1eλ2t−λ2eλ1tλ1−λ2ˆn0−iξ⋅ˆm0(eλ1t−eλ2t)λ1−λ2=e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ˆn0−iξ⋅ˆm0sin(bt)b]+e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bˆn0]=T1+T2,for|ξ|≤η, $ |
$ ˆ˜m(t,ξ)=−c2iξ(eλ1t−eλ2t)λ1−λ2ˆn0+e−λ0tˆm0+(λ1eλ1t−λ2eλ2tλ1−λ2−e−λ0t)ξ(ξ⋅ˆm0)|ξ|2=[e−12(2ˉμ+ˉν)|ξ|2t[cos(bt)ξ(ξ⋅ˆm0)|ξ|2−c2iξsin(bt)bˆn0]+e−ˉμ|ξ|2t[ˆm0−ξ(ξ⋅ˆm0)|ξ|2]]−e−12(2ˉμ+ˉν)|ξ|2t[12(2ˉμ+ˉν)|ξ|2sin(bt)bξ(ξ⋅ˆm0)|ξ|2]=S1+S2,for|ξ|≤η, $ |
here and below,
It is easy to check that
$ ‖ˆ˜n(t,ξ)‖2L2=∫|ξ|≤η|ˆ˜n(t,ξ)|2dξ+∫|ξ|≥η|ˆ˜n(t,ξ)|2dξ≥∫|ξ|≤η|T1+T2|2dξ≥∫|ξ|≤η12|T1|2−|T2|2dξ. $ | (4.1) |
We then calculate that
$ ∫|ξ|≤η|T2|2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|4(sin(bt)b)2dξ≲‖ˆn0‖2L∞∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t|ξ|2dξ≲(1+t)−52‖n0‖2L1. $ | (4.2) |
Since
$ |ˆn0(ξ)|2≥1C|∫R3n0(x)dx|2≥M2nC,for|ξ|≤η. $ |
For
$ |ξ⋅ˆm0(ξ)|2|ξ|2≥|ξ⋅Mm|2C|ξ|2,for|ξ|≤η. $ |
When
$ ∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+1C∫|ξ|≤η|ξ⋅Mm|2b2e−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ $ |
$ ≥min{M2n,M2m3c2}C∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2t(cos2(bt)+sin2(bt))dξ≥C1∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tdξ≥C−1(1+t)−32. $ | (4.3) |
If
$ |ˆm0(ξ)|2<ϵ,for|ξ|≤η. $ |
We thus use the help of spherical coordinates and the change of variables
$ ∫|ξ|≤η|T1|2dξ≥M2nC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ−ϵCc2∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ≥M2nCt−32∫η√t0e−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2t−32∫η√t0e−(2ˉμ+ˉν)r2sin2(cr√t)r2dr≥M2nCt−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2cos2(cr√t)r2dr−ϵCc2(1+t)−32≥M2n2Ct−32[cηtπ]−1∑k=0∫kπ+π4c√tkπc√te−(2ˉμ+ˉν)r2r2dr−ϵCc2(1+t)−32≥C−11(1+t)−32−C−12ϵ(1+t)−32.≥C−1(1+t)−32 $ | (4.4) |
In the case of
$ ∫|ξ|≤η|T1|2dξ≥−ϵC∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ+M2m3Cc2∫|ξ|≤ηe−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ≥C−1(1+t)−32. $ | (4.5) |
Combining the above estimates (4.1), (4.2), (4.3), (4.4) and (4.5), we obtain the lower bound of the time decay rate for
$ ‖˜n(t,x)‖2L2=‖ˆ˜n(t,ξ)‖2L2≥C−1(1+t)−32. $ |
The lower bound of the time decay rate for
$ ‖ˆ˜m(t,ξ)‖2L2≥∫|ξ|≤η12|S1|2−|S2|2dξ, $ | (4.6) |
then we find that
$ ∫|ξ|≤η|S2|2dξ≲(1+t)−52‖m0‖2L1. $ | (4.7) |
We then calculate that
$ ∫|ξ|≤η|S1|2dξ≥{c4M2nC∫|ξ|≤η|ξ|2b2e−(2ˉμ+ˉν)|ξ|2tsin2(bt)dξ+1C∫|ξ|≤η|ξ⋅Mm|2|ξ|2e−(2ˉμ+ˉν)|ξ|2tcos2(bt)dξ}+{∫|ξ|≤ηe−12(4ˉμ+ˉν)|ξ|2tcos(bt)ξ(ξ⋅ˆm0)|ξ|2(ˆm0−ξ(ξ⋅ˆm0)|ξ|2)dξ}=J1+J2. $ |
A direct computation gives rise to
$ J1≥C−1(1+t)−32,J2=0. $ | (4.8) |
Combining the above estimates (4.6), (4.7) and (4.8), we obtain the lower bound of the time decay rate for
$ ‖˜m(t,x)‖2L2=‖ˆ˜m(t,ξ)‖2L2≥C−1(1+t)−32. $ |
Then the proof of Proposition 4.2 is completed.
In this subsection, we establish the following
Proposition 4.3. Let
$ ‖∇k(˜n,˜m)(t)‖Lp(R3)≤C(1+t)−32(1−1p)−k2(‖U0‖L1(R3)+‖∇kU0‖Lp(R3)), $ |
where
To prove Proposition 4.3, the following two lemmas in [6] are helpful.
