
High energy dependence on fossil fuels and an increase in greenhouse gas emissions are factors that highlight the need for alternative energy sources. Photovoltaic technology is a strong candidate that uses the most abundant resource, solar energy, but what makes its wide use difficult is the high cost of the commercially available devices. Thus, research has been devoted to developing new low-cost photovoltaic systems that are easier to manufacture with high efficiency and durability, such as the third-generation solar cells. According to this study, organic solar cells (OPV) with polymers in the active layers are more prominent concerning power conversion efficiency associated with durability, resulting in great research interest. Furthermore, polymer solar cells are easier to process and can be manufactured on a large scale achieving high efficiencies and stability. This review aims to raise the state of the art about these solar cells, discourse their architectures, current developments on polymer structures, and most relevant challenges for OPV devices, as a search for increased efficiency and stability.
Citation: Taihana Paula, Maria de Fatima Marques. Recent advances in polymer structures for organic solar cells: A review[J]. AIMS Energy, 2022, 10(1): 149-176. doi: 10.3934/energy.2022009
[1] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[4] | Liju Yu, Jingjun Zhang . Global solution to the complex short pulse equation. Electronic Research Archive, 2024, 32(8): 4809-4827. doi: 10.3934/era.2024220 |
[5] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[6] | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan . On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29(1): 1709-1734. doi: 10.3934/era.2020088 |
[7] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[8] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[9] | Dan-Andrei Geba . Unconditional well-posedness for the periodic Boussinesq and Kawahara equations. Electronic Research Archive, 2024, 32(2): 1067-1081. doi: 10.3934/era.2024052 |
[10] | Hong Yang, Yiliang He . The Ill-posedness and Fourier regularization for the backward heat conduction equation with uncertainty. Electronic Research Archive, 2025, 33(4): 1998-2031. doi: 10.3934/era.2025089 |
High energy dependence on fossil fuels and an increase in greenhouse gas emissions are factors that highlight the need for alternative energy sources. Photovoltaic technology is a strong candidate that uses the most abundant resource, solar energy, but what makes its wide use difficult is the high cost of the commercially available devices. Thus, research has been devoted to developing new low-cost photovoltaic systems that are easier to manufacture with high efficiency and durability, such as the third-generation solar cells. According to this study, organic solar cells (OPV) with polymers in the active layers are more prominent concerning power conversion efficiency associated with durability, resulting in great research interest. Furthermore, polymer solar cells are easier to process and can be manufactured on a large scale achieving high efficiencies and stability. This review aims to raise the state of the art about these solar cells, discourse their architectures, current developments on polymer structures, and most relevant challenges for OPV devices, as a search for increased efficiency and stability.
Rotating blades (thin-walled beam) are important structures widely used in mechanical and aerospace engineering as aviation engine blades, various cooling fans, windmill blades, helicopter rotor blades, airplane propellers etc. The study of the dynamics of rotating blades is important to design purposes, optimization, and control.
If the shear effect is not considered, the Euler-Bernoulli beam equation is used to model vibration of thin-walled beam. Chen et al.[6] studied the boundary feedback stabilization of a linear Euler-Bernoulli beam equation, they proved that the total energy of the equation decays uniformly and exponentially with
A very extensive work devoted to the longitudinal vibration in two directions were done by Librescu and Song[21,32,33] and their co-workers[25,28]. Under assumption of the cross-section to be rigid in its own plane, they modelled the rotating blades by 1-D linear governing equations. The influence of many factors on rotating blades, such as the anisotropy and heterogeneity of constituent materials, functionally graded materials (FGM), temperature, shear effects, primary and secondary warping phenomena (Vlasov effect), centrifugal and Coriolis forces etc have been taken into account in the 1-D linear governing equations.
Following Librescu's approach, various blades models were derived. Georgiades et al.[11] modelled a rotating blades by means of linear strain-displacement relationships, considering arbitrary pitch (presetting) angle and non-constant rotating speed. Choi et al.[8] studied bending vibration control of the pre-twisted rotating composite blades, who emphasized the important of piezoelectric effect in single cell composite blades. Fazelzadeh et al.[9] considered a thin-walled blades made of FGM which is used in turbomachinery under aerothermodynamics loading. In the paper, quasi-steady aerodynamic pressure loadings was determined by the first-order piston theory, and steady beam surface temperature was obtained from gas dynamics theory. Fazelzadeh et al.[10] studied the governing equations which included the effects of the presetting angle and the rotary inertia. The effects of steady wall temperature and quasi-steady aerodynamic pressure loadings due to flow motion were also taken into account.
The models in Refs.[21,32,33,25,28,11,8,9,10] are linear. When the engine blades rotate at a low speed, the linear approximation can completely meet the needs of practical application. However, when the blade rotate at a high speed, the simple linear approximation can not accurately describe the dynamic behavior of the system. So the non-linear analysis of rotating blades has attracted considerable attention.
The nonlinear governing equations of a rotating blades at constant angular velocity was presented by Anderson[1], and the author linearized the equation under the assumption that a small perturbed motion occurred at an initially stressed equilibrium configuration. Chen et al.[7] considered the effects of geometric non-linearity, shear deformation and rotary inertia. Arvin et al.[2] builded a nonlinear governing equation for rotating blades considering centrifugal forces by means of von-Karmans strain-displacement relationships under assumption of the constant rotation speed and zero pitch (presetting) angle. Yao et al.[39] employed the Hamilton's principle to derive the nonlinear governing equations with periodic rotating speed, arbitrary pitch (presetting) angle and linear pre-twist angle. Under the assumption that the location of shear centre is different from the centre of gravity, Avramov et al.[3] obtained results of the investigations on flexural-flexural-torsional nonlinear vibrations of twisted rotating blades described by the model of three nonlinear integro-differential equations. Other nonlinear models can be found in Refs.[34,29,27,37,15,31,36].
To the best of the author's knowledge, all the above literatures about the longitudinal vibration in two directions skipped the existence proof of solutions to the governing equations, and directly used the finite element method to study the influence of various parameters on blades vibration. To address this situation, we first try to model a governing equations of the blades with arbitrary rotating speed, arbitrary pre-setting angle and pre-twist angle. In the process of building the model, we take into account the free vibration at the right end of the blade and the nonlinear relationship between stress and strain. In the paper we aim to investigate the well-posedness and regularity of the governing equations. The well-posedness of other nonlinear blade vibration models can be found in Refs. [5,38,26,35,16].
