Loading [MathJax]/jax/output/SVG/jax.js
Opinion paper

A critical analysis of the Spanish electrical system: risks and opportunities by 2050

  • The Spanish electrical system is now in a position to take advantage of developments from the recent past. Many of its facilities, such as nuclear and coal power stations, have a useful life which will come to an end during the 2020-2030 decade [1] (from 2021 in the case of Vandellós 2, and up to 2028 in the case of Santa María de Garoña). The mankind is currently going through a global environmental crisis which includes greenhouse effect gas emissions as a major component [2]. These are closely linked to the energy system, particularly to electricity generation, and could be a determining factor in the future evolution of such a system. Clearly, such a crisis can potentially lead to serious difficulties in accessing energy for many people. The energy business sector has been undoing its ties to particular territories and has been expanding towards other countries to become more and more dependent on foreign capitals and decision-makers. Now that a stagnant period for electricity demand is being experienced, this does not favor new schemes. However, new proposals should be considered given that many infrastructures will soon be obsolete. In this paper some scenarios are proposed to contemplate the transition of the Spanish electrical system towards an energy model with the year 2050 in mind, where the goal is to lower greenhouse gas emissions [3]. One of the factors to be considered during this period should be the participation of renewable energies. Transport and mobility are also likely to undergo some changes, for similar reasons, and in this time frame they will increasingly be designed to use electricity.

    Citation: Andrés Feijóo, César López, Emilio Menéndez. A critical analysis of the Spanish electrical system: risks and opportunities by 2050[J]. AIMS Energy, 2015, 3(1): 1-12. doi: 10.3934/energy.2015.1.1

    Related Papers:

    [1] Patarawadee Prasertsang, Thongchai Botmart . Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060
    [2] Xi-Ming Fang . General fixed-point method for solving the linear complementarity problem. AIMS Mathematics, 2021, 6(11): 11904-11920. doi: 10.3934/math.2021691
    [3] Huahai Qiu, Li Wan, Zhigang Zhou, Qunjiao Zhang, Qinghua Zhou . Global exponential periodicity of nonlinear neural networks with multiple time-varying delays. AIMS Mathematics, 2023, 8(5): 12472-12485. doi: 10.3934/math.2023626
    [4] Ali Algefary . Diagonal solutions for a class of linear matrix inequality. AIMS Mathematics, 2024, 9(10): 26435-26445. doi: 10.3934/math.20241286
    [5] Ali Algefary . A characterization of common Lyapunov diagonal stability using Khatri-Rao products. AIMS Mathematics, 2024, 9(8): 20612-20626. doi: 10.3934/math.20241001
    [6] Zhigang Zhou, Li Wan, Qunjiao Zhang, Hongbo Fu, Huizhen Li, Qinghua Zhou . Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays. AIMS Mathematics, 2024, 9(6): 14932-14948. doi: 10.3934/math.2024723
    [7] Zahra Eidinejad, Reza Saadati, Donal O'Regan, Fehaid Salem Alshammari . Measure of quality and certainty approximation of functional inequalities. AIMS Mathematics, 2024, 9(1): 2022-2031. doi: 10.3934/math.2024100
    [8] Panpan Liu, Haifeng Sang, Min Li, Guorui Huang, He Niu . New criteria for nonsingular $ H $-matrices. AIMS Mathematics, 2023, 8(8): 17484-17502. doi: 10.3934/math.2023893
    [9] Wentao Le, Yucai Ding, Wenqing Wu, Hui Liu . New stability criteria for semi-Markov jump linear systems with time-varying delays. AIMS Mathematics, 2021, 6(5): 4447-4462. doi: 10.3934/math.2021263
    [10] Ahmad Y. Al-Dweik, Ryad Ghanam, Gerard Thompson, M. T. Mustafa . Algorithms for simultaneous block triangularization and block diagonalization of sets of matrices. AIMS Mathematics, 2023, 8(8): 19757-19772. doi: 10.3934/math.20231007
  • The Spanish electrical system is now in a position to take advantage of developments from the recent past. Many of its facilities, such as nuclear and coal power stations, have a useful life which will come to an end during the 2020-2030 decade [1] (from 2021 in the case of Vandellós 2, and up to 2028 in the case of Santa María de Garoña). The mankind is currently going through a global environmental crisis which includes greenhouse effect gas emissions as a major component [2]. These are closely linked to the energy system, particularly to electricity generation, and could be a determining factor in the future evolution of such a system. Clearly, such a crisis can potentially lead to serious difficulties in accessing energy for many people. The energy business sector has been undoing its ties to particular territories and has been expanding towards other countries to become more and more dependent on foreign capitals and decision-makers. Now that a stagnant period for electricity demand is being experienced, this does not favor new schemes. However, new proposals should be considered given that many infrastructures will soon be obsolete. In this paper some scenarios are proposed to contemplate the transition of the Spanish electrical system towards an energy model with the year 2050 in mind, where the goal is to lower greenhouse gas emissions [3]. One of the factors to be considered during this period should be the participation of renewable energies. Transport and mobility are also likely to undergo some changes, for similar reasons, and in this time frame they will increasingly be designed to use electricity.


    In order to describe the evolution of fecal-oral transmitted diseases in the Mediterranean regions, Capasso and Paveri-Fontana [1] proposed the following model

    $ {u(t)=au+cv,v(t)=bv+G(u), $ (1.1)

    where $ a, b, c $ are all positive constants, $ u(t) $ and $ v(t) $ denote the concentration of the infectious agent in the environment and the infective human population respectively. The coefficients $ a $ and $ b $ are the intrinsic decay rates of the infectious agent and the infective human population respectively, $ c $ represents the multiplication rate of the infectious agent due to the human infected population. The function $ G(u) $ stands for the force of infection of the human population due to the concentration of infectious agent. We assume that $ G(u) $ satisfies the two specific cases: (ⅰ) a monotone increasing function with constant concavity; (ⅱ) a sigmoidal function of bacterial concentration tending to some finite limit, and with zero gradient at zero. These two cases contain most of the features of forces of infection in real epidemics. For some epidemic, if the density of infectious agent is small, the force of infection of the humans will be weak and may tend to zero, and the function $ G $ will satisfy case (ⅱ). In this paper, we focus on such case, and assume that the function $ G: \mathbb R^+\rightarrow \mathbb R^+ $ satisfies:

    (G1) $ G\in C^2(\mathbb R^+) $, $ G(0) = 0 $, $ G'(z) > 0 $ for any $ z > 0 $ and $ \lim\limits_{z\rightarrow\infty}G(z) = 1 $;

    (G2) there exists $ \xi > 0 $ such that $ G"(z) > 0 $ for $ z\in(0, \xi) $ and $ G"(z) < 0 $ for $ z\in(\xi, \infty) $.

    Denote

    $ \theta = \frac{cG'(0)}{ab}. $

    Under two specific cases stated above, the global dynamics of the cooperative system (1.1) has been described in detail in [2]. It follows from [2, Theorem 4.3] that the global dynamics of (1.1) under conditions (G1) and (G2) can be described as follows:

    (ⅰ) If $ \theta < 1 $ and $ \frac{G(z)}{z} < \frac{ab}{c} $ for any $ z > 0 $, then the trivial solution is the only equilibrium for problem (1.1) and it is globally asymptotically stable in $ \mathbb R^+\times \mathbb R^+ $.

    (ⅱ) If $ \theta > 1 $, then problem (1.1) has only one nontrivial equilibrium point $ (u^\ast, v^\ast) $ in addition to $ (0, 0) $ and it is globally asymptotically stable in $ \mathbb R^+\times \mathbb R^+ $.

    (ⅲ) If $ \theta < 1 $ and $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $, then problem (1.1) has three equilibrium points:

    $ E_0 = (0, 0), \; E_1 = \left(K_1, \frac{aK_1}{c}\right) \text{ and } E_2 = \left(K_2, \frac{aK_2}{c}\right), $

    where $ 0 < K_1 < K_2 $ are the positive roots of $ G(z)-\frac{ab}{c}z = 0 $. In this case, $ E_1 $ is a saddle point, $ E_0 $ and $ E_2 $ are stable nodes.

    In 1997, Capasso and Wilson [3] further considered spatial variation and studied the problem

    $ {ut=dΔuau+cv,(t,x)(0,+)×Ω,vt=bv+G(u),(t,x)(0,+)×Ω,u(t,x)=0,(t,x)(0,+)×Ω,u(0,x)=u0(x), v(0,x)=v0(x),xΩ, $ (1.2)

    where $ \Omega $ is bounded. By some numerical simulation, they speculated that the dynamical behavior of system (1.2) is similar to the ODE case. To understand the dispersal process of epidemic from outbreak to an endemic, Xu and Zhao [4] studied the bistable traveling waves of (1.2) in $ x\in \mathbb R $.