Lemma 4.1. Let
$ |∇αξˆf(ξ)|≤C′{|ξ|−|α|+σ1,|ξ|≤R,|α|=n,|ξ|−|α|−σ2,|ξ|≥R,|α|=n−1,n,n+1, $ |
where
$ f=m1+m2δ, $ |
where
$ m2=(2π)−n2lim|ξ|→∞ˆf(ξ), $ |
and
$ ‖f∗g‖Lp≤C‖g‖Lp,1≤p≤∞, $ |
where
Lemma 4.2. Let
$ |∇βξˆf(ξ)|≤C′|ξ|−|β|,|β|≤n+1. $ |
Then
$ ‖∇αxg(t,⋅)‖Lp≤C(|α|)t−n2(1−1p)−|α|2. $ |
In particular,
Now let us turn to the proof of Proposition 4.3.
Proof of Proposition 4.3. We first analyze above higher frequency terms denoted by
$ λ1=−(2ˉμ+ˉν)|ξ|2+2c22ˉμ+ˉν+O(|ξ|−2),λ2=−2c22ˉμ+ˉν+O(|ξ|−2),|ξ|≥η. $ |
We shall prove that the higher frequency terms are
$ λ1eλ2t−λ2eλ1tλ1−λ2=eλ2t+λ2eλ2tλ1−λ2−λ2eλ1tλ1−λ2. $ |
By a direct computation, it is easy to verify
$ |∇kξλ2|≲|ξ|−2−k,|ξ|≥η, $ |
which gives rise to
$ |∇kξ[(1−χ(⋅))eλ2t]|,|∇kξ[(1−χ(⋅))λ2eλ2tλ1−λ2]|≲{0,|ξ|≤R,e−c1t|ξ|−2−k,|ξ|≥R, $ |
here and below,
$ (1−χ(⋅))λ2eλ1tλ1−λ2∼e−12(2ˉμ+ˉν)|ξ|2t[(1−χ(⋅))e(−λ2−12(2ˉμ+ˉν)|ξ|2)tλ1−λ2]. $ |
We can regard
$ ‖(∇kx(N2∗f),∇kx(N2∗f),∇kx(M2∗f),∇kx(M2∗f))(t)‖Lp≤Ce−c1t‖∇kxf‖Lp, $ | (4.9) |
for all integer
We also need to deal with the corresponding lower frequency terms denoted by
$ λ1eλ2t−λ2eλ1tλ1−λ2,λ1eλ1t−λ2eλ2tλ1−λ2,|ξ|(eλ1t−eλ2t)λ1−λ2∼O(1)e−12(2ˉμ+ˉν)|ξ|2t,|ξ|≤η, $ |
which imply that for
$ |ˆN1|∼O(1)e−c2|ξ|2t,|ˆN1|∼O(1)e−c2|ξ|2t,|ˆM1|∼O(1)e−c2|ξ|2t,|ˆM1|∼O(1)e−c2|ξ|2t, $ |
for some constants
$ ‖(∇kN1,∇kN1,∇kM1,∇kM1)(t)‖Lp≤C(∫|ξ|≤η||ξ|ke−c2|ξ|2t|qdξ)1q≤C(1+t)−32(1−1p)−k2. $ | (4.10) |
Combining (4.9) and (4.10), we finally have for
$ ‖(∇k(N∗f),∇k(M∗f))(t)‖Lp=‖(∇k((N1+N2)∗f),∇k((M1+M2)∗f))(t)‖Lp≤C(1+t)−32(1−1p)−k2‖f‖L1+Ce−c1t‖∇kf‖Lp≤C(1+t)−32(1−1p)−k2(‖f‖L1+‖∇kf‖Lp). $ |
The proof of Proposition 4.3 is completed.
We are ready to prove Theorem 1.1 on the sharp time decay rate of the global solution to the initial value problem for the nonlinear Navier-Stokes system.
In what follows, we will set
$ {∂tnh+divmh=0,(t,x)∈R+×R3,∂tmh+c2∇nh−ˉμ△mh−(ˉμ+ˉν)∇divmh=F,(t,x)∈R+×R3,lim|x|→∞nh=0,lim|x|→∞mh=0,t∈R+,(nh,mh)|t=0=(0,0),x∈R3, $ | (5.1) |
where
$ F=−div{(mh+˜m)⊗(mh+˜m)nh+˜n+ˉρ+ˉμ∇((nh+˜n)(mh+˜m)nh+˜n+ˉρ)}−∇{(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)−p(ˉρ)−c2(nh+˜n))}. $ |
Denote
$ ∂tUh=BUh+H,t≥0,Uh(0)=0, $ |
where the nonlinear term
$ Uh(t)=S(t)∗Uh(0)+∫t0S(t−τ)∗H(˜U,Uh)(τ)dτ, $ |
which
$ nh=N∗Uh(0)+∫t0N(t−τ)∗H(τ)dτ, $ | (5.2) |
$ mh=M∗Uh(0)+∫t0M(t−τ)∗H(τ)dτ. $ | (5.3) |
Furthermore, in view of the above definition for
$ |ˆN(ξ)|∼O(1)e−c3|ξ|2t,|ˆM(ξ)|∼O(1)e−c3|ξ|2t,|ξ|≤η, $ |
$ |ˆN(ξ)|∼O(1)1|ξ|e−R0t,|ˆM(ξ)|∼O(1)1|ξ|2e−R0t+O(1)e−c4|ξ|2t,|ξ|≥η. $ |
Thus, applying a similar argument as in the proof of Proposition 4.1, we have
$ ‖(∇kN∗H,∇kM∗H)(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇k+1Q‖L2),q=1,2, $ | (5.4) |
$ ‖(∇kN∗H,∇kM∗H)(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇kQ‖L2),q=1,2, $ | (5.5) |
$ ‖∇kM∗H(t)‖L2≤C(1+t)−32(1q−12)−12−k2(‖Q‖Lq+‖∇k−1Q‖L2),q=1,2, $ | (5.6) |
for any non-negative integer
$ Q=|(mh+˜m)⊗(mh+˜m)nh+˜n+ˉρ+ˉμ∇((nh+˜n)(mh+˜m)nh+˜n+ˉρ)|+|(ˉμ+ˉν)div((nh+˜n)(mh+˜m)nh+˜n+ˉρ)+(p(nh+˜n+ˉρ)−p(ˉρ)−c2(nh+˜n))|. $ | (5.7) |
For readers' convenience, we show how to estimate
$ ‖∇kM∗H(t)‖2L2≲∫|ξ|≤ηe−2c3|ξ|2t|ξ|2k|ˆH|2dξ+∫|ξ|≥ηe−2R0t|ξ|2k−4|ˆH|2dξ+∫|ξ|≥ηe−2c4|ξ|2t|ξ|2k|ˆH|2dξ≲∫|ξ|≤ηe−2c3|ξ|2t|ξ|2k+2|ˆQ|2dξ+∫|ξ|≥ηe−2R0t|ξ|2k−2|ˆQ|2dξ+∫|ξ|≥ηe−2c4|ξ|2t|ξ|2k+2|ˆQ|2dξ≲(1+t)−3(1q−12)−1−k(‖Q‖2Lq(R3)+‖∇˜kQ‖2L2(R3)),q=1,2,k−1≤˜k∈N+. $ |
In this subsection, we establish the faster decay rate for
We begin with following Lemma.