Let us consider a slender, straight blades mounted on a rigid hub of radius
To derive the model of the rotating blades, the following kinematic and static assumptions are postulated:
(ⅰ) The blades is perfectly elastic bodies, the blades material is isotropic and is not affected by temperature,
(ⅱ) The cross section of the blades is rectangular and all its geometrical dimensions remain invariant in its plane,
(ⅲ) The ratio of wall thickness
(ⅳ) The transverse shear effect of the cross section is neglected,
(ⅴ) The axial displacement
Inertial Cartesian coordinate systems
Rotating coordinate systems
Transformation between
(X,Y,Z)=(x,y,z)+(R0,0,0). | (1) |
Local coordinates systems
(1000cosω−sinω0sinωcosω). |
Local, curvilinear coordinate systems
In order to determine the relationship between the two coordinate systems
r=xi+y(s)j+z(s)k. | (2) |
The position vector
r∗=r+nen, | (3) |
As a result
et=drds=dy(s)dsj+dz(s)dsk, | (4) |
en=et×i=dz(s)dsj−dy(s)dsk. | (5) |
Moreover, in order to avoid confusion, the notation
x∗=x, y∗=r∗⋅j=y+ndzds, z∗=r∗⋅k=z−ndyds. | (6) |
Based on the assumptions (ⅳ) and (ⅴ), the axial displacement
Dx=ϕy(x,t)(z(s)−ndyds)+ϕz(x,t)(y(s)+ndzds),Dy=u,Dz=v. | (7) |
where
ϕy=−vx,ϕz=−ux. | (8) |
where
Based on the assumptions (ⅴ), the displacement-strain relationships is expressed as follows[20]:
εxx=∂Dx∂x+12[(∂Dy∂x)2+(∂Dz∂x)2]. | (9) |
Thanks to (8), we can get
εxx=ˉεxx+ˉˉεxxn, |
where
ˉεxx=12(u2x+v2x)−(uxxy(s)+vxxz(s)), ˉˉεxx=−uxxdzds+vxxdyds. | (10) |
The shear strain
εnx=12(∂Un∂x+∂w∂n), | (11) |
where
Un=(Dx,Dy,Dz)⋅en=udzds−vdyds. | (12) |
Substituting (7) and (12) into (11), we deduce
εsx=12(dydsγxy+dzdsγxz)=0. | (13) |
where
Since these materials are isotropic, the corresponding thermoelastic constitutive law adapted to the case of structures is expressed as
(σssσxxσxnσnsσsx)=(Q11Q12000Q21Q2200000Q4400000Q5500000Q66)(εssεxxεxnεnsεsx), |
Herein, the reduced thermoelastic coefficients are defined as:
Q11=Q22=E1−ν2,Q12=Q21=Eν1−ν2,Q44=Q55=k2E2(1+ν),Q66=E2(1+ν), |
where
According to assumption (ⅱ), the cross section is rigid, then we can derive
(σss,σxx,σxn,σns,σsx)=(0,Eεxx,0,0,0). |
The centrifugal force can be represented as
Fc=∫lxρˉAω2(R0+x)dx=ρˉAω2R(x), |
where
In the paper, we use the first-order piston theory (see Ref.[24]) to evaluate the perturbed gas pressure. The pressure on the principal plane of the blade can be obtained as
Pyp=C∞ρ∞(∂up∂t+Utyp∂up∂x),Pzp=C∞ρ∞(∂vp∂t+Utzp∂vp∂x), | (14) |
where
Utyp=U∞cosθ, Utzp=U∞sinθ, | (15) |
The transformation relationship between
up=ucosθ+vsinθ, vp=−usinθ+vcosθ. | (16) |
Therefore, the external forces per unit axial length in the
py=aPzpsinθ−bPypcosθ, pz=−aPzpcosθ−bPypsinθ. | (17) |
Combining (14), (15), (16),
py=b1ux+b2vx+b3u+b4v+b5ut+b6vt | (18) |
pz=e1ux+e2vx+e3u+e4v+e5ut+e6vt | (19) |
where
b1=−C∞ρ∞U∞(asin3θ+bcos3θ)b2=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)b3=−C∞ρ∞U∞θxsinθcosθ(asinθ−bcosθ)b4=−C∞ρ∞U∞θx(asin3θ+bcos3θ)b5=−C∞ρ∞(asin2θ+bcos2θ)b6=C∞ρ∞sinθcosθ(a−b)e1=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)e2=−C∞ρ∞U∞sinθcosθ(acosθ+bsinθ)e3=C∞ρ∞U∞θxsinθcosθ(asinθ+bcosθ)e4=−C∞ρ∞U∞θxsinθcosθ(−asinθ+bcosθ) |
e5=C∞ρ∞sinθcosθ(a−b)e6=−C∞ρ∞(acos2θ+bsin2θ) |
In order to calculate the kinetic energy, the velocity vector and the acceleration should be given first. Based on the assumption (ⅴ), the position vector
R(X,Y,Z,t)=x∗i+(y∗+u)j+(z∗+v)k+R0i. |
Keep in mind that the rotation takes place solely in the
it=ωj; jt=−ωi; kt=0. |
Then the velocity vector and the acceleration of an arbitrary point
Rt=−ω(y∗+u)i+(ω(R0+x)+ut)j+vtk, | (20) |
Rtt=−[2ωut+ωt(y∗+u)+ω2(R0+x)]i +[utt−ωt(R0+x)−ω2(y∗+u)]j+vttk, | (21) |
where subscript
In order to derive the blades model and the associated boundary conditions, the extended Hamilton's principle is used. This can be formulated as
∫t2t1(δK−δU+δW)dt=0,δu=0,δv=0att=t1,t2. | (22) |
where
Thanks to the cross section of the blades is rectangular, we get
∮y(s)ds=∮z(s)ds=0. | (23) |
Utilizing (23), the kinetic energy is obtained
K=12∫τρR2tdτ=12ρ∫τu2t+v2t+2ω(R0+x)ut +ω2(u2+2(y+ndzds)u+y+ndzds+(R0+x)2)dτ=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut +ω2(u2+2h∮ydsˉAu+h∮ydsˉA+(R0+x)2)dx=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut+ω2(u2+(R0+x)2)dx, |
where
∫t2t1δKdt=−ρˉA∫t2t1∫l0{[utt+ωt(R0+x)−uω2]δu+vttδv}dxdt, | (24) |
Due to the rotating motion of the blades, the total strain energy consists of two parts. The strain energy caused by the centrifugal force can be obtained as
U1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)εxxdςdndsdx | (25) |
where
δU1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δεxxdςdndsdx=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δˉεxxdςdndsdx=ρˉAω2∫l0R(x)(uxδux+vxδvx)dx−ρω2h2∫l0∫lx(R0+ς)(∮y(s)dsδuxx+∮z(s)dsδvxx)dςdx, | (26) |
where
Thanks to (23), the variation of the strain energy caused by the centrifugal force can be rewritten as
δU1=ρˉAω2[R(x)(uxδu+vxδv)]|l0−∫l0(R(x)ux)xδu+(R(x)vx)xδvdx | (27) |
The strain energy induced by the deformation of the rotating blades can be expressed as
U2=12∫l0∮∫h2−h2σxxεxxdndsdx. | (28) |
Substituting the expressions of the stress and strain resultants into (28) yields
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=Eh4∫l0∮(u2x+v2x)δ(u2x+v2x)dsdx−Eh2∫l0∮(u2x+v2x)δ(uxxy(s)+vxxz(s))dsdx−Eh2∫l0∮(uxxy(s)+vxxz(s))δ(u2x+v2x)dsdx+Eh∫l0∮(uxxy(s)+vxxz(s))δ(uxxy(s)+vxxz(s))dsdx+Eh312∫l0∮(−uxxdzds+vxxdyds)δ(−uxxdzds+vxxdyds)dsdx | (29) |
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=ρˉA{∫l0[−a52((u2x+v2x)ux)x+(a6uxx−a3vxx)xx −a12(u2x+v2x)xx+(a1uxx+a2vxx)ux)x]dx}δu+ρˉA{∫l0[−a52((u2x+v2x)vx)x+(a4vxx−a3uxx)xx −a22(u2x+v2x)xx+(a1uxx+a2vxx)vx)x]dx}δv+ρˉA{[(a6uxx−a3vxx)−a12(u2x+v2x)]δux}|l0+ρˉA{[(a4vxx−a3uxx)−a22(u2x+v2x)]δvx}|l0+ρˉA{[a52(u2x+v2x)ux−(a6uxx−a3vxx)x +a12(u2x+v2x)x+a1uxx+a2vxxux]δu}|l0+ρˉA{[a52(u2x+v2x)vx−(a4vxx−a3uxx)x +a22(u2x+v2x)x+a1uxx+a2vxxvx]δv}|l0 | (30) |
where
a1=EhˉAρ∮yds=0;a2=EhˉAρ∮zds=0;a3(x)=EhˉAρ∮h212dydsdzds−yzds;a4(x)=EhˉAρ∮h212(dzds)2+y2ds;a5=Eρa6(x)=EhˉAρ∮h212(dyds)2+z2ds. |
The work of the non-conservative external forces can be obtained as
W=∫l0pyu+pzvdx. | (31) |
Then
∫t2t1δWdt=∫t2t1∫l0˜pyδu+˜pzδvdxdt+∫t2t1{(b1u+e1v)δu+(b2u+e2v)δv}|l0dt. | (32) |
where
˜py=2b3u+(e3+b4)v | (33) |
˜pz=(e3+b4)u+2e4v | (34) |
Inserting variation of potential energy (27) and (30), variation of kinetic energy (24) and variation of external work equation (32) into the extended Hamilton's principle (22), collecting the terms associated with the same variations, invoking the stationarity of the functional within the time interval
utt+(a6uxx−a3vxx)xx−a52((u2x+v2x)ux)x −ω2(R(x)ux)x−ω2u−¯p1+ωt(R0+x)=0, | (35) |
vtt+(a4vxx−a3uxx)xx−a52((u2x+v2x)vx)x−ω2(R(x)vx)x−¯p2=0, | (36) |
where
¯p1=˜pyρˉA, ¯p2=˜pzρˉA. | (37) |
The following two types of boundary conditions are generated due to the different design of engine blades.
u,ux=0,v,vx=0,x=0, | (38) |
u,ux=0,v,vx=0,x=l. | (39) |
and
u,ux=0,v,vx=0,x=0, | (40) |
a6uxx−a3vxx=0,x=l, | (41) |
a4vxx−a3uxx=0,x=l, | (42) |
a52(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l, | (43) |
a52(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l. | (44) |
The conditions (38)-(39) represent C-C boundary condition. The conditions (40)-(44) represent C-F boundary condition. Now we study the well-posedness and regularity of the solution for C-C and C-F blades.
We write
H20={ψ∈H2(Ω)|ψ(x)=0,ψx(x)=0,x∈∂Ω},H2f={ψ∈H2(Ω)|ψ(0)=0,ψx(0)=0,x=0}. |
We list Gagliardo-Nirenberg inequality for bounded domains (see [23]) to be used in the subsequent sections
Lemma 3.1. Let
1p−jn=α(1r−mn)+(1−α)1q,jm≤α≤1 |
Then
‖Djf‖Lp(Ω)≤C1‖Dmf‖αLr(Ω)‖f‖1−αLq(Ω)+C2‖f‖Ls(Ω) |
where
Now, we give the Aubin-Lions Lemma (see [22]).