    The epidemic always spreads gradually, but the works mentioned above are hard to explain this gradual expanding process. To describe such a gradual spreading process, Du and Lin [5] introduced the free boundary condition to study the invasion of a single species. They considered the problem

    $ {utduxx=u(abu),t>0, 0<x<h(t),ux(t,0)=0, u(t,h(t))=0,t>0,h(t)=μux(t,h(t)),t>0,h(0)=h0, u(0,x)=u0(x),0xh0, $ (1.3)

    and showed that (1.3) admits a unique solution which is well-defined for all $ t\geq0 $ and spreading and vanishing dichotomy holds. Moreover, the criteria for spreading and vanishing are obtained: (ⅰ) for $ h_{0}\geq\frac{\pi}{2}\sqrt{\frac{d}{a}} $, the species will spread; (ⅱ) for $ h_{0} < \frac{\pi}{2}\sqrt{\frac{d}{a}} $ and given $ u_0(x) $, there exists $ \mu^\ast $ such that the species will spread for $ \mu > \mu^{\ast} $, and the species will vanish for $ 0 < \mu\leq\mu^{\ast} $. Finally, they gave the spreading speed of the spreading front when spreading occurs. Since then, many problems with free boundaries and related problems have been investigated, see e.g. [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] and their references.

    In 2016, Ahn et al. [23] considered (1.2) with monostable nonlinearity and free boundaries. They obtained the global existence and uniqueness of the solution and spreading and vanishing dichotomy. Furthermore, by introducing the so-called spatial-temporal risk index

    $ R_0^F(t) = \frac{G'(0)\frac{c}{b}}{a+d\left(\frac{\pi}{h(t)-g(t)}\right)^2}, $

    they proved that: (ⅰ) if $ R_0 = \frac{cG'(0)}{ab}\leq1 $, the epidemic will vanish; (ⅱ) if $ R_0^F(0)\geq1 $, the epidemic will spread; (ⅲ) if $ R_0^F(0) < 1 $, epidemic will vanish for the small initial densities; (ⅳ) if $ R_0^F(0) < 1 < R_0 $, epidemic will spread for the large initial densities. Recently, Zhao et al. [24] determined the spreading speed of the spreading front of problem described in [23].

    Inspired by the work [23], we want to study (1.2) with bistable nonlinearity and free boundaries. Meanwhile, we also want to consider the effect of the advection. In 2009, Maidana and Yang [25] studied the propagation of West Nile Virus from New York City to California. In the summer of 1999, West Nile Virus began to appear in New York City. But it was observed that the wave front traveled 187 km to the north and 1100 km to the south in the second year. Therefore, taking account of the advection movement has the greater realistic significance. Recently, there are some works considering the advection. In 2014, Gu et al. [26] was the first time to consider the long-time behavior of problem (1.3) with small advection. Then, the asymptotic spreading speeds of the free boundaries was given in [27]. For more general reaction term, Gu et al. [10] studied the long time behavior of solutions of Fisher-KPP equation with advection $ \beta > 0 $ and free boundaries. For single equation with advection, there are many other works. For example, [28,29,30,31,32,33,34] and their references. Besides, there are also several works devoted to the system with small advection, such as, [35,36,37,38,39,40] and their references.

    Taking account of the effect of advection, we consider

    $ {ut=duxxβuxau+cv,t>0, g(t)<x<h(t),vt=bv+G(u),t>0, g(t)<x<h(t),u(t,x)=v(t,x)=0,t0, x=g(t) or x=h(t),g(0)=h0, g(t)=μux(t,g(t)),t>0,h(0)=h0, h(t)=μux(t,h(t)),t>0,u(0,x)=u0(x), v(0,x)=v0(x),h0<x<h0, $ (1.4)

    where we use the changing region $ (g(t), h(t)) $ to denote the infective environment of disease, where the free boundaries $ x = g(t) $ and $ x = h(t) $ represent the spreading fronts of epidemic. Since the diffusion coefficient of $ v $ is much smaller than that of $ u $, we assume that the diffusion coefficient of $ v $ is zero. When $ u $ spreads into a new environment, some humans in the new environment may be infected. Hence, we can use $ (g(t), h(t)) $ to represent the habit of infective humans. We use $ I_{0}\doteq(-h_{0}, h_{0}) $ to denote the initial infective environment of epidemic. The initial functions $ u_{0}(x) $ and $ v_{0}(x) $ satisfy

    $ u0(x)X1(h0){u0(x)W2p(I0): u0(x)>0 for xI0, u0(x)=0 for xRI0},v0(x)X2(h0){v0(x)C2(I0): v0(x)>0 for xI0, v0(x)=0 for xRI0}, $

    where $ p > 3 $. The derivation of the stefan conditions $ h'(t) = -\mu u_{x}(t, h(t)) $ and $ g'(t) = -\mu u_{x}(t, g(t)) $ can be found in [41,42]. In this paper, we always assume that $ G $ satisfies (G1)-(G2) and

    (G3) $ G(z) $ is locally Lipschitz in $ z\in \mathbb R^+ $, i.e., for any $ L > 0 $, there exists a constant $ \rho(L) > 0 $ such that

    $ |G(z_1)-G(z_2)|\leq\rho(L)|z_1-z_2|, \ \forall\ z_1, z_2\in[0, L]. $

    Furthermore, we assume that $ 0 < \beta < \beta^{\ast} $ with

    $ β={,θ<1,2d(cG(0)ba),θ>1. $

    The rest of this paper is organized as follows. In Section 2, the global existence and uniqueness of solution, comparison principle and some results about the principal eigenvalue are given. Section 3 is devoted to the long time behavior of $ (u, v) $. We get a spreading and vanishing dichotomy and give the criteria for spreading and vanishing. Finally, we give some discussions in Section 4.

    Firstly, we prove the existence and uniqueness of the solution.

    Lemma 2.1. For any given $ (u_{0}, v_{0})\in\mathscr{X}_{1}(h_{0})\times\mathscr{X}_{2}(h_{0}) $ and any $ \alpha\in(0, 1) $, there exists a $ T > 0 $ such that problem (1.4) admits a unique solution

    $ (u,v,g,h)(W1,2p(ΩT)C1+α2,1+α(¯ΩT))×C1([0,T];L([g(t),h(t)]))×[C1+α2([0,T])]2, $ (2.1)

    moreover,

    $ uW1,2p(ΩT)+uC1+α2,1+α(¯ΩT)+gC1+α2([0,T])+hC1+α2([0,T])C, $ (2.2)

    where $ \Omega_{T} = \{(t, x)\in\mathbb{R}^{2}:\ 0\leq t\leq T, \ g(t)\leq x\leq h(t)\} $, $ C $ and $ T $ depend only on $ h_{0}, \ \alpha, \ \|u_{0}\|_{W^{2}_{p}([-h_{0}, h_{0}])} $ and $ \|v_{0}\|_\infty $.

    Proof. This proof can be done by the similar arguments in [43]. But there are some differences. Hence, we give the details. Let

    $ y = \frac{2x-g(t)-h(t)}{h(t)-g(t)}, \; w(t, y) = u\left(t, \frac{(h(t)-g(t))y+h(t)+g(t)}{2}\right), $

    and

    $ z(t, y) = v\left(t, \frac{(h(t)-g(t))y+h(t)+g(t)}{2}\right). $

    Then problem (1.4) becomes

    $ {wtdA2wyy+(βAB)wy=aw+cz,0<t<T, 1<y<1,w(t,1)=w(t,1)=0,0t<T,w(0,y)=u0(h0y)w0(y),1<y<1, $ (2.3)
    $ {vt=bv+G(u),0<t<T, g(t)<x<h(t),v(t,g(t))=v(t,h(t))=0,0t<T,v(0,x)=v0(x),h0<x<h0, $ (2.4)

    and

    $ {g(t)=μAwy(t,1),0<t<T,h(t)=μAwy(t,1),0<t<T,g(0)=h0, h(0)=h0, $ (2.5)

    where

    $ A = A(g(t), h(t)) = \frac{2}{h(t)-g(t)}\; \text{ and }\; B = B(g(t), h(t), y) = \frac{h'(t)+g'(t)}{h(t)-g(t)} +y\frac{h'(t)-g'(t)}{h(t)-g(t)}. $

    Denote $ g^\ast = -\frac{\mu}{h_0}u_0'(-h_0) $ and $ h^\ast = -\frac{\mu}{h_0}u_0'(h_0) $. For $ 0 < T\leq\frac{h_0}{2(2+g^\ast+h^\ast)} $, define

    $ T=[0,T]×[1,1],D1T={wC(T): w(0,y)=w0(y), w(t,±1)=0, ww0C(T)1},D2T={gC1([0,T]): g(0)=h0, g(0)=g, ggC([0,T])1},D3T={hC1([0,T]): h(0)=h0, h(0)=h, hhC([0,T])1}. $