Lemma 5.1. Let
$ ∫t20(1+t−τ)−r1(1+τ)−r2dτ=∫t20(1+t2+τ)−r1(1+t2−τ)−r2dτ≲{(1+t)−r1,forr2>1,(1+t)−(r1−ϵ),forr2=1,(1+t)−(r1+r2−1),forr2<1, $ |
and
$ ∫tt2(1+t−τ)−r1(1+τ)−r2dτ=∫t20(1+t−τ)−r2(1+τ)−r1dτ≲{(1+t)−r2,forr1>1,(1+t)−(r2−ϵ),forr1=1,(1+t)−(r1+r2−1),forr1<1, $ |
where
Proposition 5.1. Under the assumptions of Theorem 1.1, the solution
$ ‖(∇knh,∇kmh)‖L2≤Cδ20(1+t)−54−k2,‖∇3mh‖L2≤Cδ20(1+t)−114,‖∇3nh‖L2≤Cδ0(1+t)−74, $ |
where
From (5.7), we deduce
$ Q(˜U,Uh)=Q1+Q2+Q3+Q4, $ |
which implies for a smooth solution
$ Q1=Q1(˜U,Uh)∼O(1)(n2h+mh⊗mh+˜n2+˜m⊗˜m),Q2=Q2(˜U,Uh)∼O(1)(˜nnh+˜m⊗mh),Q3=Q3(˜U,Uh)∼O(1)(∇(nh⋅mh)+∇(˜n⋅˜m)),Q4=Q4(˜U,Uh)∼O(1)(∇(˜n⋅mh)+∇(nh⋅˜m)). $ |
Define
$ Λ(t)=:sup0≤s≤t{2∑k=0(1+s)54+k2δ0−34‖(∇knh,∇kmh)(s)‖L2+(1+s)74‖(∇3nh,∇3mh)(s)‖L2}. $ | (5.8) |
Proposition 5.2. Under the assumptions of Theorem 1.1, if for some
$ Λ(t)≤Cδ340,t∈[0,T], $ |
where
The proof of this Proposition 5.2 consists of following three steps.
Starting with (5.4), (5.5), (5.6) and (5.8), we have after a complicate but straightforward computation that
$ ‖(nh,mh)‖L2≲∫t0‖(N(t−τ)∗H(τ),M(t−τ)∗H(τ))‖L2dτ≲∫t0(1+t−τ)−54(‖Q(τ)‖L1+‖Q(τ)‖L2)dτ≲(δ20+δ320Λ2(t))∫t0(1+t−τ)−54(1+τ)−32dτ≲(1+t)−54(δ20+δ320Λ2(t)). $ | (5.9) |
It is easy to verify that
$ ‖Q(t)‖L1≲‖Q1‖L1+‖Q2‖L1+‖Q3‖L1+‖Q4‖L1≲‖(˜n,˜m)‖2L2+‖(nh,mh)‖2L2+‖(nh,mh)‖L2(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)+‖(˜n,˜m)‖L2(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)≲(1+t)−32(δ20+δ320Λ2(t)). $ |
Indeed, by virtue of Hölder's inequality and Gagliardo-Nirenberg's inequality, we obtain that
$ ‖u‖L∞≲‖∇u‖12L2‖∇2u‖12L2, $ |
which implies that
$ ‖Q(t)‖L2≲‖(˜n,˜m)‖L∞(‖(˜n,˜m)‖L2+‖(∇˜n,∇˜m)‖L2+‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(nh,mh)‖L∞(‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(∇˜n,∇˜m)‖L∞‖(nh,mh)‖L2≲(1+t)−94(δ20+δ320Λ2(t)). $ |
Furthermore, exactly as in the estimate of the high order derivatives, we have
$ ‖(∇nh,∇mh)‖L2≲∫t20‖(∇N,∇M)(t−τ)∗H(τ)‖L2dτ+∫tt2‖(N,M)(t−τ)∗∇H(τ)‖L2dτ≲∫t20(1+t−τ)−74(‖Q(τ)‖L1+‖∇Q(τ)‖L2)dτ+∫tt2(1+t−τ)−12‖∇Q(τ)‖L2dτ≲(δ20+δ980Λ2(t))(∫t20(1+t−τ)−74(1+τ)−32dτ+∫tt2(1+t−τ)−12(1+τ)−114dτ)≲(1+t)−74(δ20+δ980Λ2(t)), $ | (5.10) |
Similarly, it holds that
$ ‖∇Q(t)‖L2≲‖(˜n,˜m)‖L∞(‖(∇˜n,∇˜m)‖L2+‖(∇2˜n,∇2˜m)‖L2+‖(∇nh,∇mh)‖L2 $ |
$ +‖(∇2nh,∇2mh)‖L2)+‖(∇˜n,∇˜m)‖L∞(‖(∇˜n,∇˜m)‖L2+‖(nh,mh)‖L2+‖(∇nh,∇mh)‖L2)+‖(nh,mh)‖L∞(‖(∇2˜n,∇2˜m)‖L2+‖(∇nh,∇mh)‖L2+‖(∇2nh,∇2mh)‖L2)+‖(∇nh,∇mh)‖L∞‖(∇nh,∇mh)‖L2≲(1+t)−114(δ20+δ980Λ2(t)). $ |
Thus, we also get that