Lemma 3.2. Suppose
(i)
(ii)
(iii)
then
Without loss of generality, we assume
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0on∂Ω×[0,T],u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (45) |
where
p1=¯p1+ω2u−ωt(R0+x), p2=¯p2. | (46) |
Definition 4.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (45) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0. | (47) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0. | (48) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. | (49) |
Remark 1. From the definition, we know
Remark 2. By the product Minkowshi inequality, we can obtain:
a4a6−a23>0,x∈Ω. | (50) |
Theorem 4.2. (Existence for weak solution of (45)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H20(Ω),u1,v1∈L2(Ω). | (51) |
there exists a weak solution of (45).
We now briefly outline the proof of Theorem 4.2 in the following:
Step 1. employing Galerkin's method to construct solutions of certain finite-dimensional approximations to (45) (correspond to Lemma 6.1 in chapter 6);
Step 2. using the energy method to find the uniform estimates of the finite-dimensional approximations solutions (correspond to Lemma 6.2 in chapter 6);
Step 3. using compactness method to obtain the weak solutions of (45).
Now we give the smoothness of weak solutions of (45).
Theorem 4.3. (Improved regularity) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0∈H20(Ω)∩H4(Ω),v0∈H20(Ω)∩H4(Ω),u1∈H20(Ω),v1∈H20(Ω), | (52) |
the weak solution of (45) satisfies
ut,vt∈L∞(0,T;H20(Ω)),utt,vtt∈L∞(0,T;L2(Ω)). | (53) |
Theorem 4.4. (Interior regularity) Under the condition (52), for any
φuxxx,φvxxx∈L∞(0,T;L2(Ω)). |
Remark 3. Multiplying the first and second equation of (45) by
uxxxx,vxxxx∈L∞(0,T;L2(Ω′)). |
where
If the pre-twist angle
Theorem 4.5. (Improved regularity when
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Now, we study the uniqueness and stability of (45), denote operator
π:{a3,a4,a6,ω,θ,u0,v0,u1,v1}→{u,v}, |
and
W(Q)={ψ|ψ∈L∞(0,T;H20(Ω)),ψt∈L∞(0,T;L2(Ω))} |
with the norm
||ψ||W(Q)=||ψ||L∞(0,T;H20(Ω))+||ψt||L∞(0,T;L2(Ω)). |
Then
Theorem 4.6. Undering the condition (52),
π:{(L∞(Ω))3×W1,1(0,T)∩C1(0,T)×L1(Ω)×(H20(Ω))2×(L2(Ω))2}→(W(Q))2 |
is continuous.
The initial boundary-value problems of C-F blades are rewritten as :
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0,x=0,a6uxx−a3vxx=0,x=l,a4vxx−a3uxx=0,x=l,12(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l,12(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l,u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (54) |
Definition 5.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (54) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)−(b1u(l)+e1v(l))φ(l)=0. | (55) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)−(b2u(l)+e2v(l))φ(l)=0. | (56) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. |
Similar as above, we derive the following conclusion of the initial boundary value problem (54).
Theorem 5.2. (Existence for the weak solutions of (54)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H2f(Ω),u1,v1∈L2(Ω), | (57) |
there exists a weak solution of (54).
Theorem 5.3. (Regularity weak solution of (54)) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0,v0∈H2f(Ω)∩H4(Ω),u1,v1∈H2f(Ω). | (58) |
Then there exists
ut,vt∈L∞(0,T∗;H2f(Ω)),utt,vtt∈L∞(0,T∗;L2(Ω)). | (59) |
Remark 4. If pre-twist angle
u,v∈L∞(0,T∗;H4(Ω)∪H2f(Ω)). | (60) |
where
We construct weak solution of the initial boundary-value problem (45) by first solving a finite dimensional approximation. We thus employ Galerkin's method by selecting smooth functions
{φk}∞k=1is an orthogonal basis ofH20(Ω), | (61) |
and
{φk}∞k=1is an orthonormal basis ofL2(Ω). | (62) |
Fix a positive integer
um=m∑k=1dk0m(t)φk, vm=m∑k=1dk1m(t)φk, | (63) |
where we intend to select the coefficients
dk0m(0)=(u0,φk),dk1m(0)=(v0,φk),k=1,⋯,m, | (64) |
dk0m,t(0)=(u1,φk),dk1m,t(0)=(v1,φk),k=1,⋯,m, | (65) |
and
(um,tt,φk)+(a6um,xx,φk,xx)−(a3vm,xx,φk,xx)+12((u2m,x+v2m,x)um,x,φk,x)+ω2(Rum,x,φk,x)−(p1m,φk)=0, | (66) |
(vm,tt,φk)−(a3um,xx,φk,xx)+(a4vm,xx,φk,xx)+12((u2m,x+v2m,x)vm,x,φk,x)+ω2(Rvm,x,φk,x)−(p2m,φk)=0. | (67) |
where
p1m=1ρˉA(2b3um+(e3+b4)vm)+ω2um−ωt(R0+x),p2m=1ρˉA((e3+b4)um+2e4vm). |
In order to proof Theorem 4.2, we need the following Lemma.
Lemma 6.1. Under the condition (51), for each integer
Proof. Assuming
dk0m,tt+m∑j=1dj0m(a6φj,xx,φk,xx)−m∑j=1dj1m(a3φj,xx,φk,xx)+12m∑j=1dj0m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj0m(Rφj,x,φk,x)−1ρˉA(2b3dk0m+(e3+e4)dk1m)=ω2dk0m−ωt((R0+x),φk), | (68) |
dk1m,tt+m∑j=1dj1m(a4φj,xx,φk,xx)−m∑j=1dj0m(a3φj,xx,φk,xx)+12m∑j=1dj1m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj1m(Rφj,x,φk,x)−1ρˉA((e3+e4)dk0m+2e4dk1m)=0. | (69) |
subject to the initial conditions (64), (65). According to standard theory for ODE, there exists unique
We propose now to send
Lemma 6.2. Undering the condition (51), there exists positive constant
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C | (70) |
for
Proof. Multiplying equality (66) by
(um,tt,um,t)+(a6um,xx,um,txx)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω2(Rum,x,um,tx)−(p1m,um,t)=0 | (71) |
for a.e.
Multiplying equality (67) by
(vm,tt,vm,t)−(a3um,xx,vm,txx)+(a4vm,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω2(Rvm,x,vm,tx)−(p2m,vm,t)=0 | (72) |
for a.e.
To simplify the equation (71) and (72), we can get
12ddt‖um,t‖2L2(Ω)+12ddt‖√a6um,xx‖2L2(Ω)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω22ddt‖√Rum,x‖2L2(Ω)−(p1m,um,t)=0. | (73) |
12ddt‖vm,t‖2L2(Ω)+12ddt‖√a4vm,xx‖2L2(Ω)−(a3um,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω22ddt‖√Rvm,x‖2L2(Ω)−(p2m,vm,t)=0. | (74) |
Summing the equations (73) and (74), we discover
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t). | (75) |
Since
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)≤C(||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H10(Ω)+||vm||2H10(Ω))+C. | (76) |
where we used Young inequality.
Integrating (76) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L1(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+14||u2m,x+v2m,x||2L2(Ω)≤C(Ω,T){||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H2(Ω)+||v0m||2H2(Ω)}+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H10(Ω)+||vm||2H10(Ω)+C. | (77) |
Thanks to (50), there exists a constant
||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L(Ω)≥C(||um||2H20(Ω)+||vm||2H20(Ω)). | (78) |
Substituting (78) into the inequality (77), By using Poincaré inequality, we find
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω) ≤C(||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H20(Ω)+||v0m||2H20(Ω))+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H20(Ω)+||vm||2H20(Ω)+C. | (79) |
Then, by using Gronwall inequality, we obtain
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(0)||2H20(Ω)+||vm(0)||2H20(Ω))+C≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C |
for
Remark 5. From the Energy estimates, we can obtain:
Thanks to Lemma 6.1 and Lemma 6.2, we can obtain the existence for the weak solutions of the initial boundary value problem (45).