    It is easy to see that $ \mathcal{D}_T\doteq\mathcal{D}_{1T} \times\mathcal{D}_{2T}\times\mathcal{D}_{3T} $ is a complete metric space with the metric

    $ d\left((w_1, g_1, h_1), (w_2, g_2, h_2)\right) = \|w_1-w_2\|_{C(\triangle_T)} +\|g_1-g_2\|_{C^1([0, T])}+\|h_1-h_2\|_{C^1([0, T])}. $

    For any given $ (w, g, h)\in\mathcal{D}_T $, there exist some $ \xi_1, \xi_2\in(0, t) $ such that

    $ |g(t)+h_0|+|h(t)-h_0| = |g'(\xi_1)|t+|h'(\xi_2)|t\leq T(2+g^\ast+h^\ast)\leq\frac{h_0}{2}, $

    which implies that

    $ 2h_0\leq h(t)-g(t)\leq 3h_0, \ \forall\ t\in[0, T]. $

    Thus, $ A(g(t), h(t)) $ and $ B(g(t), h(t), y) $ are well-defined. By the definition of $ w $, we have

    $ u(t,x)=w(t,2xg(t)h(t)h(t)g(t)). $ (2.6)

    Since $ |w(t, y)|\leq\|w_0\|_{L^\infty}+1 $ for $ (t, y)\in\triangle_T $, we have

    $ |u(t, x)|\leq\|w_0\|_{L^\infty}+1\doteq M_1, \ \forall\ (t, x)\in[0, T]\times[g(t), h(t)]. $

    Define

    $ ˜v0(x)={v0(x),x(h0,h0),0,xR(h0,h0) and tx:={tgx,x[g(T),h0) and x=g(tgx),0,x[h0,h0],thx,x(h0,h(T)] and x=h(thx). $

    For $ u $ defined as (2.6) and any given $ x\in[g(T), h(T)] $, we consider the following ODE problem

    $ {vt=bv+G(u(t,x)),tx<t<T,v(tx,x)=˜v0(x). $ (2.7)

    By the similar arguments as the step 1 in the proof of [44, Lemma 2.3], it is easy to show that (2.7) admits a unique solution $ v(t, x) $ for $ t\in[t_x, T_1] $, where $ T_1\in\left(0, \frac{h_0}{2(2+g^\ast+h^\ast)}\right] $. Hence, problem (2.4) has a unique solution $ v(t, x)\in C^1([0, T_1];L^\infty([g(t), h(t)])) $. By the continuous dependence of the solution on parameters, we can have

    $ \|v_x\|_{L^\infty(\Omega_{T_1})}\leq C_1. $

    Then

    $ \|v_x\|_{L^\infty(\Omega_{T})}\leq\|v_x\|_{L^\infty(\Omega_{T_1})}\leq C_1, \ \forall\ T\leq T_1. $

    For this $ v $, we can get

    $ z(t, y) = v\left(t, \frac{(h(t)-g(t))y+h(t)+g(t)}{2}\right). $

    For $ (w, g, h) $ and $ z $ obtained above, we consider the following problem

    $ {¯wtdA2¯wyy+(βAB)¯wy=aw+cz,0<t<T, 1<y<1,¯w(t,1)=¯w(t,1)=0,0t<T,¯w(0,y)=u0(h0y),1<y<1. $ (2.8)

    Applying standard $ L^p $ theory and the Sobolev imbedding theorem, we can have there exists $ T_2\in(0, T_1] $ such that (2.8) admits a unique solution $ \overline{w}(t, y) $ and

    $ \|\overline{w}\|_{W^{1, 2}_p(\triangle_{T_2})}+\|\overline{w}\|_ {C^{\frac{1+\alpha}{2}, 1+\alpha}(\triangle_{T_2})}\leq C_2, $

    where $ C_2 $ is a constant depending only on $ h_0, \ \alpha $ and $ \|u_0\|_{W^2_p([-h_0, h_0])} $. Then

    $ ¯wW1,2p(T)+¯wC1+α2,1+α(T)¯wW1,2p(T2)+¯wC1+α2,1+α(T2)C2,  TT2. $ (2.9)

    Define

    $ ¯g(t)=h0t0μA(g(τ),h(τ))¯wy(τ,1)dτ,¯h(t)=h0t0μA(g(τ),h(τ))¯wy(τ,1)dτ, $

    then we have $ \overline{g}(0) = -h_0, \ \overline{h}(0) = h_0 $,

    $ \overline{g}'(t) = -\mu A(g(t), h(t))\overline{w}_y(t, -1), \ \overline{h}'(t) = -\mu A(g(t), h(t))\overline{w}_y(t, 1), $

    and hence

    $ ¯gCα2([0,T]), ¯hCα2([0,T])μh10C2C3. $ (2.10)

    Now, we can define the mapping $ \mathcal{F}:\mathcal{D}_T\rightarrow C(\triangle_T)\times C^1([0, T])\times C^1([0, T]) $ by

    $ \mathcal{F}(w, g, h) = (\overline{w}, \overline{g}, \overline{h}). $

    Obviously, $ \mathcal{D}_T $ is a bounded and closed convex set of $ C(\triangle_T)\times C^1([0, T])\times C^1([0, T]) $, $ \mathcal{F} $ is continuous in $ \mathcal{D}_T $, and $ (w, g, h) $ is a fixed point of $ \mathcal{F} $ if and only if $ (w, v, g, h) $ solve (2.3), (2.4) and (2.5). By (2.9) and (2.10), we have $ \mathcal{F} $ is compact and

    $ ¯ww0C(T)C2T1+α2,¯ggC([0,T])C3Tα2,¯hhC([0,T])C3Tα2. $

    Therefore if we take $ T\leq\min\left\{T_2, \ C_2^{-\frac{2}{1+\alpha}}, \ C_3^{-\frac{2}{\alpha}}\right\}\doteq T_3 $, then $ \mathcal{F} $ maps $ \mathcal{D}_T $ into itself. It now follows from the Schauder fixed point theorem that $ \mathcal{F} $ has a fixed point $ (w, g, h) $ in $ \mathcal{D}_T $. Moreover, we have $ (w, v, g, h) $ solve (2.3), (2.4) and (2.5),

    $ \|w\|_{W^{1, 2}_p(\triangle_{T})}+\|w\|_ {C^{\frac{1+\alpha}{2}, 1+\alpha}(\triangle_{T})}\leq C_2, \ \|v_x\|_{L^\infty(\Omega_{T})}\leq C_1, \ \forall\ T\leq T_3. $

    Define as before,

    $ u(t, x) = w\left(t, \frac{2x-g(t)-h(t)}{h(t)-g(t)}\right). $

    Then $ (u, v, g, h) $ solve (1.4), and satisfies (2.1) and (2.2).

    In the following, we prove the uniqueness of $ (u, v, g, h) $. Let $ (u_i, v_i, g_i, h_i)\ (i = 1, 2) $ be the two solutions of problem (1.4) for $ T\in(0, T_3] $ sufficiently small. Let

    $ w_i(t, y) = u_i\left(t, \frac{(h_i(t)-g_i(t))y+h_i(t)+g_i(t)}{2}\right). $

    Then it is easy to see that $ (w_i, v_i, g_i, h_i) $ solve (2.3), (2.4) and (2.5). Denoting

    $ A_i = A(g_i(t), h_i(t)), \ B_i = B(g_i(t), h_i(t), y), \ W = w_1-w_2, \ Z = z_1-z_2, \ G = g_1-g_2, \ H = h_1-h_2, $

    we can have

    $ {WtdA21Wyy+(βA1B1)Wy=aW+cZ                +(dA21dA22)w2yy+[(βA1B1)+(βA2B2)]w2y,0<t<T, 1<y<1,W(t,1)=W(t,1)=0,0t<T,W(0,y)=0,1<y<1, $

    and

    $ {G=μA1Wy(t,1)+μ(A2A1)w2y(t,1),0<t<T,H=μA1Wy(t,1)+μ(A2A1)w2y(t,1),0<t<T,G(0)=0, H(0)=0. $ (2.11)

    Using the $ L^p $ estimates for parabolic equations and Sobolev imbedding theorem, we obtain

    $ WW1,2p(T)C4(ZC(T)+GC1([0,T])+HC1([0,T])), $ (2.12)

    where $ C_4 $ depends on $ C_2, \ C_3 $ and the functions $ A $ and $ B $. Next we should estimate $ \|z_1-z_2\|_{C(\triangle_T)} $. For convenience, we define

    $ Hm(t)min{h1(t),h2(t)}, HM(t)max{h1(t),h2(t)},Gm(t)min{g1(t),g2(t)}, GM(t)max{g1(t),g2(t)},ΩGm,HMT[0,T]×[Gm(t),HM(t)]. $

    By direct calculations, we have

    $ z1(t,y)z2(t,y)C(T)= v1(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h2(t)g2(t))y+h2(t)+g2(t)2)C(T) v1(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h1(t)g1(t))y+h1(t)+g1(t)2)C(T)+v2(t,(h1(t)g1(t))y+h1(t)+g1(t)2)v2(t,(h2(t)g2(t))y+h2(t)+g2(t)2)C(T) v1(t,x)v2(t,x)C(ΩGm,HMT)+v2xL(ΩGm,HMT)(GC([0,T])+HC([0,T])). $ (2.13)

    Now we estimate $ |(v_1-v_2)(t^\ast, x^\ast)| $ for any fixed $ (t^\ast, x^\ast)\in\Omega_T^{G_m, H_M} $. It will be divided into the following three cases.