$ ‖(∇2nh,∇2mh)(t)‖L2≲∫t20‖(∇2N,∇2M)(t−τ)∗H(τ)‖L2dτ+∫tt2‖(N,M)(t−τ)∗∇2H(τ)‖L2dτ≲∫t20(1+t−τ)−94(‖Q(τ)‖L1+‖∇2Q(τ)‖L2)dτ+∫tt2(1+t−τ)−12‖∇2Q(τ)‖L2dτ≲(δ20+δ0Λ(t)+δ340Λ2(t))(∫t20(1+t−τ)−94(1+τ)−32dτ+∫tt2(1+t−τ)−12(1+τ)−134dτ)≲(1+t)−94(δ20+δ0Λ(t)+δ340Λ2(t)). $ | (5.11) |
Finally, we have
$ ‖∇2Q(t)‖L2≲(‖(˜n,˜m)‖L∞+‖(nh,mh)‖L∞)(‖(∇3˜n,∇3˜m)‖L2+‖(∇3nh,∇3mh)‖L2)+(‖(∇˜n,∇˜m)‖L∞+‖(∇nh,∇mh)‖L∞)(‖(∇˜n,∇˜m)‖L2+‖(∇nh,∇mh)‖L2)+(‖(˜n,˜m)‖L∞+‖(nh,mh)‖L∞+‖(∇˜n,∇˜m)‖L∞+‖(∇nh,∇mh)‖L∞)×(‖(∇2˜n,∇2˜m)‖L2+‖(∇2nh,∇2mh)‖L2)≲(1+t)−134(δ20+δ0Λ(t)+δ340Λ2(t)). $ |
In this subsection, we will close the a priori estimates and complete the proof of Proposition 5.2. For this purpose, we need to derive the time decay rate of higher order derivatives of
Lemma 5.2. Under the assumption of Theorem 1.1, one has
$ ‖∇2n(t)‖H1+‖∇2u(t)‖H1≲(1+t)−74(δ0+δ340Λ(t)). $ |
In particular, it holds that
$ ‖∇3(nh,mh)(t)‖L2≲(1+t)−74(δ0+δ340Λ(t)). $ |
Proof. First of all, in view of (2.12), recovering the dissipation estimate for
$ ddt∫R3∇2u⋅∇3ndx+C1‖∇3n‖2L2dx≤C2(‖∇3u‖2L2+‖∇4u‖2L2)+C(1+t)−32(δ0+δ380Λ(t))×(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3u‖2L2). $ | (5.12) |
Summing up (2.7) and (2.8) in the energy estimate for
$ ddt∫R3(γ|∇2n|2+|∇2u|2+γ|∇3n|2+|∇3u|2)dx+C3(‖∇3u|2L2+‖∇4u‖2L2)≤C(1+t)−32(δ0+δ380Λ(t))(‖∇2n‖2L2+‖∇2u‖2L2+‖∇3n‖2L2). $ | (5.13) |
Multiplying (5.12) by
$ ddt{∑2≤k≤3(γ‖∇kn‖2L2+‖∇ku‖2L2)+ϵ1C3C2∫R3∇2u⋅∇3ndx}+C4(‖∇3n‖2L2+∑3≤k≤4‖∇ku‖2L2)≤C(1+t)−32(δ0+δ380Λ(t))(‖∇2n‖2L2+‖∇2u‖2L2). $ |
Next, we define
$ \mathcal E_1(t) = \bigg\{\sum\limits_{2\leq k\leq3}\left(\gamma \|{\nabla}^k n\|^2_{L^2}+\|{\nabla}^k u\|^2_{L^2} \right)+\epsilon_1\frac{C_3}{C_2}\int_{{\mathop{\mathbb R\kern 0pt}\nolimits}^3} {\nabla}^2 u\cdot {\nabla}^{3} n dx \bigg\}. $ |
Observe that since
$ C−15(‖∇2n(t)‖2H1+‖∇2u(t)‖2H1)≤E1(t)≤C5(‖∇2n(t)‖2H1+‖∇2u(t)‖2H1). $ |
Then we arrive at
$ ddtE1(t)+C4(‖∇3n(t)‖2L2+‖∇3u(t)‖2H1)≤C(1+t)−5(δ0+δ380Λ(t))(δ20+δ320Λ2(t)). $ |
Denote
$ C43‖∇3(n,u)(x)‖2L2≥C43∫S(t)c|ξ|6|(ˆn,ˆu)(ξ)|2dξ≥(1+γ)(1+t)−1∫R3|ξ|4|(ˆn,ˆu)(ξ)|2dξ−(1+γ)(1+t)−1∫S(t)|ξ|4|(ˆn,ˆu)(ξ)|2dξ. $ |
Hence we have
$ ddtE1(t)+(1+t)−1E1(t)+‖∇3n‖2L2+‖∇3u‖2H1≲(1+t)−5(δ0+δ380Λ(t))(δ20+δ320Λ2(t))+(1+t)−1∫S(t)|ξ|4|(ˆn,ˆu)(ξ)|2dξ+(1+t)−1∫R3∇2u⋅∇3ndx. $ |
Multiplying the above equation by
$ ddt{(1+t)5E1(t)}+(1+t)5(‖∇3n‖2L2+‖∇3u‖2H1)≲(1+t)12(δ20+δ320Λ2(t)). $ |
Integrating it with respect to time from
$ (1+t)5E1(t)+∫T0(1+t)5(‖∇3n‖2L2+‖∇3u‖2H1)dt≲E1(0)+(1+t)32(δ20+δ320Λ2(t)), $ |
which implies that
$ ‖∇3n‖2L2+‖∇3u‖2L2≲E1(t)≲(1+t)−5δ20+(1+t)−72(δ20+δ320Λ2(t)). $ |
Finally, we have
$ ‖∇3nh‖L2+‖∇3mh‖L2≲(1+t)−74(δ0+δ340Λ(t)). $ |
This completes the proof of this Lemma.