Proof. (ⅰ) According to the energy estimates (70), we see that
{um}∞m=1,{vm}∞m=1isboundedinL∞(0,T;H20(Ω)); | (80) |
{um,t}∞m=1,{vm,t}∞m=1isboundedinL∞(0,T;L2(Ω)); | (81) |
{um,tt}∞m=1,{vm,tt}∞m=1isboundedinL∞(0,T;H−2(Ω)). | (82) |
As a consequence there exists subsequence
{uμ→u,vμ→vweakly∗in L∞(0,T;H20(Ω))uμ,t→ut,vμ,t→vtweakly∗in L∞(0,T;L2(Ω))uμ,tt→utt,vμ,tt→vttweakly∗in L∞(0,T;H−2(Ω)). | (83) |
(ⅱ) By Gagliardo-Nirenberg inequality, we can see
||uμ,x||L∞(Q)≤C||uμ,xx||L∞(0,T;L2(Ω))≤C. | (84) |
Otherwise,
||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤||uμ,x||2L∞(0,T;L4(Ω))+||vμ,x||2L∞(0,T;L4(Ω))≤C||uμ||2L∞(0,T;H20(Ω))+c||vμ||2L∞(0,T;H20(Ω))≤C. | (85) |
Combining (84) and (85), we discover
||(u2μ,x+v2μ,x)uμ,x||L∞(0,T;L2(Ω))≤C||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤C. | (86) |
Moreover, there exists a function
(u2μ,x+v2μ,x)uμ,x→χ weakly * in L∞(0,T;L2(Ω)). | (87) |
By Lemma 3.2, we can find
uμ→u,vμ→v strongly in L2(0,T;H10(Ω)). | (88) |
And so
uμ,x→ux,vμ,x→vx strongly in L2(Q), | (89) |
Thus
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux. | (90) |
Combining (87) and (90), we can obtain
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux weakly in L2(Q), | (91) |
where we used the Lemma 1.3 of Chapter 1 in [22]. Furthermore, we have
Meanwhile,
((u2μ,x+v2μ,x)uμ,x,φk,x)→((u2x+v2x)ux,φk,x) weakly * in L∞(0,T). | (92) |
In the same way,
((u2μ,x+v2μ,x)vμ,x,φk,x)→((u2x+v2x)vx,φk,x) weakly * in L∞(0,T). | (93) |
Next fix an integer
(uμ,tt,φk)+(a6uμ,xx,φk,xx)−(a3vμ,xx,φk,xx)+12((u2μ,x+v2μ,x)uμ,x,φk,x)−ω2(Ruμ,x,φk,x)−(p1μ,φk)=0. | (94) |
Thanks to (83), we can get
{(uμ,tt,φk)→(utt,φk)weakly∗inL∞(0,T),(a6uμ,xx,φk,xx)→(a6uxx,φk,xx)weakly∗inL∞(0,T),(a3vμ,xx,φk,xx)→(a3vxx,φk,xx)weakly∗inL∞(0,T),(p1μ,φk)→(p1,φk)weakly∗inL∞(0,T). | (95) |
From (92) and (95), we can discover
+v2x)ux,φk,x)+ω2(Rux,φk,x)−(p1,φk)=0 | (96) |
for all fixed
Note
{φk}∞k=1 isanorthogonalbasisofH20(Ω), |
then,
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0 | (97) |
for arbitrary
In the same way,
(vtt,φ)+(a4vxx,φxx)−(a3uxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0 | (98) |
for arbitrary
Synthesizes the above analysis, there exists
u,v∈L∞(0,T;H20(Ω)),ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)). |
(ⅲ) Now let's prove the initial conditions.
Since,
uμ(x,0)→u(x,0) weakly inL2(Ω). | (99) |
Otherwise,
um(x,0)→u0(x) in H20(Ω). | (100) |
Combining identities (99) and (100), we can get
u(x,0)=u0(x). |
Next, according to (83), we can obtain
(uμ,t,φk)→(ut,φk) weakly * in L∞(0,T), |
(uμ,tt,φk)→(utt,φk) weakly * in L∞(0,T). |
Then, we can discover
(uμ,t(x,0),φk)→(ut,φk)|t=0=(ut(x,0),φk). | (101) |
Otherwise,
(um,t(x,0),φk)→(u1(x),φk), | (102) |
Comparing identities (101) and (102), we can get
(ut(x,0),φk)=(u1(x),φk), for arbitrary k. |
So
ut(x,0)=u1(x). |
In the same way, we can obtain
v(x,0)=v0(x),vt(x,0)=v1(x). |
Proof. Differentiating the first equation of (45) with respect to
(uttt,utt)+((a6utxx)xx,utt)−((a3vtxx)xx,utt)−12(((u2x+v2x)utx)x,utt)−((u2xutx)x,utt)−((uxvxvtx)x,utt)−2ωωt((Rux)x,utt)−ω2((Rutx)x,utt)−(p1,t,utt)=0. | (103) |
Differentiating the second equation of (45) with respect to
(vttt,vtt)+((a4vtxx)xx,vtt)−((a3utxx)xx,vtt)−12(((u2x+v2x)vtx)x,vtt)−((v2xvtx)x,vtt)−((uxvxutx)x,vtt)−2ωωt((Rvx)x,vtt)−ω2((Rvtx)x,vtt)−(p2,t,vtt)=0. | (104) |
Summing the equation (103) and (104), we discover after integrating by parts:
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L1(Ω)+ω22ddt||√R(x)utx||2L2(Ω)+ω22ddt||√R(x)vtx||2L2(Ω)=12((u2x+v2x)utxx,utt)+(u2xutxx,utt)+(uxvxvtxx,utt)+12((u2x+v2x)vtxx,vtt)+(v2xvtxx,vtt)+(uxvxutxx,vtt)+3(uxuxxutx,utt)+(vxvxxutx,utt)+(uxxvxvtx,utt)+(uxvxxvtx,utt)+(uxuxxvtx,vtt)+3(vxvxxvtx,vtt)+(uxxvxutx,vtt)+(uxvxxutx,vtt)+2ωωt((Rxux,utt)+(Ruxx,utt)+(Rxvx,vtt)+(Rvxx,vtt))+(p1,t,utt)+(p2,t,vtt). | (105) |
Obviously, by Young inequality and Hölder inequality, we have
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L(Ω)+ddt[ω22(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))]≤C(||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)+1). | (106) |
Next integrate (106) with respect to
||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))≤C∫t0||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)dt+||utt(x,0)||2L2(Ω)+||utx(x,0)||2L2(Ω)+||utxx(x,0)||2L2(Ω)+||vtt(x,0)||2L2(Ω)+||vtx(x,0)||2L2(Ω)+||vtxx(x,0)||2L2(Ω)+C. | (107) |
Since
||utxx(x,0)||L2(Ω),||vtxx(x,0)||L2(Ω),||utx(x,0)||L2(Ω),||vtx(x,0)||L2(Ω), | (108) |
are bounded. On the other hand, multiplying the first equation and second equation of (45) by
||utt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C, |
||vtt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C. |
where the condition (52), Young inequality and Poincaré inequality are used.
As before, we have
||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω)≤C∫t0(||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω))dt+C. | (109) |
Applying the Gronwall inequality to (109) gives
ut,vt is bounded in L∞(0,T;H20(Ω)),utt,vtt is bounded in L∞(0,T;L2(Ω)). | (110) |
Moreover, the weak solutions of (45) satisfies
ut∈L∞(0,T;H20(Ω)), |
vt∈L∞(0,T;H20(Ω)), |
utt∈L∞(0,T;L2(Ω)), |
vtt∈L∞(0,T;L2(Ω)). |
Proof. Multiplying the first equation and the second equation of (45) by
(utt,−φ2utxx)+(vtt,−φ2vtxx)+((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)−ω2((Rux)x,−φ2utxx)−ω2((Rvx)x,−φ2vtxx)−(p1,−φ2utxx)−(p2,−φ2vtxx)=0. | (111) |
Thanks to integration by parts and the properties of
I1+I2+I3+I4+I5=0. | (112) |
where
I1=(utt,−φ2utxx)+(vtt,−φ2vtxx)I2=((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)I3=−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)I4=−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)I5=−(p1,−φ2utxx)−(p2,−φ2vtxx). |
To conclude, we need to estimate each of
I1=12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))+2(φφxutt,utx)+2(φφxvtt,vtx)≥12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))−C | (113) |
For
I2=12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))+(a6,xuxx,φ2utxxx)+(a4,xvxx,φ2vtxxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)+2(a6,xuxx,φφxutxx)+2(a4,xvxx,φφxvtxx)≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−(a6,xuxxx,φ2utxx)−(a4,xvxxx,φ2vtxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)−C≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (114) |
where Lemma 3.1 and (52) are used. Similarly from (114), we deduce
I3=−(a3vxxx,φ2utxxx)−(a3uxxx,φ2vtxxx)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)+(a3,xxvxx,φ2utxx)+(a3,xxuxx,φ2vtxx)+(a3,xvxxx,φφxutxx)+(a3,xuxxx,φφxvtxx)+2(a3,xvxx,φφxutxx)+2(a3,xuxx,φφxvtxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)≥−ddt||a3φ2uxxxvxxx||L1(Ω)−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (115) |
By using Lemma 3.1 and (52), we find
I4=−C||utxx||2L2(Ω)−C||vtxx||2L2(Ω)−C||uxx||2L2(Ω)−c||vxx||2L2(Ω)≥−C | (116) |
I5=−C(||ut||2H20(Ω)+||vt|2H20(Ω)+||u||2H20(Ω)+||v||2H20(Ω))−C≥−C | (117) |
Putting (113)-(117) into (112), this yields
12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω) −2||a3φ2uxxxvxxx||L1(Ω))≤C(||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω))+C | (118) |