    Case 1. $ x^\ast\in[-h_0, h_0] $.

    Since (2.4) is equivalent to the following integral equation:

    $ v(t,x)=ebt[v0(x)+t0ebsG(u)(s,x)ds], $

    we have

    $ v1(t,x)v2(t,x)= ebt[t0ebs(G(u1)G(u2))(s,x)ds]. $

    Then,

    $ |v1(t,x)v2(t,x)|ρ(M1)bu1u2C(ΩGm,HMT). $ (2.14)

    Case 2. $ x^\ast\in(h_0, H_m(t^\ast)) $.

    In this case, there exist $ t_1^\ast, \ t_2^\ast\in(0, t^\ast) $ such that $ h_1(t_1^\ast) = h_2(t_2^\ast) = x^\ast $. Without loss of generality, we may assume that $ 0\leq t_1^\ast\leq t_2^\ast $. Then,

    $ v1(t,x)v2(t,x)= ebt[v1(t2,x)ebt2+tt2ebs(G(u1)G(u2))(s,x)ds]. $

    Thus,

    $ |v_1(t^\ast, x^\ast)-v_2(t^\ast, x^\ast)| \leq |v_1(t_2^\ast, x^\ast)| +\frac{\rho(M_1)}{b}\|u_1-u_2\|_{C(\Omega_T^{G_m, H_M})}. $

    By (G1) and (G2), we can have that there exists $ \gamma $ such that $ G(z)\leq\gamma z $ for $ z\geq0 $. Now we estimate $ v_1(t_2^\ast, x^\ast) $. Direct calculations give that

    $ v_1(t_2^\ast, x^\ast) = e^{-bt_2^\ast} \int_{t_1^\ast}^{t_2^\ast} e^{bs}G(u_1)(s, x^\ast)ds \leq\frac{\gamma}{b}\max\limits_{t\in[t_1^\ast, t_2^\ast]}|u_1(t, x^\ast)| = \frac{\gamma}{b}\max\limits_{t\in[t_1^\ast, t_2^\ast]} |(u_1-u_2)(t, x^\ast)|. $

    Hence,

    $ |v1(t,x)v2(t,x)|γ+ρ(M1)bu1u2C(ΩGm,HMT). $ (2.15)

    Case 3. $ x^\ast\in[H_m(t^\ast), H_M(t^\ast)] $.

    Without loss of generality, we assume that $ h_2(t^\ast) < h_1(t^\ast) $. In this case, there exists $ t_1^\ast $ such that $ h_1(t_1^\ast) = x^\ast $. Then $ v_1(t_1^\ast, x^\ast) = 0 $, $ u_2(t, x^\ast) = v_2(t, x^\ast) = 0 $ for $ t\in[t_1^\ast, t^\ast] $. Hence, $ V(t^\ast, x^\ast) = v_1(t^\ast, x^\ast) $ and

    $ v_1(t^\ast, x^\ast) = e^{-bt^\ast} \int_{t_1^\ast}^{t^\ast} e^{bs}G(u_1)(s, x)ds \leq\frac{\gamma}{b}\max\limits_{t\in[t_1^\ast, t^\ast]}|u_1(t, x^\ast)| = \frac{\gamma}{b}\max\limits_{t\in[t_1^\ast, t^\ast]}|(u_1-u_2)(t, x^\ast)|. $

    Hence,

    $ |v1(t,x)v2(t,x)|γbu1u2C(ΩGm,HMT). $ (2.16)

    By (2.14), (2.15) and (2.16), we have

    $ v1v2C(ΩGm,HMT)C5u1u2C(ΩGm,HMT), $ (2.17)

    where $ C_5 $ depends on $ b, \ \rho, \ M_1 $ and $ \gamma $. Now we estimate $ \|u_1(t, x)-u_2(t, x)\|_{C(\Omega_T^{G_m, H_M})} $.

    $ u1(t,x)u2(t,x)C(ΩGm,HMT)= w1(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg2(t)h2(t)h2(t)g2(t))C(ΩGm,HMT) w1(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg1(t)h1(t)h1(t)g1(t))C(ΩGm,HMT)+w2(t,2xg1(t)h1(t)h1(t)g1(t))w2(t,2xg2(t)h2(t)h2(t)g2(t))C(ΩGm,HMT) w1(t,y)w2(t,y)C(T)+C6(GC([0,T])+HC([0,T])), $ (2.18)

    where $ C_6 $ only depends on $ h_0 $ and $ \|w_{2x}\|_{C(\triangle_{T_3})} $. By $ \overline{W}(0, y) = 0 $ and Sobolev imbedding theorem, we have

    $ W(t,y)C(T)[W]Cα2,0(T)Tα2C7Tα2[W]Cα2,α(T)C8Tα2WW1,2p(T), $ (2.19)

    where $ C_7 $ and $ C_8 $ do not depend on $ T $. By (2.12), (2.13), (2.17), (2.18) and (2.19), we can get

    $ \|W\|_{W^{1, 2}_p(\triangle_T)} \leq C_9T^{\frac{\alpha}{2}}\|W\|_{W^{1, 2}_p(\triangle_T)} +C_{10}\left(\|G\|_{C^1([0, T])}+\|H\|_{C^1([0, T])}\right), $

    where $ C_9 $ depends on $ C_4, \ C_5 $ and $ C_8 $; $ C_{10} $ depends on $ C_1, \ C_5 $ and $ C_6 $. If $ T\in\min\left\{T_3, (2C_9)^{-\frac{2}{\alpha}}\right\}\doteq T_4 $,

    $ WW1,2p(T)2C10(GC1([0,T])+HC1([0,T])). $ (2.20)

    In the following, we estimate $ \|G\|_{C^1([0, T])} $ and $ \|H\|_{C^1([0, T])} $. Since $ G(0) = G'(0) = 0 $, we have

    $ GC1([0,T])= maxt[0,T]G(t)+maxt[0,T]G(t)maxξ[0,T]G(ξ)T+maxt[0,T]G(t) (1+T)maxt[0,T]G(t)G(0)(t0)α2Tα2=Tα2(1+T)[G]Cα2([0,T]). $

    By (2.11), we have

    $ [G]Cα2([0,T])=C11[[Wy(t,1)]Cα2,0([0,T])+(GC1([0,T])+HC1([0,T]))[w2y(t,1)]Cα2([0,T])], $

    where $ C_{11} $ depends on $ \mu, \ A $ and $ h_0 $. It follows from the proof of [45, Theorem 1.1] that we have

    $ [W_y(t, y)]_{C^{\frac{\alpha}{2}, 0}(\triangle_T)} \leq C_{12}[W_y(t, y)] _{C^{\frac{\alpha}{2}, \alpha}(\triangle_T)} \leq C_{13}\|W\|_{W^{1, 2}_p(\triangle_T)}, $

    where $ C_{12} $ and $ C_{13} $ do not depend on $ T $. Therefore, we have

    $ GC1([0,T])C14Tα2(1+T)(GC1([0,T])+HC1([0,T])), $ (2.21)

    where $ C_{14} $ depends on $ C_2, \ C_{10}, \ C_{11} $ and $ C_{13} $. Similarly, there exists $ C_{15} $ such that

    $ HC1([0,T])C15Tα2(1+T)(GC1([0,T])+HC1([0,T])). $ (2.22)

    It follows from (2.21) and (2.22) that

    $ GC1([0,T])+HC1([0,T])=C16Tα2(1+T)(GC1([0,T])+HC1([0,T]))12(GC1([0,T])+HC1([0,T])) $

    if $ T\leq\min\left\{T_4, \ 1, \ (4C_{16})^{-\frac{2}{\alpha}}\right\}\doteq T_5 $, where $ C_{16} = C_{14}+C_{15} $. Hence, $ G = H = 0 $ for $ T\leq T_5 $. It follows from (2.20) that $ W = 0 $. This implies that $ u_1\equiv u_2 $. By (2.17), we have $ v_1\equiv v_2 $. The uniqueness is obtained.

    Then it follows from the arguments in [23] that we can get the following estimates.