In this subsection, we first combine the above a priori estimates of (5.8), (5.9), (5.10), (5.11) and Lemma 5.2 together to give the proof of the Proposition 5.2. In deed, for any
$ Λ(t)≤C(δ0+δ140Λ(t)+Λ2(t))≤Cδ340. $ | (5.14) |
With the help of standard continuity argument, Proposition 5.2 and the smallness of
$ ‖(∇knh,∇kmh)‖L2≲δ20(1+t)−54−k2,k=0,1,‖∇2(nh,mh)‖L2≲δ740(1+t)−94,‖∇3(nh,mh)‖L2≲δ0(1+t)−74. $ |
Consequently, for any
$ Λ(t)≤Cδ0. $ | (5.15) |
From (5.11) and (5.15), thus we also get that
$ ‖∇2(nh,mh)‖L2≲δ20(1+t)−94. $ |
For
$ ‖∇3mh(t)‖L2≲∫t20(1+t−τ)−114(‖Q(τ)‖L1+‖∇2Q(τ)‖L2)dτ+∫tt2(1+t−τ)−12‖∇2Q(τ)‖L2dτ≲δ20(∫t20(1+t−τ)−114(1+τ)−32dτ+∫tt2(1+t−τ)−12(1+τ)−134dτ)≲δ20(1+t)−114. $ |
Hence, we finish the proof of the Proposition 5.1. Theorem 1.1 follows.
Y. Chen is partially supported by the China Postdoctoral Science Foundation under grant 2019M663198, Guangdong Basic and Applied Basic Research Foundation under grant 2019A1515110733, NNSF of China under grants 11801586, 11971496 and China Scholarship Council. The research of R. Pan is partially supported by National Science Foundation under grants DMS-1516415 and DMS-1813603, and by National Natural Science Foundation of China under grant 11628103. L. Tong's research is partially supported by China Scholarship Council.
[1] |
Cabidoche YM, Achard R, Cattan P, et al. (2009) Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut 157: 1697-1705. doi: 10.1016/j.envpol.2008.12.015
![]() |
[2] |
Levillain J, Cattan P, Colin F, et al. (2012) Analysis of environmental and farming factors of soil contamination by a persistent organic pollutant, chlordecone, in a banana production area of French West Indies. Agr Ecosyst Environ 159: 123-132. doi: 10.1016/j.agee.2012.07.005
![]() |
[3] |
Clostre F, Lesueur-Jannoyer M, Achard R, et al. (2014) Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Environ Sci Pollut Res 21: 1980-1992. doi: 10.1007/s11356-013-2095-x
![]() |
[4] |
Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of Harvested Organs in Root Crops Grown on Chlordecone-Polluted Soils. Pedosphere 22: 562-571. doi: 10.1016/S1002-0160(12)60041-1
![]() |
[5] |
Clostre F, Letourmy P, Lesueur-Jannoyer M (2015) Organochlorine (chlordecone) uptake by root vegetables. Chemosphere 118: 96-102. doi: 10.1016/j.chemosphere.2014.06.076
![]() |
[6] | Jondreville C, Lavigne A, Clostre F, et al. Contamination of grazing ducks by chlordecone in Martinique. Book of abstract; 2013; Nantes, France. Wageningen Academic Publishers. pp. 166-166. |
[7] |
Coat S, Monti D, Legendre P, et al. (2011) Organochlorine pollution in tropical rivers (Guadeloupe): role of ecological factors in food web bioaccumulation. Environ Pollut 159: 1692-1701. doi: 10.1016/j.envpol.2011.02.036
![]() |
[8] |
Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J Contam Hydrol 108: 107-117. doi: 10.1016/j.jconhyd.2009.06.004
![]() |
[9] |
Multigner L, Ndong JR, Giusti A, et al. (2010) Chlordecone Exposure and Risk of Prostate Cancer. J Clin Oncol 28: 3457-3462. doi: 10.1200/JCO.2009.27.2153
![]() |
[10] |
Dallaire R, Muckle G, Rouget F, et al. (2012) Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environ Res 118: 79-85. doi: 10.1016/j.envres.2012.07.006
![]() |
[11] |
Dubuisson C, Héraud F, Leblanc J-C, et al. (2007) Impact of subsistence production on the management options to reduce the food exposure of the Martinican population to Chlordecone. Regul Toxicol Pharm 49: 5-16. doi: 10.1016/j.yrtph.2007.04.008
![]() |
[12] | Lesueur-Jannoyer M, Cattan P, Monti D, et al. (2012) Chlordécone aux Antilles : évolution des systèmes de culture et leur incidence sur la dispersion de la pollution. Agronomie Environnement & Sociétés 2: 45-58. |
[13] |
Cattan P, Ruy SM, Cabidoche YM, et al. (2009) Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate. J Hydrol 368: 251-261. doi: 10.1016/j.jhydrol.2009.02.020
![]() |
[14] |
Saison C, Cattan P, Louchart X, et al. (2008) Effect of Spatial Heterogeneities of Water Fluxes and Application Pattern on Cadusafos Fate on Banana-Cultivated Andosols. J Agr Food Chem 56: 11947-11955. doi: 10.1021/jf802435c
![]() |
[15] | Charlier J-B, Cattan P, Voltz M, et al. (2009) Transport of a Nematicide in Surface and Groundwaters in a Tropical Volcanic Catchment All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J Environ Qual 38: 1031-1041. |
[16] |