Integrating with respect to
||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω) |
≤C∫t0||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)dt+C(||u1||2H1(Ω)+||v1||2H1(Ω)+||u0||2H3(Ω)+||v0||2H3(Ω))+C | (119) |
Thanks to the Gronwall inequality, we deduce
||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)≤C | (120) |
Proof. Utilizing to the first and second equations of (45), we can deduce
((a6a4−a23)uxxxx,uxxxx)=(−a4utt−a3vtt+ω2(R(a4ux+a3vx))x,uxxxx)+12(((u2x+v2x)(a4ux+a3vx))x,uxxxx)+((a4p1+a3p2),uxxxx). | (121) |
Thanks to (50) and Hölder inequality, we see that
||uxxxx||L2(Ω)≤C(||utt+vtt+ut+vt||L2(Ω)+||u+v||H20(Ω))≤C. | (122) |
Furthermore,
||uxxx||L2(Ω)≤C||uxxxx||47L2(Ω)||u||37L2(Ω)+C||u||L2(Ω)≤C, | (123) |
where Gagliardo-Nirenberg inequality for bounded domains is used. Similarly, we deduce
||vxxx||L2(Ω)≤C,||vxxxx||L2(Ω)≤C. | (124) |
Combining with the conclusions in Theorem (4.2) and Theorem (4.3), we can find that
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Proof. Denote
{˜u,˜v}=π({˜a3,˜a4,˜a6,˜ω,˜θ,˜u0,˜v0,˜u1,˜v1}), |
η=u−˜u, ζ=v−˜v. |
Then
12ddt(||ηt||2L2(Ω)+||ζt||2L2(Ω)+||√a6ηxx||2L2(Ω) +||√a4ζxx||2L2(Ω)−2||a3ηxxζxx||L(Ω))=12(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)+12(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)+ω2(((R(x)ηx)x,ηt)+((R(x)ζx)x,ζt))+ω2(η,ηt)+(¯p1,ηt)+(¯p2,ζt) |
−((a6−˜a6)˜uxx,ηtxx)−((a4−˜a4)˜vxx,ζtxx)+((a3−˜a3)˜vxx,ηtxx)+((a3−˜a3)˜uxx,ζtxx)−(ω2−˜ω2)(R˜ux,ηtx)−(ω2−˜ω2)(R˜vx,ζtx)+(ω2−˜ω2)(˜u,ηt)+(ωt−˜ωt)(R0+x,ηt). | (125) |
In equation (125), the nonlinear term satisfies
((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x=((u2x+v2x)ηx)x+((u2x+v2x−˜u2x−˜v2x)˜ux)x=((u2x+v2x)ηx)x+(((ux+˜ux)ηx+(vx+˜vx)ζx)˜ux)x=2(uxuxx+vxvxx)ηx+(u2x+v2x)ηxx+((ux+˜ux)ηxx+(vx+˜vx)ζxx)˜ux+((uxx+˜uxx)ηx+(vxx+˜vxx)ζx)˜ux+((ux+˜ux)ηx+(vx+˜vx)ζx)˜uxx. | (126) |
By Hölder inequality and Sobolev inequality, we can obtain
(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)≤C||uxx+vxx||L2(Ω)||ηx||L∞(Ω)||ηt||L2(Ω)+C||ηxx||L2(Ω)||ηt||L2(Ω)+||ηxx+(||uxx+˜uxx||L2(Ω)||ηx||L∞(Ω)+||vxx+˜vxx||L2(Ω)||ζx||L∞(Ω))||ηt||L2(Ω)+(|ηx||L∞(Ω)+||ζx||L∞(Ω))||˜uxx||L2(Ω)||ηt||L2(Ω)+ζxx||L2(Ω)||ηt||L2(Ω)≤C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||ζ||H20(Ω)||ηt||L2(Ω)≤C(||ηt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (127) |
In the same way, we have
(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)≤C(||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (128) |
On the other hand, we easily have
(¯p1,ηt)+(¯p2,ζt)≤C(||θ−˜θ||L1(Ω)+||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H10(Ω)+||ζ||2H10(Ω)). | (129) |
Substituting (127)-(129) into (125), we deduce
||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)≤C∫t0||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)dt+||u1−˜u1||2L2(Ω)+||v1−˜v1||2L2(Ω)+||u0−˜u0||2H20(Ω)+||v0−˜v0||2H20(Ω)+C(5∑i=3||ai−˜ai||L∞(Ω)+||θ−˜θ||L1(Ω)+||ω−˜ω||W1,1(0,T)). | (130) |
where we used the inequalities
||˜u||L∞(Q)≤C,||˜ux||L∞(Q)≤C,||˜v||L∞(Q)≤C,||˜vx||L∞(Q)≤C,||˜uxx||L∞(0,T,L2(Ω))≤C,||˜vxx||L∞(0,T,L2(Ω))≤C,||ηtx||L∞(Q)≤C,||ζtx||L∞(Q)≤C, |
which are deduced from Theorem 4.2 and Theorem 4.3.
Proof. Assume
{˜φk}∞k=1is an orthogonal basis ofH2f(Ω), | (131) |
and
{˜φk}∞k=1is an orthonormal basis ofL2(Ω). | (132) |
Fix a positive integer
um=m∑k=1˜dk0m(t)˜φk, vm=m∑k=1˜dk1m(t)˜φk, | (133) |
where we intend to select the coefficients
˜dk0m(0)=(u0,˜φk),˜dk1m(0)=(v0,˜φk),k=1,⋯,m, | (134) |
˜dk0m,t(0)=(u1,˜φk),˜dk1m,t(0)=(v1,˜φk),k=1,⋯,m, | (135) |
and
(um,tt,˜φk)+(a6um,xx,˜φk,xx)−(a3vm,xx,˜φk,xx)+12((u2m,x+v2m,x)um,x,˜φk,x)+ω2(Rum,x,˜φk,x)−(p1m,˜φk)−(b1um(l)+e1vm(l))˜φ(l)=0, | (136) |
(vm,tt,˜φk)−(a3um,xx,˜φk,xx)+(a4vm,xx,˜φk,xx)+12((u2m,x+v2m,x)vm,x,˜φk,x)+ω2(Rvm,x,˜φk,x)−(p2m,˜φk)−(b2um(l)+e2vm(l))˜φ(l)=0. | (137) |
As in earlier treatments of C-C boundary condition, we can conclude the following two conclude without difficulty.
(ⅰ) For each integer
(ⅱ)
Then, we proof the following estimate
‖um,t‖2L2(Ω)+‖vm,t‖2L2(Ω)+‖um‖2H2f(Ω)+‖vm‖2H2f(Ω)≤C(‖u1‖2L2(Ω)+‖v1‖2L2(Ω)+‖u0‖2H2f(Ω)+‖v0‖2H2f(Ω))+C | (138) |
Similarly from (75), we can deduce
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)−12ddt{b1u2m(l)+e2v2m(l)+2e1um(l)vm(l)}=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t), | (139) |
where
Then we integrate (139) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H2f(Ω)+||vm||2H2f(Ω)−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(t)||2H2f(Ω)+||vm(t)||2H2f(Ω))−b1u20m(l)−e2v20m(l)−2e1u0m(l)v0m(l)+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H2f(Ω)+||vm||2H2f(Ω)+C. | (140) |
By simple calculation, we deduce
−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≥0. | (141) |
where
On the other hand, according to
u0m(x),v0m(x)∈C(¯Ω). |
Thus,
u0m(l),v0m(l)≤C. | (142) |
Substituting (141) and (142) into (140), applying Gronwall inequality, we can deduce (138).
Now we pass to limits in our Galerkin approximations, applying estimate (138), we can discover (92), (93), (95). In order to complete the proof of the theorem, we just have to proof
uμ(l)→u(l),vμ(l)→v(l), strongly in L∞(0,T). | (143) |
where
To verify this, recalling (138), we observe that
uμ→u,vμ→v strongly in C(0,T;H1f(Ω)) | (144) |
where the Corollary 4 of Chapter 8 in [30] is used.
Furthermore, thanks to the conditions
||uμ(l)−u(l)||L∞(0,T)=||(uμ(l)−u(l))−(uμ(0)−u(0))||L∞(0,T)=||∫l0(uμ(x)−u(x))xdx||L∞(0,T)≤√l||(uμ(x)−u(x))x||L∞(0,T;L2(Ω))≤√l||uμ(x)−u(x)||L∞(0,T;H1f(Ω)) | (145) |
Thanks to (144), we can deduce
uμ(l)→u(l) strongly in L∞(0,T), |
Similarly, we have
vμ(l)→v(l) strongly in L∞(0,T). |
Proof. Similarly as (105), we can get
12ddtE+12P1+P2=P3. | (146) |
where
E=||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2||√R(x)utx||2L2(Ω)+ω2||√R(x)vtx||2L2(Ω) |
P1=(((u2x+v2x)ux)t,uttx)+(((u2x+v2x)vx)t,vttx)P2=−(b1u(l)+e1v(l))tutt(l)−(b2u(l)+e2v(l))tvtt(l)P3=2ωωt(((Rux)x,utt)+((Rvx)x,vtt))+||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))+(p1,t,utt)+(p2,t,vtt) |
By calculation, we can deduce
P1=12ddt{||√u2x+v2xutx||2L2(Ω)+||√u2x+v2xvtx||2L2(Ω)+2||uxutx||2L2(Ω) +2||vxvtx||2L2(Ω)+4||uxvxutxvtx||L1(Ω)} −3∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdx | (147) |
P2=−12ddt{b1u2t(l)+e2v2t(l)+2e1ut(l)vt(l)} | (148) |
P3≤||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω) +||utx||2L2(Ω)+||vtx||2L2(Ω) | (149) |
Substituting (147), (148) and (149) into (146), we get
12ddt{E+||√u2x+v2xutx||2L2(Ω)+||√u2x+v2xvtx||2L2(Ω)+2||uxutx||2L2(Ω) +2||vxvtx||2L2(Ω)+4||uxvxutxvtx||L1(Ω) −(b1u2t(l)+e2v2t(l)+2e1ut(l)vt(l))}≤||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω)+||utx||2L2(Ω)+||vtx||2L2(Ω) +3∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdx | (150) |
Then integrate (150) with respect to
E≤∫t0||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω) +||utx||2L2(Ω)+||vtx||2L2(Ω)dt +3∫t0∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdxdt +||utt(x,0)||2L2(Ω)+||u1||2H2f(Ω)+||vtt(x,0)||2L2(Ω)+||v1||2H2f(Ω). |
where
−b1u2t(l)−e2v2t(l)−2e1ut(l)vt(l)≥0 |
and
||uxutx||2L2(Ω)+||vxvtx||2L2(Ω)+2||uxvxutxvtx||L1(Ω)≥0. |
are used.