    Lemma 2.2. Let $ (u, v, g, h) $ be a solution of problem (1.4) defined for $ t\in(0, T_{0}] $, where $ T_{0}\in(0, +\infty) $. Then there exist $ M_{1}, \ M_{2} $ and $ M_{3} $ independent of $ T_0 $ such that

    (ⅰ) $ 0 < u(t, x)\leq M_{1}, \ 0 < v(t, x)\leq M_{2} $ for $ t\in(0, T_{0}] $ and $ x\in[g(t), h(t)] $.

    (ⅱ) $ 0 < -g'(t), \ h'(t)\leq M_{3} $ for $ t\in(0, T_{0}] $.

    Just like the proof of [37, Theorem 3.2], we can obtain the global existence and uniqueness.

    Theorem 2.3. The solution exists and is unique for all $ t > 0 $.

    Then, we exhibit the following comparison principle, which can be proven by the similar argument in [23,Lemma 2.5].

    Theorem 2.4. Assume that

    $ ¯g, ¯hC1([0,+)), ¯u(t,x), ¯v(t,x)C(¯D)C1,2(D),¯u(0,x)X1(h0), ¯v(0,x)X2(h0) $

    with

    $ D: = \left\{(t, x)\in \mathbb{R}^{2}:\ 0 \lt t \lt \infty, \ \overline{g}(t) \lt x \lt \overline{h}(t)\right\}, $

    and $ (\overline{u}, \overline{v}, \overline{g}, \overline{h}) $ satisfies

    $ {¯utd¯uxxβ¯uxa¯u+c¯v,t>0, ¯g(t)<x<¯h(t),¯vtb¯v+G(¯u),t>0, ¯g(t)<x<¯h(t),¯u(t,¯g(t))=¯u(t,¯h(t))=0,t0,¯v(t,¯g(t))=¯v(t,¯h(t))=0,t0,¯g(0)h0, ¯g(t)μ¯ux(t,¯g(t)),t>0,¯h(0)h0, ¯h(t)μ¯ux(t,¯h(t)),t>0,¯u(0,x)u0(x), ¯v(0,x)v0(x),h0<x<h0. $

    Then the solution $ (u, v, g, h) $ of the free boundary problem (1.4) satisfies

    $ h(t)\leq\overline{h}(t), \ g(t)\geq\overline{g}(t), \ \forall\ t\geq 0, $
    $ u(t, x)\leq \overline{u}(t, x), \ v(t, x)\leq \overline{v}(t, x), \ \forall\ t\geq 0, \ g(t)\leq x\leq h(t). $

    Remark 2.5. The pair $ (\overline{u}, \overline{v}, \overline{g}, \overline{h}) $ in Theorem 2.4 is usually called an upper solution of problem (1.4). Similarly, we can define a lower solution by reversing all the inequalities in the suitable places.

    In the following part, we consider the following eigenvalue problem

    $ {λϕ=dϕxxβϕxaϕ+cG(0)bϕ,l<x<l,ϕ(l)=ϕ(l)=0. $ (2.23)

    Denote by $ \lambda_{0}(l) $ the principal eigenvalue of problem (2.23) with some fixed $ l $.

    Lemma 2.6. $ \lambda_{0}(l) $ has the following form:

    $ \lambda_{0}(l) = \frac{\beta^{2}}{4d}+\frac{d\pi^{2}}{4l^{2}}- \left(\frac{cG'(0)}{b}-a\right). $

    Proof. We choose $ \beta $ to be small and determine it later. By a simple calculation, we can achieve the characteristic equation

    $ dμ2βμ+λa+cG(0)b=0, $ (2.24)

    and let $ \mu_{i}\ (i = 1, 2) $ be the roots of (2.24). Then the solution of (2.23) is

    $ \phi(x) = c_{1}e^{\mu_{1}x}+c_{2}e^{\mu_{2}x}, $

    where $ c_{1} $ and $ c_{2} $ will be determined later. Since $ \phi(-l) = \phi(l) = 0 $, we can derive that

    $ \Delta = \beta^{2}-4d\left(\lambda-a+\frac{cG'(0)}{b}\right) \lt 0. $

    In fact, if $ \Delta = \beta^{2}-4d\left(\lambda-a+\frac{cG'(0)}{b}\right)\geq0 $, we have $ \phi\equiv0 $, which is a contradiction. Hence, (2.24) has two complex roots:

    $ \mu_{1} = \frac{\beta+i\sqrt{4d\left(\lambda-a+\frac{cG'(0)}{b}\right) -\beta^{2}}}{2d}, \ \mu_{2} = \frac{\beta-i\sqrt{4d\left(\lambda-a+\frac{cG'(0)}{b}\right) -\beta^{2}}}{2d}. $

    Then

    $ ϕ(x)= c1eβ2dx[cos4d(λa+cG(0)b)β22dx+isin4d(λa+cG(0)b)β22dx]+c2eβ2dx[cos4d(λa+cG(0)b)β22dxisin4d(λa+cG(0)b)β22dx]. $

    By $ \phi(-l) = \phi(l) = 0 $, we have $ c_{1} = c_{2} $ and

    $ \frac{\sqrt{4d\left(\lambda-a+\frac{cG'(0)}{b}\right)-\beta^{2}}}{2d}l = \frac{\pi}{2}+k\pi, \ \forall\ k\in\mathbb{N}. $

    When $ k = 0 $, $ \lambda $ attain its minimum, we have

    $ \lambda_{0}(l) = \frac{\beta^{2}}{4d}+\frac{d\pi^{2}}{4l^{2}}- \left(\frac{cG'(0)}{b}-a\right), $

    and the corresponding eigenfunction $ \phi(x) = e^{\frac{\beta}{2d}x}\cos\left(\frac{\pi}{2l}x\right) $.

    Then we have the following properties about $ \lambda_{0}(l) $.

    Lemma 2.7. The following assertions hold:

    (ⅰ) $ \lambda_{0}(l) $ is continuous and strictly decreasing in $ l $,

    $ \lim\limits_{l\rightarrow 0}\lambda_{0}(l) = \infty, \ \lim\limits_{l\rightarrow\infty}\lambda_{0}(l) = \frac{\beta^{2}}{4d}-\left(\frac{cG'(0)}{b}-a\right). $

    (ⅱ) If $ \frac{cG'(0)}{ab} > 1 $ and $ 0 < \beta < 2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} $, then there exists

    $ l^{\ast} = 2d\pi\Big{/}\sqrt{4d\left(\frac{cG'(0)}{b}-a\right)-\beta^{2}} $

    such that $ \lambda_{0}(l^{\ast}) = 0 $. Furthermore, $ \lambda_{0}(l) > 0 $ for $ 0 < l < l^{\ast} $, and $ \lambda_{0}(l) < 0 $ for $ l > l^{\ast} $.

    (ⅲ) If $ \frac{cG'(0)}{ab}\leq1 $, then $ \lambda_{0}(l) > \frac{\beta^{2}}{4d}-\left(\frac{cG'(0)}{b}-a\right) > 0 $.

    Proof. By the expression of $ \lambda_{0}(l) $ in Lemma 2.6, the proof of lemma is obvious. We omit it here.

    Firstly, we give the definitions of spreading and vanishing of the disease:

    Definition 3.1. We say that vanishing happens if

    $ h_{\infty}-g_{\infty} \lt \infty ~and~ \lim\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) = 0, $

    and spreading happens if

    $ h_{\infty}-g_{\infty} = \infty ~and~ \limsup\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) \gt 0. $

    Then, we give the following lemmas.

    Lemma 3.2. Let $ (u, v, g, h) $ be the solution of (1.4). If $ h_{\infty}-g_{\infty} < \infty $, then there exists a constant $ C > 0 $ such that

    $ u(t,)C1([g(t),h(t)])C,  t>1. $ (3.1)

    Moreover,

    $ limtg(t)=limth(t)=0. $ (3.2)

    Proof. We can use the method in [46, Theorem 2.1] to get (3.1). Then the proof of (3.2) can be done as [16,Theorem 4.1].

    Lemma 3.3. Let $ d, \ \mu $ and $ h_{0} $ be positive constants, $ w\in C^{\frac{1+\alpha}{2}, 1+\alpha}([0, \infty)\times[g(t), h(t)]) $ and $ g $, $ h\in C^{1+\frac{\alpha}{2}}([0, \infty)) $ for some $ \alpha > 0 $. We further assume that $ w_{0}(x)\in\mathscr{X}_{1}(h_{0}) $. If $ (w, g, h) $ satisfies

    $ {wtdwxxβwxaw,t>0, g(t)<x<h(t),w(t,x)=0,t0, xg(t),w(t,x)=0,t0, xh(t),g(0)=h0, g(t)μwx(t,g(t)),t>0,h(0)=h0, h(t)μwx(t,h(t)),t>0,w(0,x)=w0(x),0,h0<x<h0, $ (3.3)

    and

    $ limtg(t)=g>, limtg(t)=0,limth(t)=h<, limth(t)=0,w(t,)C1([g(t),h(t)])M,  t>1 $

    for some constant $ M > 0 $. Then

    $ \lim\limits_{t\rightarrow\infty}\max\limits_{g(t)\leq x\leq h(t)}w(t, x) = 0. $

    Proof. It can be proved by the similar arguments in [16,Theorem 4.2].