Clothier BE, Vogeler I, Magesan GN (2000) The breakdown of water repellency and solute transport through a hydrophobic soil. J Hydrol 231-232: 255-264. doi: 10.1016/S0022-1694(00)00199-2
![]() |
[17] |
Prado B, Duwig C, Etchevers J, et al. (2011) Nitrate fate in a Mexican Andosol: Is it affected by preferential flow? Agr Water Manage 98: 1441-1450. doi: 10.1016/j.agwat.2011.04.013
![]() |
[18] | Accinelli C, Vicari A, Pisa PR, et al. (2002) Losses of atrazine, metolachlor, prosulfuron and triasulfuron in subsurface drain water. I. Field results. Agronomie 22: 399-411. |
[19] |
Schiavon M, Perrin-Ganier C, Portal J (1995) La pollution de l'eau par les produits phytosanitaires : état et origine. Agronomie 15: 157-170. doi: 10.1051/agro:19950301
![]() |
[20] | Paton GI, Paterson CJ, Winton A, et al. (2004) Distribution, bioavailability and behavior of persistent organic pollutants in Andosols: with specific reference to Iceland. In: Arnalds HÓaÓ, editor. Volcanic Soil Resources in Europe. pp. 108-109. |
[21] |
Olvera-Velona A, Benoit P, Barriuso E, et al. (2008) Sorption and desorption of organophosphate pesticides, parathion and cadusafos, on tropical agricultural soils. Agron Sust Dev 28: 231-238. doi: 10.1051/agro:2008009
![]() |
[22] |
Prado B, Duwig C, Hidalgo C, et al. (2014) Transport, sorption and degradation of atrazine in two clay soils from Mexico: Andosol and Vertisol. Geoderma 232-234: 628-639. doi: 10.1016/j.geoderma.2014.06.011
![]() |
[23] |
Fernandez Bayo J, Saison C, Geniez C, et al. (2013) Sorption characteristics of chlordecone and cadusafos in tropical agricultural soils. Curr Org Chem 17: 2976-2984. doi: 10.2174/13852728113179990121
![]() |
[24] |
Brunet D, Woignier T, Lesueur-Jannoyer M, et al. (2009) Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS). Environ Pollut 157: 3120-3125. doi: 10.1016/j.envpol.2009.05.026
![]() |
[25] | Desprat J-F, Comte J-P, Chabrier C (2004) Cartographie du risque de pollution des sols de Martinique par les organochlorés : Rapport phase 3 : Synthèse. 25 p. |
[26] | Tillieut O, Cabidoche Y-M (2006) Cartographie de la pollution des sols de Guadeloupe par la chlordécone : Rapport technique. Abymes, France: DAAF-SA & INRA-ASTRO. 23 p. |
[27] |
Charlier J-B, Cattan P, Moussa R, et al. (2008) Hydrological behaviour and modelling of a volcanic tropical cultivated catchment. Hydrol Process 22: 4355-4370. doi: 10.1002/hyp.7040
![]() |
[28] | Woignier T, Clostre F, Fernandes P, et al. (2015) Sequestering Pesticide with Organic Fertilizer or Organic Amendment. In: Shishir Sinha KKP, S. Bajpai, J.N. Govil, editor. Fertilizer Technology. USA: Studium Press LLC. pp. 319-344. |
[29] | Clostre F, Letourmy P, Turpin B, et al. (2014) Soil Type and Growing Conditions Influence Uptake and Translocation of Organochlorine (Chlordecone) by Cucurbitaceae Species. Water Air Soil Pollut 225: 1-11. |
[30] |
Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Interfac 76-77: 445-467. doi: 10.1016/S0001-8686(98)00055-4
![]() |
[31] |
Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112: 269-283. doi: 10.1016/S0269-7491(00)00099-3
![]() |
[32] |
Vlčková K, Hofman J (2012) A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. Environ Pollut 160: 49-56. doi: 10.1016/j.envpol.2011.08.049
![]() |
[33] |
Peters R, Kelsey JW, White JC (2007) Differences in p,p′-DDE bioaccumulation from compost and soil by the plants Cucurbita pepo and Cucurbita maxima and the earthworms Eisenia fetida and Lumbricus terrestris. Environ Pollut 148: 539-545. doi: 10.1016/j.envpol.2006.11.030
![]() |
[34] |
Chung N, Alexander M (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48: 109-115. doi: 10.1016/S0045-6535(02)00045-0
![]() |
[35] |
Liu C, Li H, Teppen BJ, et al. (2009) Mechanisms Associated with the High Adsorption of Dibenzo-p-dioxin from Water by Smectite Clays. Environ Sci Technol 43: 2777-2783. doi: 10.1021/es802381z
![]() |
[36] | Rana K, Boyd SA, Teppen BJ, et al. (2009) Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite. Phys Chem Chem Phys 11: 2976-2985. |
[37] |
Duwig C, Müller K, Vogeler I (2006) 2,4-D Movement in Allophanic Soils from Two Contrasting Climatic Regions. Commun Soil Sci Plan 37: 2841-2855. doi: 10.1080/00103620600832795
![]() |
[38] |
Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. Journal of Soil Science 40: 359-369. doi: 10.1111/j.1365-2389.1989.tb01280.x
![]() |
[39] |