Similarly as (108), we discover
||utt(x,0)||L2(Ω),||vtt(x,0)||L2(Ω)≤c. | (151) |
According to (151), we get
E≤c∫t0||utt||2L2(Ω)+||vtt||2L2(Ω)+||utxx||2L2(Ω)+||vtxx||2L2(Ω)dt+3∫t0∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdxdt+c. |
By Hölder inequality and Sobolev inequality, we have
E≤c∫t0{||utt||2L2(Ω)+||utxx||2L2(Ω)+||utxx||3L2(Ω)+||utxx||4L2(Ω)||vtt||2L2(Ω)+||vtxx||2L2(Ω)+||vtxx||3L2(Ω)+||vtxx||4L2(Ω)}dt+c. | (152) |
Then, we obtain Theorem 5.3 by Gronwall inequality.
[1] |
Ahmad KS, Naqvi SN, Jaffri SB (2021) Systematic review elucidating the generations and classifications of solar cells contributing towards environmental sustainability integration. Rev Inorg Chem 41: 21-39. https://doi.org/10.1515/revic-2020-0009 doi: 10.1515/revic-2020-0009
![]() |
[2] |
Sathiyan G, Siva G, Sivakumar EKT, et al. (2018) Synthesis and studies of carbazole-based donor polymer for organic solar cell applications. Colloid Polym Sci 296: 1193-1203. https://doi.org/10.1007/s00396-018-4337-4 doi: 10.1007/s00396-018-4337-4
![]() |
[3] |
Cui Y, Yao H, Gao B, et al. (2017) Fine-Tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J Am Chem Soc 139: 7302-7309. https://doi.org/10.1021/jacs.7b01493 doi: 10.1021/jacs.7b01493
![]() |
[4] |
Mutlu A, Can M, Tozlu C (2019) Performance improvement of organic solar cell via incorporation of donor type self-assembled interfacial monolayer. Thin Solid Films 685: 88-96. https://doi.org/10.1016/j.tsf.2019.05.064 doi: 10.1016/j.tsf.2019.05.064
![]() |
[5] |
Freudenberg J, Jänsch D, Hinkel F, et al. (2018) Immobilization strategies for organic semiconducting conjugated polymers. Chem Rev 118: 5598-5689. https://doi.org/10.1021/acs.chemrev.8b00063 doi: 10.1021/acs.chemrev.8b00063
![]() |
[6] |
Ragoussia M-E, Torres T (2015) New generation solar cells: Concepts, trends and perspectives. Chem Commun 51: 3957-3972. https://doi.org/10.1039/C4CC09888A doi: 10.1039/C4CC09888A
![]() |
[7] |
Majumder C, Rai A, Bose C (2018) Performance optimization of bulk heterojunction organic solar cell. Optik 157: 924-929. https://doi.org/10.1016/j.ijleo.2017.11.114 doi: 10.1016/j.ijleo.2017.11.114
![]() |
[8] |
Chen S, Yang S, Sun H, et al. (2017) Enhanced interfacial electron transfer of inverted perovskite solar cells by introduction of CoSe into the electron-transporting-layer. J Power Sources 353: 123-130. https://doi.org/10.1016/j.jpowsour.2017.03.144 doi: 10.1016/j.jpowsour.2017.03.144
![]() |
[9] |
Mabindisa R, Tambwe K, Mciteka L, et al. (2021) Organic nanostructured materials for sustainable application in next generation solar cells. Appl Sci 11: 11324. https://doi.org/10.3390/app112311324 doi: 10.3390/app112311324
![]() |
[10] |
Oh Kwon K, Uddin MA, Park J-H, et al. (2016) A high efficiency nonfullerene organic solar cell with optimized crystalline organizations. Adv Mater 28: 910-916. https://doi.org/10.1002/adma.201504091 doi: 10.1002/adma.201504091
![]() |
[11] |
Li Z, Zhu C, Yuan J, et al. (2022) Optimizing side chains on different nitrogen aromatic rings achieving 17% efficiency for organic photovoltaics. J Energy Chem 65: 173-178. https://doi.org/10.1016/j.jechem.2021.05.041 doi: 10.1016/j.jechem.2021.05.041
![]() |
[12] |
Wibowo FTA, Krishna NV, Sinaga S, et al. (2021) High-efficiency organic solar cells prepared using a halogen-free solution process. Cell Rep Phys Sci 2: 100517. https://doi.org/10.1016/j.xcrp.2021.100517 doi: 10.1016/j.xcrp.2021.100517
![]() |
[13] |
Bi P, Zhang S, Chen Z, et al. (2021) Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5: 2408-2419. https://doi.org/10.1016/j.joule.2021.06.020 doi: 10.1016/j.joule.2021.06.020
![]() |
[14] |
Distler A, Brabec CJ, Egelhaaf H-J (2021) Organic photovoltaic modules with new world record efficiencies. Prog Photovoltaics: Res Appl 29: 24-31. https://doi.org/10.1002/pip.3336 doi: 10.1002/pip.3336
![]() |
[15] |
Ma L, Zhang S, Wang J, et al. (2020) Recent advances in non-fullerene organic solar cells: from lab to fab. Chem Commun 56: 14337. https://doi.org/10.1039/D0CC05528J doi: 10.1039/D0CC05528J
![]() |
[16] |
Yao C, Zhao J, Zhu Y, et al. (2020) Trifluoromethyl Group-Modified Non-Fullerene acceptor toward improved power conversion efficiency over 13% in polymer solar cells. ACS Appl Mater Interfaces 12: 11543-11550. https://doi.org/10.1021/acsami.9b20544 doi: 10.1021/acsami.9b20544
![]() |
[17] |
Yang Y (2021) The original design principles of the Y-Series nonfullerene acceptors, from Y1 to Y6. ACS Nano 15: 18679-18682. https://doi.org/10.1021/acsnano.1c10365 doi: 10.1021/acsnano.1c10365
![]() |
[18] |
Wagenpfahl A (2017) Mobility dependent recombination models for organic solar cells. J Phys: Condens Matter 29: 373001. https://doi.org/10.1088/1361-648X/aa7952 doi: 10.1088/1361-648X/aa7952
![]() |
[19] |
Xu B, Zheng Z, Zhao K, et al. (2016) A bifunctional interlayer material for modifying both the anode and cathode in highly efficient polymer solar cells. Adv Mater 28: 434-439. https://doi.org/10.1002/adma.201502989 doi: 10.1002/adma.201502989
![]() |
[20] |
Zheng Z, Hu Q, Zhang S, et al. (2018) A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv Mater 30: 1-9. https://doi.org/10.1002/adma.201801801 doi: 10.1002/adma.201801801
![]() |
[21] |
Doat O, Barboza BH, Batagin-Neto A, et al. (2021) Review: materials and modeling for organic photovoltaic devices. Polym Int 71: 6-25. https://doi.org/10.1002/pi.6280 doi: 10.1002/pi.6280
![]() |
[22] |
Zhao Y, Zhu Y, Cheng H-W, et al. (2021) A review on semitransparent solar cells for agricultural application. Mater Today Energy 22: 100852. https://doi.org/10.1016/j.mtener.2021.100852 doi: 10.1016/j.mtener.2021.100852
![]() |
[23] |
Bi P, Zhang S, Chen Z, et al. (2021) Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 5: 2408-2419. https://doi.org/10.1016/j.joule.2021.06.020 doi: 10.1016/j.joule.2021.06.020
![]() |
[24] |
Zuo L, Shi X, Jo SB, et al. (2018) Tackling energy loss for high‐efficiency organic solar cells with integrated multiple strategies. Adv Mater 30: 1706816. https://doi.org/10.1002/adma.201706816 doi: 10.1002/adma.201706816
![]() |
[25] |
Wilken S, Scheunemann D, Dahlström S, et al. (2021) How to reduce charge recombination in organic solar cells: There are still lessons to learn from P3HT:PCBM. Adv Electron Mater 7: 2001056. https://doi.org/10.1002/aelm.202001056 doi: 10.1002/aelm.202001056
![]() |
[26] |
Nakano K, Terado K, Kaji Y, et al. (2021) Reduction of electric current loss by Aggregation-Induced molecular alignment of a Non-Fullerene acceptor in organic photovoltaics. ACS Appl Mater Interfaces 13: 60299-60305. https://doi.org/10.1021/acsami.1c19275 doi: 10.1021/acsami.1c19275
![]() |
[27] |
Pugliese SN, Gallaher JK, Uddin MA, et al. (2022) Spectroscopic comparison of charge dynamics in fullerene and non-fullerene acceptor-based organic photovoltaic cells. J Mater Chem C. https://doi.org/10.1039/D1TC04800G doi: 10.1039/D1TC04800G
![]() |
[28] |
Zhao F, Zhang H, Zhang R, et al. (2020) Emerging approaches in enhancing the efficiency and stability in Non‐Fullerene organic solar cells. Adv Energy Mater 10: 2002746. https://doi.org/10.1002/aenm.202002746 doi: 10.1002/aenm.202002746
![]() |
[29] |