    By above Lemmas 3.2 and 3.3, we can derive the following result.

    Theorem 3.4. If $ h_{\infty}-g_{\infty} < \infty $, then

    $ \lim\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) = 0. $

    Proof. Firstly, we can use the method in the proof of [46,Theorem 2.1] to get

    $ \|u\|_{C^{\frac{1+\alpha}{2}, 1+\alpha}([0, \infty)\times[g(t), h(t)])} +\|g\|_{C^{1+\frac{\alpha}{2}}([0, \infty))} +\|h\|_{C^{1+\frac{\alpha}{2}}([0, \infty))}\leq C. $

    Recall that $ u $ satisfies (3.3). By Lemmas 3.2 and 3.3, we can get $ \lim\limits_{t\rightarrow\infty}\|u(t, \cdot)\|_{C([g(t), h(t)])} = 0 $.

    Noting that $ v(t, x) $ satisfies

    $ v_{t} = -bv+G(u), \ t \gt 0, \ g(t) \lt x \lt h(t) $

    and $ G(u)\rightarrow 0 $ uniformly for $ x\in[g(t), h(t)] $ as $ t\rightarrow\infty $, we have $ \lim\limits_{t\rightarrow\infty}\|v(t, \cdot)\|_{C([g(t), h(t)])} = 0 $.

    Lemma 3.5. If $ \frac{G(z)}{z} < \frac{ab}{c} $ for any $ z > 0 $, then $ h_{\infty}-g_{\infty} < \infty $.

    Proof. Direct calculations yield

    $ ddth(t)g(t)(u(t,x)+cbv(t,x))dx= h(t)g(t)(ut+cbvt)dx= h(t)g(t)(duxxβuxau+cbG(u))dx= dμ(h(t)g(t))+h(t)g(t)(au+cbG(u))dx. $

    Integrating from $ 0 $ to $ t $ gives

    $ h(t)g(t)(u(t,x)+cbv(t,x))dx= h0h0(u0(x)+cbv0(x))dxdμ(h(t)g(t))+dμ2h0+t0h(s)g(s)(au+cbG(u))dxds. $

    Since $ u\geq0 $, $ v\geq0 $ and $ G(u)\leq\frac{ab}{c}u $ for $ u\geq0 $, we have

    $ h(t)-g(t)\leq\frac{\mu}{d}\int_{-h_{0}}^{h_{0}} \left(u_{0}(x)+\frac{c}{b}v_{0}(x)\right)dx+2h_{0} \lt \infty. $

    Letting $ t\rightarrow\infty $, we have $ h_{\infty}-g_{\infty} < \infty $.

    Lemma 3.6. Assume that $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $. If $ \lambda_{0}(h_{0}) > 0 $ holds, then vanishing will happen provided that $ u_{0} $ and $ v_{0} $ are sufficiently small.

    Proof. We prove this result by constructing the appropriate upper solution. Let $ \phi $ be the corresponding eigenfunction of $ \lambda_{0}(h_0) $. Since $ \lambda_{0}(h_{0}) > 0 $, we can choose some small $ \delta $ such that

    $ -\delta-\frac{\beta h_{0}\delta^{2}}{2d(2+\delta)} +\frac{3}{4}\lambda_{0}\frac{1}{(1+\delta)^{2}} \gt 0. $

    Set

    $ σ(t)=h0(1+δδ2eδt), t0,¯u(t,x)=εeδtϕ(xh0σ(t))eβ2d(1h0σ(t))x, t0, σ(t)xσ(t),¯v(t,x)=(G(0)b+λ04c)h20σ2¯u, t0, σ(t)xσ(t). $

    Direct computations yield

    $ ¯utd¯uxx+β¯ux+a¯uc¯v= ¯u(δϕϕxh0σσ2+βh0x2dσσ2)dεeδteβ2d(1h0σ)x[ϕ(h0σ)2+2ϕh0σβ2d(1h0σ)+ϕ(β2d)2(1h0σ)2]+βεeδteβ2d(1h0σ)x[ϕh0σ+ϕβ2d(1h0σ)]+a¯uc(G(0)b+λ04c)h20σ2¯u= ¯u(δϕϕxh0σσ2+βh0x2dσσ2)+εeδteβ2d(1h0σ(t))x[h20σ2(dϕ+βϕ)+ϕβ24d(1h20σ2)]+a¯uc(G(0)b+λ04c)h20σ2¯u ¯u(δβh02dσσ+34λ0h20σ2)+(1h20σ2)(β24d¯u+a¯u)> ¯u[δβh0δ22d(2+δ)+34λ01(1+δ)2]> 0, $

    and

    $ ¯vt+b¯vG(¯u)= (G(0)b+λ04c)2h20σσ3¯u+(G(0)b+λ04c)h20σ2(¯ut+b¯u)G(ξ)¯u (G(0)b+λ04c)2h20σ2δ22+δ¯u+(G(0)b+λ04c)h20σ2[δβh0δ22d(2+δ)+b]¯uG(ξ)¯u= ¯u{(G(0)b+λ04c)h20σ2[δβh0δ22d(2+δ)]+G(0)h20σ2[12δ2b(2+δ)]G(ξ)+λ0h204cσ2(b2δ22+δ)}B $

    for all $ t > 0 $ and $ -\sigma(t) < x < \sigma(t) $, where $ \xi\in(0, \overline{u}) $. Let

    $ \varepsilon = \frac{\delta^{2}h_{0}(1+\frac{\delta}{2})}{2\mu} \min\left\{-\frac{1}{\phi'(h_{0})}e^{-\frac{\beta}{2d}\delta h_{0}}, \frac{1}{\phi'(-h_{0})}e^{\frac{\beta}{4d}\delta h_{0}}\right\}. $

    Since $ \overline{u}\leq\varepsilon e^{\frac{\beta}{2d}h_{0}\delta} $, we can choose $ \delta $ to be sufficiently small such that $ B > 0 $. Noting that

    $ σ(t)=h0δ22eδt, ¯ux(t,σ(t))=εeδtϕ(h0)h0σeβ2d(σ(t)h0),¯ux(t,σ(t))=εeδtϕ(h0)h0σeβ2d(h0σ(t)), $

    then we have

    $ {¯utd¯uxxβ¯uxa¯u+c¯v,t>0, σ(t)<x<σ(t),¯vtb¯v+G(¯u),t>0, σ(t)<x<σ(t),¯u(t,σ(t))=¯u(t,σ(t))=0,t0,¯v(t,σ(t))=¯v(t,σ(t))=0,t0,σ(0)h0, σ(t)μ¯ux(t,σ(t)),t>0,σ(0)h0, σ(t)μ¯ux(t,σ(t)),t>0. $

    If $ u_{0} $ and $ v_{0} $ are sufficiently small such that

    $ u_{0}(x)\leq \varepsilon\phi\left(\frac{x}{1+\delta/2}\right) e^{\frac{\beta\delta x}{2d(2+\delta)}}, \ \forall\ x\in\left[-h_0\left(1+\delta/2\right), h_0\left(1+\delta/2\right)\right] $

    and

    $ v_{0}(x)\leq\left(\frac{G'(0)}{b} +\frac{\lambda_{0}}{4c}\right) \frac{1}{\left(1+\delta/2\right)^{2}} \varepsilon\phi\left(\frac{x}{1+\delta/2}\right) e^{\frac{\beta\delta x}{2d(2+\delta)}}, \ \forall\ x\in\left[-h_0\left(1+\delta/2\right), h_0\left(1+\delta/2\right)\right], $

    then

    $ u_{0}(x)\leq\overline{u}(0, x), \ v_{0}(x)\leq\overline{v}(0, x), \ \forall\ x\in(-h_{0}, h_{0}). $

    Applying Theorem 2.4 gives that $ h(t)\leq\sigma(t) $ and $ g(t)\geq-\sigma(t) $. Hence, $ h_{\infty}-g_{\infty}\leq 2h_{0}(1+\delta) < \infty $. By Theorem 3.4, we have $ \lim\limits_{t\rightarrow\infty} (\|u(t, \cdot)\|_{C([g(t), h(t)])}+\|v(t, \cdot)\|_{C([g(t), h(t)])}) = 0 $.

    By Lemma 3.6, we can derive the following corollary directly.

    Corollary 3.7. Assume that $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $, then the following statements holds:

    (ⅰ) If $ \frac{cG'(0)}{ab} < 1 $, then vanishing will happen for $ u_{0} $ and $ v_{0} $ sufficiently small.