Levard C, Doelsch E, Basile-Doelsch I, et al. (2012) Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma 183-184: 100-108. doi: 10.1016/j.geoderma.2012.03.015
![]() |
[40] |
Dœlsch E, Basile-Dœlsch I, Rose J, et al. (2006) New Combination of EXAFS Spectroscopy and Density Fractionation for the Speciation of Chromium within an Andosol. Environ Sci Technol 40: 7602-7608. doi: 10.1021/es060906q
![]() |
[41] | Khan H, Matsue N, Henmi T (2006) Adsorption of Water on Nano-ball Allophane. Clay Sci 12: 261-266. |
[42] |
Reinert L, Ohashi F, Kehal M, et al. (2011) Characterization and boron adsorption of hydrothermally synthesised allophanes. Appl Clay Sci 54: 274-280. doi: 10.1016/j.clay.2011.10.002
![]() |
[43] |
Henmi T, Huang PM (1985) Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl Clay Sci 1: 133-144. doi: 10.1016/0169-1317(85)90569-1
![]() |
[44] |
Clark CJ, McBride MB (1984) Cation and anion retention by natural and synthetic allophane and imogolite. Clay Clay Miner 32: 291-299. doi: 10.1346/CCMN.1984.0320407
![]() |
[45] |
Arai Y, Sparks DL, Davis JA (2005) Arsenate Adsorption Mechanisms at the Allophane-Water Interface. Environ Sci Technol 39: 2537-2544. doi: 10.1021/es0486770
![]() |
[46] |
Opiso E, Sato T, Yoneda T (2009) Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials. J Hazard Mater 170: 79-86. doi: 10.1016/j.jhazmat.2009.05.001
![]() |
[47] |
Calabi-Floody M, Velásquez G, Gianfreda L, et al. (2012) Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay. Chemosphere 89: 648 - 655. doi: 10.1016/j.chemosphere.2012.05.107
![]() |
[48] |
Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31: 697-710. doi: 10.1016/S0146-6380(00)00049-8
![]() |
[49] |
Arias-Estévez M, López-Periago E, Martínez-Carballo E, et al. (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123: 247-260. doi: 10.1016/j.agee.2007.07.011
![]() |
[50] |
Puglisi E, Cappa F, Fragoulis G, et al. (2007) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67: 548-556. doi: 10.1016/j.chemosphere.2006.09.058
![]() |
[51] |
Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108: 103-112. doi: 10.1016/S0269-7491(99)00206-7
![]() |
[52] |
Wallace KB (1973) Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Geotechnique 23: 203-218. doi: 10.1680/geot.1973.23.2.203
![]() |
[53] | Fieldes M (1966) The nature of allophane in soils., Part 1, Significance of structural randomness in pedogenesis. New Zeal J Sci 9: 599-607. |
[54] |
Wada K (1985) The distinctive properties of Andosol. Adv Soil Sci 2: 173-229. doi: 10.1007/978-1-4612-5088-3_4
![]() |
[55] |
Lindner GG, Nakazawa H, Hayashi S (1998) Hollow nanospheres, allophanes ‘All-organic’ synthesis and characterization. Micropor Mesopor Mat 21: 381-386. doi: 10.1016/S1387-1811(98)00002-X
![]() |
[56] |
Wells N, Theng BKG (1985) Factors affecting the flow behavior of soil allophane suspensions under low shear rates. J Colloid Interf Sci 104: 398-408. doi: 10.1016/0021-9797(85)90048-7
![]() |
[57] |
Calabi-Floody M, Bendall JS, Jara AA, et al. (2011) Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma 161: 159-167. doi: 10.1016/j.geoderma.2010.12.013
![]() |
[58] |
Garrido-Ramirez EG, Sivaiah MV, Barrault J, et al. (2012) Catalytic wet peroxide oxidation of phenol over iron or copper oxide-supported allophane clay materials: Influence of catalyst SiO2/Al2O3 ratio. Micropor Mesopor Mat 162: 189-198. doi: 10.1016/j.micromeso.2012.06.038
![]() |
[59] |
Woignier T, Pochet G, Doumenc H, et al. (2007) Allophane: a natural gel in volcanic soils with interesting environmental properties. J Sol-Gel Sci Techn 41: 25-30. doi: 10.1007/s10971-006-0120-y
![]() |
[60] |
Adachi Y, Karube J (1999) Application of a scaling law to the analysis of allophane aggregates. Colloid Surface A 151: 43-47. doi: 10.1016/S0927-7757(98)00581-0
![]() |
[61] |
Chevallier T, Woignier T, Toucet J, et al. (2008) Fractal structure in natural gels: effect on carbon sequestration in volcanic soils. J Sol-Gel Sci Techn 48: 231-238. doi: 10.1007/s10971-008-1795-z
![]() |
[62] |
Chevallier T, Woignier T, Toucet J, et al. (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159: 182-188. doi: 10.1016/j.geoderma.2010.07.010
![]() |
[63] |
Ghanbarian-Alavijeh B, Millán H, Huang G (2011) A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Can J Soil Sci 91: 1-14. doi: 10.4141/cjss10008
![]() |
[64] |