Zhu L, Zhang M, Zhong W, et al. (2021) Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy Environ Sci 1: 4341-4357. https://doi.org/10.1039/D1EE01220G doi: 10.1039/D1EE01220G
![]() |
[30] |
Lin Y, Zhao F, Wu Y, et al. (2016) Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater 29: 1604155. https://doi.org/10.1002/adma.201604155 doi: 10.1002/adma.201604155
![]() |
[31] |
Chung HY, Park J-H, Cui J, et al. (2021) Influence of intramolecular charge-transfer characteristics of excitons on polaron generation at the Donor/Acceptor interface in polymer solar cells. J Phys Chem C 125: 18352-18361. https://doi.org/10.1021/acs.jpcc.1c05524 doi: 10.1021/acs.jpcc.1c05524
![]() |
[32] |
Etxebarria I, Ajuria J, Pacios R (2015) Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org Electron: Phys, Mater, Appl 19: 34-60. https://doi.org/10.1016/j.orgel.2015.01.014 doi: 10.1016/j.orgel.2015.01.014
![]() |
[33] |
Zuo L, Yu J, Shi X, et al. (2017) High-Efficiency nonfullerene organic solar cells with a parallel tandem configuration. Adv Mater 29: 1702547. https://doi.org/10.1002/adma.201702547 doi: 10.1002/adma.201702547
![]() |
[34] |
Zheng NN, Wang ZF, Zhang K, et al. (2019) High-performance inverted polymer solar cells without an electron extraction layer via a one-step coating of cathode buffer and active layer. J Mater Chem A 7: 1429-1434. https://doi.org/10.1039/c8ta09763a doi: 10.1039/c8ta09763a
![]() |
[35] |
Pandey R, Lim JW, Kim JH, et al. (2018) Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Appl Surf Sci 444: 97-104. https://doi.org/10.1016/j.apsusc.2018.03.012 doi: 10.1016/j.apsusc.2018.03.012
![]() |
[36] |
Sun C, Pan F, Bin H, et al. (2018) A low cost and high performance polymer donor material for polymer solar cells. Nature Commun 9: 1-10. https://doi.org/10.1038/s41467-018-03207-x doi: 10.1038/s41467-018-03207-x
![]() |
[37] |
Shen W, Xiao M, Tang J, et al. (2015) Effective regulation of the micro-structure of thick P3HT: PC 71 BM film by the incorporation of ethyl benzenecarboxylate in toluene solution. RSC Adv 5: 47451-47457. https://doi.org/10.1039/C5RA06957B doi: 10.1039/C5RA06957B
![]() |
[38] |
Wang D, Wright M, Elumalai NK, et al. (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147: 255-275. https://doi.org/10.1016/j.solmat.2015.12.025 doi: 10.1016/j.solmat.2015.12.025
![]() |
[39] |
Salem AMS, El-Sheikh SM, Harraz FA, et al. (2017) Inverted polymer solar cell based on MEH-PPV/PC 61 BM coupled with ZnO nanoparticles as electron transport layer. Appl Surf Sci 425: 156-163. https://doi.org/10.1016/j.apsusc.2017.06.322 doi: 10.1016/j.apsusc.2017.06.322
![]() |
[40] |
Ranganathan K, Wamwangi D, Coville NJ (2015) Plasmonic Ag nanoparticle interlayers for organic photovoltaic cells: An investigation of dielectric properties and light trapping. Sol Energy 118: 256-266. https://doi.org/10.1016/j.solener.2015.05.022 doi: 10.1016/j.solener.2015.05.022
![]() |
[41] |
Meyer J, Hamwi S, Kröger M, et al. (2012) Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv Mater 24: 5408-5427. https://doi.org/10.1002/adma.201201630 doi: 10.1002/adma.201201630
![]() |
[42] | Nuramdhani I, Jose M, Samyn P, et al. (2019). Charge-Discharge characteristics of textile energy storage devices having different PEDOT: PSS ratios and conductive yarns configuration. Polymers 11: 345. https://doi.org/10.3390/polym11020345 |
[43] |
Mota IC, Santos BPS, Santos REPD, et al. (2021) Influence of reaction time on properties of regioregular poly(3-hexylthiophene) by the Grignard metathesis polymerization. J Therm Anal Calorim 2021: 1-26. https://doi.org/10.1007/s10973-021-10890-4 doi: 10.1007/s10973-021-10890-4
![]() |
[44] |
Ghosekar IC, Patil GC (2021) Review on performance analysis of P3HT:PCBM based bulk heterojunction organic solar cells. Semicond Sci Technol 36: 045005. https://doi.org/10.1088/1361-6641/abe21b doi: 10.1088/1361-6641/abe21b
![]() |
[45] |
Chen K-W, Lin L-Y, Li Y-H, et al. (2018) Fluorination effects of A-D-A-type small molecules on physical property and the performance of organic solar cell. Org Electron: Phy, Mater, Appl 52: 342-349. https://doi.org/10.1016/j.orgel.2017.11.021 doi: 10.1016/j.orgel.2017.11.021
![]() |
[46] |
Sathiyan G, Thangamuthu R, Sakthivel P (2016) Synthesis of carbazole-based copolymers containing carbazole-thiazolo[5, 4-:D] thiazole groups with different dopants and their fluorescence and electrical conductivity applications. RSC Adv 6: 69196-69205. https://doi.org/10.1039/C6RA08888K doi: 10.1039/C6RA08888K
![]() |
[47] |
Wang C, Liu F, Chen QM, et al. (2021) Benzothiadiazole-based conjugated polymers for organic solar cells. Chin J Polym Sci 39: 525-536. https://doi.org/10.1007/s10118-021-2537-8 doi: 10.1007/s10118-021-2537-8
![]() |
[48] |
Zhong W, Xiao J, Sun S, et al. (2016) Wide bandgap dithienobenzodithiophene-based π-conjugated polymers consisting of fluorinated benzotriazole and benzothiadiazole for polymer solar cells. J Mater Chem C 4: 4719-4727. https://doi.org/10.1039/C6TC00271D doi: 10.1039/C6TC00271D
![]() |
[49] |
Zhao Q, Qu J, He F (2020) Chlorination: An effective strategy for high-performance organic solar cells. Adv Sci 7: 2000509. https://doi.org/10.1002/advs.202000509 doi: 10.1002/advs.202000509
![]() |
[50] |
Chen W, Wu Y, Yue Y, et al. (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350: 944-948. https://doi.org/10.1126/science.aad1015 doi: 10.1126/science.aad1015
![]() |
[51] |
Li M, Gao K, Wan X, et al. (2017) Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nature Photonics 11: 85-90. https://doi.org/10.1038/nphoton.2016.240 doi: 10.1038/nphoton.2016.240
![]() |
[52] |
Jo JW, Jung JW, Jung EH, et al. (2015) Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells. Energy Environ Sci 8: 2427-2434. https://doi.org/10.1039/C5EE00855G doi: 10.1039/C5EE00855G
![]() |
[53] |
Chao P, Johner N, Zhong Xi, et al. (2019) Chlorination strategy on polymer donors toward efficient solar conversions. J Energy Chem 39: 208-216. https://doi.org/10.1016/j.jechem.2019.04.002 doi: 10.1016/j.jechem.2019.04.002
![]() |
[54] |
Zhou J, Zhang B, Geng Y, et al. (2021) Gradual chlorination at different positions of D-π-A copolymers based on benzodithiophene and isoindigo for organic solar cells. Mater Rep: Energy 1: 100065. https://doi.org/10.1016/j.matre.2021.100065. doi: 10.1016/j.matre.2021.100065
![]() |
[55] |
Dai T, Lei P, Zhang B, et al. (2021) Tricyclic or pentacyclic D units: Design of D−π-A-Type copolymers for high VOC organic photovoltaic cells. ACS Appl Mater Interfaces 13: 30756-30765. https://doi.org/10.1021/acsami.1c08487 doi: 10.1021/acsami.1c08487
![]() |
[56] |
Yan T, Bin H, Sun C, et al. (2018) Effect of Thieno[3, 2-b]thiophene π-bridge on photovoltaic performance of a D-A copolymer of alkoxy-benzodithiophene-alt-fluoro-benzotriazole. Org Electron 55: 106-111. https://doi.org/10.1016/j.orgel.2018.01.018 doi: 10.1016/j.orgel.2018.01.018
![]() |
[57] |
Bin H, Xiao L, Liu Y, et al. (2014) Effects of donor unit and p-Bridge on photovoltaic properties of D-A copolymers based on Benzo[1, 2-b:4, 5-c']-dithiophene-4, 8-dione acceptor unit. J Polym Sci Part A: Polym Chem 52: 1929-1940. https://doi.org/10.1002/pola.27209 doi: 10.1002/pola.27209