    (ⅱ) If $ \frac{cG'(0)}{ab} > 1 $ and $ h_0 < l^\ast $, then vanishing will happen for $ u_{0} $ and $ v_{0} $ sufficiently small.

    Lemma 3.8. Assume that $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $ and $ \frac{cG'(0)}{ab} > 1 $. If $ h_{0} > l^{\ast} $, then spreading will happen.

    Proof. Let $ \phi $ be the corresponding eigenfunction of $ \lambda_{0}(h_0) $. Since $ \frac{cG'(0)}{ab} > 1 $ and $ h_{0} > l^{\ast} $, we have $ \lambda_{0}(h_0) < 0 $. Then we construct a suitable lower solution. Since

    $ \frac{cG'(0)}{b}+\frac{\lambda_0}{4} = \frac{\beta^{2}}{4d}+\frac{d\pi^{2}}{4l^{2}}+a-\frac{3\lambda_0}{4} \gt 0, $

    we can define

    $ u_(t,x)=ϵϕ(x), t0, h0xh0,v_(t,x)=(G(0)b+λ04c)ϵϕ(x), t0, h0xh0. $

    Direct computations yield

    $ u_tdu_xx+βu_x+au_cv_= ϵ(dϕxx+βϕx+aϕcG(0)bϕλ04ϕ)=34λ0ϵϕ<0, $

    and

    $ v_t+bv_G(u_)=ϵϕ(G(0)G(ξ)+bλ04c) $

    for all $ t > 0 $ and $ -h_{0} < x < h_{0} $, where $ \xi\in(0, \underline{u}) $. We can choose $ \epsilon $ small enough such that

    $ G(0)G(ξ)+bλ04c0, ϵϕ(x)u0(x), (G(0)b+λ04c)ϵϕ(x)v0(x). $

    Then

    $ {u_tdu_xxβu_xau_+cv_,t>0, h0<x<h0,v_tbv_+G(u_),t>0, h0<x<h0,u_(t,h0)=u_(t,h0)=0,t0,v_(t,h0)=v_(t,h0)=0,t0,0μu_x(t,h0), 0μu_x(t,h0),t>0,u_(0,x)u(0,x), v_(0,x)v(0,x),h0<x<h0. $

    It follows from Remark 2.5 that $ u(t, x)\geq\underline{u}(t, x) $ in $ [0, \infty)\times[-h_{0}, h_{0}] $. Hence,

    $ \lim\limits_{t\rightarrow\infty}\|u(t, \cdot)\|_{C([g(t), h(t)])} \geq\epsilon\phi(x) \gt 0. $

    By Theorem 3.4, we have $ h_{\infty}-g_{\infty} = \infty $.

    Lemma 3.9. Assume that $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $ and $ \frac{cG'(0)}{ab} > 1 $. If $ h_{0} < l^{\ast} $, then $ h_{\infty}-g_{\infty} = \infty $ provided that $ u_{0} $ and $ v_{0} $ are sufficiently large.

    Proof. We first note that there exists $ \sqrt{T^{\ast}} > l^\ast $ such that $ \lambda_{0}(\sqrt{T^{\ast}}) < 0 $.

    Inspired by the argument of [8,proposition 5.3], we consider

    $ {dφ(12+T+1)φ=˜λ0φ,0<x<1,φ(0)=φ(1)=0. $ (3.4)

    It is well-known that the first eigenvalue $ \widetilde{\lambda}_{0} $ of (3.4) is simple and the corresponding eigenfunction $ \varphi $ can be chosen positive in $ [0, 1) $ and $ \|\varphi\|_{L^{\infty}(-1, 1)} = 1 $. Moreover, one can easily see that $ \widetilde{\lambda}_{0} > 0 $ and $ \varphi'(x) < 0 $ in $ (0, 1] $. We extend $ \varphi $ to $ [-1, 1] $ as an even function. Then clearly

    $ {dφ(12+T+1)sgn(x)φ=˜λ0φ,1<x<1,φ(1)=φ(1)=0. $

    Now we construct a suitable lower solution to (1.4). Define

    $ η(t)=t+ϱ, 0tT,u_(t,x)={m(t+ϱ)kφ(xt+ϱ),0tT, η(t)<x<η(t),0,0tT, |x|η(t), $

    where the constants $ \varrho, \ m, \ k $ are chosen as follows:

    $ 0 \lt \varrho\leq\min\left\{1, h_{0}^{2}\right\}, \ k\geq\widetilde{\lambda}_{0}+a(T^{\ast}+1), \ m\geq\frac{(T^{\ast}+1)^{k}} {2\mu\min\{\varphi'(-1), -\varphi'(1)\}}. $

    Let

    $ tx:={t1x,x[η(T),ϱ) and x=η(t1x),0,x[ϱ,ϱ],t2x,x(ϱ,η(T)] and x=η(t2x) $

    and

    $ v_0(x)={ε2+ε2cos(πϱx),ϱxϱ,0,|x|>ϱ, $

    where we choose $ \varepsilon $ small enough such that

    $ \underline{v}_0(x)\leq v_0(x), \ \forall\ x\in(-\sqrt{\varrho}, \sqrt{\varrho}). $

    Then we define

    $ \underline{v}(t, x) = e^{-bt} \left(\int_{t_x}^{t}e^{b\tau}G(\underline{u}(\tau, x))d\tau +\underline{v}_0(x)\right), \ t_x\leq t\leq T^\ast, \ -\eta(t)\leq x\leq\eta(t). $

    Direct computations yield

    $ u_tdu_xx+βu_x+au_cv_ m(t+ϱ)k+1[kφ+x2t+ϱφ+dφt+ϱφa(t+ϱ)φ] m(t+ϱ)k+1[kφ+(12+T+1)sgn(x)φ+dφa(T+1)φ] m(t+ϱ)k+1[dφ+(12+T+1)sgn(x)φ+˜λ0φ]=0, $

    and

    $ \underline{v}_{t}+b\underline{v}-G(\underline{u}) = 0, \ 0 \lt t\leq T^{\ast}, \ -\eta(t) \lt x \lt \eta(t). $

    For $ x\in[-\sqrt{\varrho}, \sqrt{\varrho}] $, we have $ t_x = 0 $. Then

    $ \underline{v}(0, x) = \underline{v}_0(x)\leq v_0(x), \ \forall\ x\in[-\sqrt{\varrho}, \sqrt{\varrho}]. $

    Moreover,

    $ η(t)+μu_x(t,η(t))=12t+ϱ+μm(t+ϱ)k+12φ(1)0,  t(0,T),η(t)μu_x(t,η(t))=12t+ϱμm(t+ϱ)k+12φ(1)0,  t(0,T). $

    If $ u_{0} $ is sufficiently large such that $ \underline{u}(0, x) = \frac{m}{\varrho^{k}}\varphi\left(\frac{x}{\sqrt{\varrho}}\right) \leq u_{0}(x) $ for $ x\in[-\sqrt{\varrho}, \sqrt{\varrho}] $, then we have

    $ {u_tdu_xxβu_xau_+cv_,0<tT, η(t)<x<η(t),v_tbv_+G(u_),0<tT, η(t)<x<η(t),u_(t,x)=v_(t,x)=0,0tT, xη(t),u_(t,x)=v_(t,x)=0,0tT, xη(t),η(t)μu_x(t,η(t)),0<tT,η(t)μu_x(t,η(t)),0<tT,u_(0,x)u0(x), v_(0,x)v0(x),η(0)<x<η(0). $

    Noting that $ \eta(0) = \sqrt{\varrho}\leq h_{0} $, we can use Remark 2.5 to conclude that $ h(t)\geq\eta(t) $ and $ g(t)\leq-\eta(t) $ in $ [0, T^{\ast}] $. Specially, we obtain $ h(T^{\ast})\geq\eta(T^{\ast}) = \sqrt{T^{\ast}+\varrho} > \sqrt{T^{\ast}} $ and $ g(T^{\ast}) < -\sqrt{T^{\ast}} $. Then

    $ (-l^{\ast}, l^{\ast})\subseteq (-\sqrt{T^{\ast}}, \sqrt{T^{\ast}})\subseteq (g(t), h(t)), \ \forall\ t\geq T^{\ast}. $

    Hence, we have $ h_{\infty}-g_{\infty} = +\infty $ by Lemma 3.8.

    Next, we present the sharp criteria on initial value, which separates spreading and vanishing.

    Theorem 3.10. For some $ \gamma > 0 $ and $ \omega_{1} $ and $ \omega_{2} $ in $ \mathscr{X}(h_{0}) $, let $ (u, v, g, h) $ be a solution of (1.4) with $ (u_0, v_0) = \gamma(\omega_{1}, \omega_{2}) $, then the following statements holds:

    (ⅰ) Assume that $ \frac{cG'(0)}{ab} < 1 $. If $ \frac{G(z)}{z} < \frac{ab}{c} $ for any $ z > 0 $, then vanishing will happen. If $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $, then vanishing will happen for $ u_{0} $ and $ v_{0} $ sufficiently small.