Bird NRA, Bartoli F, Dexter AR (1996) Water retention models for fractal soil structures. Eur J Soil Sci 47: 1-6. doi: 10.1111/j.1365-2389.1996.tb01365.x
![]() |
[65] |
Woignier T, Primera J, Hashmy A (2006) Application of the DLCA model to natural gels : the allophanic soils. J Sol-Gel Sci Techn 40: 201-207. doi: 10.1007/s10971-006-7593-6
![]() |
[66] |
Primera J, Woignier T, Hasmy A (2005) Pore Structure Simulation of Gels with a Binary Monomer Size Distribution. J Sol-Gel Sci Techn 34: 273-280. doi: 10.1007/s10971-005-2524-5
![]() |
[67] |
Meakin P (1983) Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys Rev Lett 51: 1119-1122. doi: 10.1103/PhysRevLett.51.1119
![]() |
[68] |
Kolb M, Botet R, Jullien R (1983) Scaling of Kinetically Growing Clusters. Physical Review Letters 51: 1123-1126. doi: 10.1103/PhysRevLett.51.1123
![]() |
[69] | Jullien R, Botet R (1987) Aggregation and Fractal Aggregates: World Scientific. |
[70] |
Evans JW (1993) Random and cooperative sequential adsorption. Rev Mod Phys 65: 1281-1329. doi: 10.1103/RevModPhys.65.1281
![]() |
[71] |
Primera J, Hasmy A, Woignier T (2003) Numerical Study of Pore Sizes Distribution in Gels. J Sol-Gel Sci Techn 26: 671-675. doi: 10.1023/A:1020765230983
![]() |
[72] |
Bielders CL, De Backer LW, Delvaux B (1990) Particle Density of Volcanic Soils as Measured with a Gas Pycnometer. Soil Sci Soc Am J 54: 822-826. doi: 10.2136/sssaj1990.03615995005400030034x
![]() |
[73] |
Woignier T, Braudeau E, Doumenc H, et al. (2005) Supercritical Drying Applied to Natural “Gels”: Allophanic Soils. J Sol-Gel Sci Techn 36: 61-68. doi: 10.1007/s10971-005-2659-4
![]() |
[74] | Carman PC (1937) Fluid flow through granular beds. Transactions-IChemE 15: 150-166. |
[75] | Woignier T, Primera J, M. L, et al. (2005) The use of silica aerogels as host matrices for chemical species. Different ways to control the permeability and the mechanical properties. J Non-Cryst Solids 350: 298-306. |
[76] | Dullien FAL, Brenner H (1979) Porous Media: Fluid Transport and Pore Structure: Academic press. 396 p. |
[77] | Wyllie MRJ, Spangler MB (1952) Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media. AAPG Bull 36: 359-403. |
[78] | Stanley HE, Family F, Gould H (1985) Kinetics of aggregation and gelation. J Polym Sci Polym Symp 73: 19-37. |
[79] |
Courtens E, Pelous J, Phalippou J, et al. (1987) Brillouin-scattering measurements of phonon-fracton crossover in silica aerogels. Phys Rev Lett 58: 128-131. doi: 10.1103/PhysRevLett.58.128
![]() |
[80] |
Vacher R, Courtens E, Coddens G, et al. (1990) Crossovers in the density of states of fractal silica aerogels. Phys Rev Lett 65: 1008-1011. doi: 10.1103/PhysRevLett.65.1008
![]() |
[81] |
Herrmann HJ, Stanley HE (1988) The fractal dimension of the minimum path in two- and three-dimensional percolation. J Phys A-Math Gen 21: L829. doi: 10.1088/0305-4470/21/17/003
![]() |
[82] |
Meakin P, Majid I, Havlin S, et al. (1984) Topological properties of diffusion limited aggregation and cluster-cluster aggregation. J Phys A-Math Gen 17: L975. doi: 10.1088/0305-4470/17/18/008
![]() |
[83] |
Ramanujan S, Pluen A, McKee TD, et al. (2002) Diffusion and Convection in Collagen Gels: Implications for Transport in the Tumor Interstitium. Biophys J 83: 1650-1660. doi: 10.1016/S0006-3495(02)73933-7
![]() |
[84] |
Anez L, Calas-Etienne S, Primera J, et al. (2014) Gas and liquid permeability in nano composites gels: Comparison of Knudsen and Klinkenberg correction factors. Micropor Mesopor Mat 200: 79-85. doi: 10.1016/j.micromeso.2014.07.049
![]() |
[85] | Fosmoe A, Hench LL (1992) Gas permeability in porous gel-silica. In: L.L. Hench JKW, editor. Chemical Processing of Advanced Materials. New York: John Wiley and Sons Inc. pp. 897-905. |
[86] |
Gross J, Scherer G (1998) Structural Efficiency and Microstructural Modeling of Wet Gels and Aerogels. J Sol-Gel Sci Techn 13: 957-960. doi: 10.1023/A:1008643828073
![]() |
[87] |
Reichenauer G, Stumpf C, Fricke J (1995) Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion. J Non-Cryst Solids 186: 334-341. doi: 10.1016/0022-3093(95)00057-7
![]() |
[88] | Dorel M, Roger-Estrade J, Manichon H, et al. (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manage 16: 133-140. |
[89] | Fernandez-Bayo JD, Saison C, Voltz M, et al (2013). Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions. Sci Total Environ 463-464: 395-403. |