![]() |
[58] |
Akkuratov AV, Mühlbach S, Susarova DK, et al. (2017) Positive side of disorder: Statistical fluorene-carbazole-TTBTBTT terpolymers show improved optoelectronic and photovoltaic properties compared to the regioregular structures. Sol Energy Mater Sol Cells 160: 346-354. https://doi.org/10.1016/j.solmat.2016.10.039 doi: 10.1016/j.solmat.2016.10.039
![]() |
[59] |
Jiang X, Yang Y, Zhu J, et al. (2017) Constructing D-A copolymers based on thiophene-fused benzotriazole units containing different alkyl side-chains for non-fullerene polymer solar cells. J Mater Chem C 5: 8179-8186. https://doi.org/10.1039/C7TC02098H doi: 10.1039/C7TC02098H
![]() |
[60] |
Zhou P, Yang Y, Chen X, et al. (2017) Design of a thiophene-fused benzotriazole unit as an electron acceptor to build D-A copolymers for polymer solar cells. J Mater Chem C 5: 2951-2957. https://doi.org/10.1039/C7TC00083A doi: 10.1039/C7TC00083A
![]() |
[61] |
Jiang X, Wang J, Yang Y, et al. (2018) Fluorinated Thieno[2', 3':4, 5]benzo[1, 2‑d][1, 2, 3]triazole: New acceptor unit to construct polymer donors. ACS Omega 3: 13894-13901. https://doi.org/10.1021/acsomega.8b02053 doi: 10.1021/acsomega.8b02053
![]() |
[62] |
Chang C, Li W, Guo X, et al. (2018) A narrow-bandgap donor polymer for highly efficient as-cast non-fullerene polymer solar cells with a high open circuit voltage. Org Electron 58: 82-87. https://doi.org/10.1016/j.orgel.2018.04.001 doi: 10.1016/j.orgel.2018.04.001
![]() |
[63] |
Sun C, Pan F, Bin H, et al. (2018) A low cost and high performance polymer donor material for polymer solar cells. Nature Commun 9: 1-10. https://doi.org/10.1038/s41467-018-03207-x doi: 10.1038/s41467-018-03207-x
![]() |
[64] |
Fan B, Zhang D, Li M, et al. (2019) Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem 62: 746-752. https://doi.org/10.1007/s11426-019-9457-5 doi: 10.1007/s11426-019-9457-5
![]() |
[65] |
Xiong J, Jin K, Jiang Y, et al. (2019) Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull 64: 1573-1576. https://doi.org/10.1016/j.scib.2019.10.002 doi: 10.1016/j.scib.2019.10.002
![]() |
[66] |
Liu Q, Jiang Y, Jin K, et al. (2020) 18% Efficiency organic solar cells. Sci Bull 65: 272-275. https://doi.org/10.1016/j.scib.2020.01.001 doi: 10.1016/j.scib.2020.01.001
![]() |
[67] | Matsuo Y, Hatano J, Kuwabara T, et al. (2012) Fullerene acceptor for improving open-circuit voltage in inverted organic photovoltaic devices without accompanying decrease in short-circuit current density. Appl Phys Lett, 100. https://doi.org/10.1063/1.3683469 |
[68] |
Zhao G, He Y, Li Y (2010) 6.5% Efficiency of polymer solar cells based on poly(3‐hexylthiophene) and Indene‐C60 bisadduct by device optimization. Adv Mater 22: 4355-4358. https://doi.org/10.1002/adma.201001339 doi: 10.1002/adma.201001339
![]() |
[69] |
Cai Y, Li Y, Wang R, et al. (2021) A Well-Mixed phase formed by two compatible Non-Fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv Mater 33: 2101733. https://doi.org/10.1002/adma.202101733 doi: 10.1002/adma.202101733
![]() |
[70] |
Li M, Gao K, Wan X, et al. (2017) Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nature Photonics 11: 85-90. https://doi.org/10.1038/nphoton.2016.240 doi: 10.1038/nphoton.2016.240
![]() |
[71] |
Chen X, Kan B, Kan Y, et al. (2020) As-Cast ternary organic solar cells based on an asymmetric Side-Chains featured acceptor with reduced voltage loss and 14.0% efficiency. Adv Funct Mater 30: 1909535. https://doi.org/10.1002/adfm.201909535 doi: 10.1002/adfm.201909535
![]() |
[72] |
Xiao L, Wu X, Ren G, et al. (2021) Highly efficient ternary solar cells with efficient förster resonance energy transfer for simultaneously enhanced photovoltaic parameters. Adv Funct Mater 31: 2105304. https://doi.org/10.1002/adfm.202105304 doi: 10.1002/adfm.202105304
![]() |
[73] |
Sharma R, Lee H, Seifrid M, et al. (2020) Performance enhancement of conjugated polymer-small molecule-non fullerene ternary organic solar cells by tuning recombination kinetics and molecular ordering. Sol Energy 201: 499-507. https://doi.org/10.1016/j.solener.2020.03.008 doi: 10.1016/j.solener.2020.03.008
![]() |
[74] |
Wan J, Zhang L, He Q, et al. (2020) High-Performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv Funct Mater 30: 1909760. https://doi.org/10.1002/adfm.201909760 doi: 10.1002/adfm.201909760
![]() |
[75] |
Liu T, Guo Y, Yi Y, et al. (2016) Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency > 10%. Adv Mater 28: 10008-10015. https://doi.org/10.1002/adma.201602570 doi: 10.1002/adma.201602570
![]() |
[76] |
Kumari T, Lee SM, Yang C (2018) Cubic-Like bimolecular crystal evolution and over 12% efficiency in halogen-free ternary solar cells. Adv Funct Mater 28: 1707278. https://doi.org/10.1002/adfm.201707278 doi: 10.1002/adfm.201707278
![]() |
[77] |
Xie L, Yang C, Zhou R, et al. (2020) Ternary organic solar cells BasedonTwoNon-fullerene acceptors with complimentary absorption and balanced crystallinity. Chin J Chem 38: 935-940. https://doi.org/10.1002/cjoc.201900554 (2020) doi: 10.1002/cjoc.201900554(2020)
![]() |
[78] |
Xu R, Zhang K, Liu X, et al. (2018) Alkali Salt-Doped highly transparent and Thickness-Insensitive Electron-Transport layer for High-Performance polymer solar cell. ACS Appl Mater Interfaces 10: 1939-1947. https://doi.org/10.1021/acsami.7b17076 doi: 10.1021/acsami.7b17076
![]() |
[79] |
Singh A, Dey A, Das D, et al. (2016) Effect of dual cathode buffer layer on the charge carrier dynamics of rrP3HT: PCBM based bulk heterojunction solar cell. ACS Appl Mater Interfaces 8: 10904-10910. https://doi.org/10.1021/acsami.6b03102 doi: 10.1021/acsami.6b03102
![]() |
[80] |
Kageyama H, Kajii H, Ohmori Y, et al. (2011) MoO3 as a cathode buffer layer material for the improvement of planar pn-heterojunction organic solar cell performance. Appl Phys Express 4: 032301. https://doi.org/10.1143/APEX.4.032301 doi: 10.1143/APEX.4.032301
![]() |
[81] |
Sachdeva S, Kaur J, Sharma K, et al. (2018) Performance improvements of organic solar cell using dual cathode buffer layers. Curr Appl Phys 18: 1592-1599. https://doi.org/10.1016/j.cap.2018.10.009 doi: 10.1016/j.cap.2018.10.009
![]() |
[82] |
Yu X, Yu X, Zhang J, et al. (2015) Gradient Al-doped ZnO multi-buffer layers: Effect on the photovoltaic properties of organic solar cells. Mater Lett 161: 624-627. https://doi.org/10.1016/j.matlet.2015.09.017 doi: 10.1016/j.matlet.2015.09.017
![]() |
[83] |
Pandey R, Lim JW, Kim JH, et al. (2018) Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM). Appl Surf Sci 444: 97-104. https://doi.org/10.1016/j.apsusc.2018.03.012 doi: 10.1016/j.apsusc.2018.03.012
![]() |
1. | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen, Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients, 2021, 29, 2688-1594, 3581, 10.3934/era.2021052 | |
2. | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, 2021, 29, 2688-1594, 1709, 10.3934/era.2020088 | |
3. | Guillaume Castera, Juliette Chabassier, Linearly implicit time integration scheme of Lagrangian systems via quadratization of a nonlinear kinetic energy. Application to a rotating flexible piano hammer shank, 2024, 58, 2822-7840, 1881, 10.1051/m2an/2024049 |