    (ⅱ) Assume that $ \frac{cG'(0)}{ab} > 1 $ and $ 0 < \beta < 2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} $. If $ \frac{G(z)}{z} < \frac{ab}{c} $ for any $ z > 0 $, then vanishing will happen. If $ \frac{G(z_1)}{z_1} > \frac{ab}{c} $ for some $ z_1 > 0 $, then the following will hold:

    (a) If $ h_0>l^\ast $, then spreading will happen; (b) If $ h_0<l^\ast $, then there exists $ \gamma^{\ast}\in(0, \infty) $ such that spreading occurs for $ \gamma>\gamma^{\ast} $, and vanishing happens for $ 0<\gamma\leq\gamma^{\ast} $.

    Proof. This theorem follows from Lemma 3.5, Corollary 3.7, Lemmas 3.8 and 3.9. The conclusion (b) can be proven by the same arguments in [23,Theorem 4.3].

    Finally, we give the asymptotic behavior of (1.4) when spreading happens.

    Theorem 3.11. Assume that $ \frac{cG'(0)}{ab}>1 $, $ 0<\beta<2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} $ and $ \frac{G(z_1)}{z_1}>\frac{ab}{c} $ for some $ z_1>0 $. If $ h_{\infty}-g_{\infty} = \infty $, then

    $ (\underline{u}^\ast(x), \underline{v}^\ast(x))\leq \liminf\limits_{t\rightarrow\infty}(u(t, x), v(t, x))\leq \limsup\limits_{t\rightarrow\infty}(u(t, x), v(t, x))\leq(u^{\ast}, v^{\ast}) $

    for $ x\in\mathbb{R} $, where $ (\underline{u}^\ast(x), \underline{v}^\ast(x)) $ will be given in the proof.

    Proof. We denote by $ (u(t), v(t)) $ the solution of (1.1) with

    $ u(0) = \|u_{0}\|_{L^{\infty}([-h_{0}, h_{0}])}\; \text{ and }\; v(0) = \|v_{0}\|_{L^{\infty}([-h_{0}, h_{0}])}. $

    Applying the comparison principle gives

    $ (u(t, x), v(t, x))\leq(u(t), v(t)) \text{ for } t \gt 0 \text{ and } g(t)\leq x\leq h(t). $

    Since $ \frac{cG'(0)}{ab} > 1 $, $ \lim\limits_{t\rightarrow\infty}(u(t), v(t)) = (u^{\ast}, v^{\ast}) $. Hence,

    $ \limsup\limits_{t\rightarrow\infty}(u(t, x), v(t, x)) \leq(u^{\ast}, v^{\ast}) \text{ uniformly for } x\in\mathbb{R}. $

    By Lemma 2.7, we can find some $ L > l^\ast $ such that $ \lambda_0(L) < 0 $, where $ \lambda_0(L) $ is the principal eigenvalue of problem (2.23) with $ l = L $ and $ \phi(x) $ is the corresponding eigenfunction. For such $ L $, it follows from $ h_\infty-g_\infty = \infty $ that there exists $ T_L $ such that

    $ [-L, L]\subset[g(t), h(t)], \forall\ t\geq T_L. $

    Let $ (\underline{u}(t, x), \underline{v}(t, x)) = \delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right) $, then we can choose small $ \delta $ such that

    $ {u_tdu_xx+βu_x+au_cv_0,t>TL, L<x<L,v_t+bv_G(u_)0,t>TL, L<x<L,u_(t,x)=v_(t,x)=0,tTL, x=L or x=L,u_(TL,x)u(TL,x), v_(TL,x)v(TL,x),L<x<L. $

    Applying the comparison principle gives that

    $ (u(t, x), v(t, x))\geq\delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right), \ t\geq T_L, \ -L\leq x\leq L. $

    We extend $ \delta\left(\phi(x), \left(\frac{G'(0)}{b}+\frac{\lambda_0}{4c}\right)\phi(x)\right) $ to $ (\underline{u}^\ast(x), \underline{v}^\ast(x)) $ by defining

    $ (u_(x),v_(x))={δ(ϕ(x),(G(0)b+λ04c)ϕ(x)),LxL,0,x<L or x>L. $

    Then we have $ \liminf\limits_{t\rightarrow\infty}(u(t, x), v(t, x)) \geq(\underline{u}^\ast(x), \underline{v}^\ast(x)) $ for $ x\in \mathbb R $.

    In this paper, we have dealt with a partially degenerate epidemic model with free boundaries and small advection. At first, we obtain the global existence and uniqueness of the solution. Then the effect of small advection is considered. We have proved that the results is similar to that in [20,23] under the condition $ 0 < \beta < \beta^{\ast} $. But we should explain that, for the case that $ \frac{cG'(0)}{ab} > 1 $ and $ \beta\geq2\sqrt{d\left(\frac{cG'(0)}{b}-a\right)} $, the criteria for spreading and vanishing is hard to get by using the results of eigenvalue problem to construct the suitable upper and lower solution. We will study it in the future. When spreading occurs, the precise long-time behavior also needs a further consideration.

    In order to study the spreading of disease, the asymptotic spreading speed of the spreading fronts is one of the most important subjects. To estimate the precise asymptotic spreading speed, we need to study the corresponding semi-wave problem or some other new technique. This may be not an easy task and deserves further study. We will consider it in another paper.

    Due to the advection term, we find that the spreading barrier $ l^{\ast} $ becomes larger if we increase the size of $ \beta $ for $ \beta\in(0, \beta^{\ast}) $. This means that if $ \beta\in(0, \beta^{\ast}) $, the more lager the size of advection is, the more difficult the disease will spread. This result may provide us a suggestion in controlling and preventing the disease. It may be an effective measure to make the infectious agents move along a certain direction by artificial means.

    We are very grateful to the anonymous referee for careful reading and helpful comments which led to improvements of our original manuscript. The first author was supported by FRFCU (lzujbky-2017-it55) and the second author was partially supported by NSF of China (11731005, 11671180).

    The authors declare there is no conflict of interest.

    [1] Foro Nuclear (2014) Operación a largo plazo de las centrales nucleares españolas. Available from: http://www.foronuclear.org.
    [2] Intergovernmental panel on climate change (IPCC) (2014) Climate change 2014. Impacts, adaptation and vulnerability. Available from: http://ipcc-wg2.gov.
    [3] The World Bank (2014) CO2 Emissions. Available from: http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries.
    [4] Trading Economics (2014) Spain unemployment rate. Available from: http://www.tradingeconomics.com/spain/unemployment-rate.
    [5] Foro Nuclear: Energía (2013) Available from: http://www.foronuclear.org.
    [6] European Comission, European Economy. (2013) Member states' energy dependence: An indicator based assessment. Available from: http://ec.europa.eu/economy_finance/publications/occasional_paper/2013/pdf/ocp145_en.pdf.
    [7] Heras-Saizarbitoria I, Cilleruelo E, Zamanillo I (2011) Public acceptance of renewables and the media: an analysis of the Spanish PV solar experience. Renew Sust Energ Rev 15: 4685-4696. doi: 10.1016/j.rser.2011.07.083
    [8] Special Eurobarometer 364 (2011) Public awareness and acceptance of CO2 capture. Available from: http://ec.europa.eu/public_opinion/archives/ebs/ebs_364_en.pdf.
    [9] Red Eléctrica de España (REE) (2012) The Spanish Electricity System. Available from: http://www.ree.es.
    [10] Solchaga C, Gallego M, Mestre C, et al. (2010) La creación de Red Eléctrica de España, 1982-1985. Available from: http://www.ree.es/sites/default/files/downloadable/creacion_ree.pdf.
    [11] Ley 54/1997 de 27 noviembre del sector eléctrico (1997). Available from: http://www.boe.es.
    [12] CORES (2014) Corporación de Reservas Estratégicas de Productos Petrolíferos, Importaciones de gas a España, diciembre de 2013. Available from: http://www.cores.es.
    [13] Greenpeace (2005) Renovables 2050. Un informe sobre el potencial de las energías renovables en la España peninsular. Available from: http://www.greenpeace.org/espana/es/reports/renovables-2050/.
    [14] Greenpeace (2011) Renovables 100%. Un sistema eléctrico renovable para la España peninsular y su viabilidad económica. Available from: http://www.greenpeace.org/espana/es/Trabajamos-en/Frenar-el-cambio-climatico/Revolucion-Energetica/Renovables-100/.
    [15] Asociación Empresarial Eólica (2012) Impacto económico del sector eólico en España. Available from: http://www.aeeolica.org.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4844) PDF downloads(862) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog