Citation: Chad Walker, Jamie Baxter, Sarah Mason, Isaac Luginaah, Danielle Ouellette. Wind energy development and perceived real estate values in Ontario, Canada[J]. AIMS Energy, 2014, 2(4): 424-442. doi: 10.3934/energy.2014.4.424
[1] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Shiyong Zhang, Qiongfen Zhang . Normalized solution for a kind of coupled Kirchhoff systems. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028 |
[6] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[7] | Lingzheng Kong, Haibo Chen . Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067 |
[8] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[9] | Zijian Wu, Haibo Chen . Multiple solutions for the fourth-order Kirchhoff type problems in $ \mathbb{R}^N $ involving concave-convex nonlinearities. Electronic Research Archive, 2022, 30(3): 830-849. doi: 10.3934/era.2022044 |
[10] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
Our goal of this paper is to consider the existence of nodal solution and ground state solution for the following fractional Kirchhoff equation:
$ {−(a+b‖u‖2K)LKu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω, $
|
(1) |
where
$ \mathcal{L}_Ku(x) = \frac12\int_{\mathbb{R}^{3}}(u(x+y)+u(x-y)-2u(x))K(y)dy,\;x\in\mathbb{R}^{3}, $ |
the kernel
(ⅰ)
(ⅱ) there exists
(ⅲ)
We note that when
$ (-\Delta)^\alpha u(x) = -\frac{C(\alpha)}{2}\int_{\mathbb{R}^{3}}\frac{(u(x+y)+u(x-y)-2u(x))}{|y|^{3+2\alpha}}dy $ |
and in this case
$ \int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}|u(x)-u(y)|^{2}K(x-y)dxdy = \frac{2}{C(\alpha)}\int_{\mathbb{R}^{3}}|(-\Delta)^{\alpha/2} u(x)|^2dx, $ |
where
When
$ {(−Δ)αu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω. $
|
(2) |
Equation (2) is derived from the fractional Schrödinger equation and the nonlinearity
$ (a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u), $
|
(3) |
where
$ utt+(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u). $
|
(4) |
As a special significant case, the nonlocal aspect of the tension arises from nonlocal measurements of the fractional length of the string. For more mathematical and physical background on Schrödinger-Kirchhoff type problems, we refer the readers to [6] and the references therein.
In the remarkable work of Caffarelli and Silvestre [2], the authors express this nonlocal operator
In past few years, some researchers began to search for nodal solutions of Schrödinger type equation with critical growth nonlinearity and have got some interesting results. For example, Zhang [20] considered the following Schrödinger-Poisson system:
$ {−Δu+u+k(x)ϕu=a(x)|u|p−2u+u5,x∈R3,−Δϕ=k(x)u2,x∈R3, $
|
(5) |
where
Wang [17] studies the following Kirchhoff-type equation:
$ {−(a+b∫Ω|∇u|2dx)Δu=|u|4u+λf(x,u), x∈Ω,u=0, x∈∂Ω, $
|
(6) |
where
However, as for fractional Kirchhoff types equation, to the best of our knowledge, few results involved the existence and asymptotic behavior of ground state and nodal solutions in case of critical growth. If
It's worth noting that, the Brouwer degree method used in [18] strictly depends on the nonlinearity
Throughout this paper, we let
$ E = \{u\in X: \int_{\mathbb{R}^{3}}V(x)u^{2}{\text{d}}x < \infty, u = 0\; \rm{a.e. in}\; \mathbb{R}^{3}\backslash\Omega\}, $ |
where the space X introduced by Servadei and Valdinoci ([12,13]) denotes the linear space of Lebesgue measurable functions
$ ((x, y)\rightarrow (u(x)-u(y))\sqrt{K(x-y)}\in L^2((\mathbb{R}^{3}\times\mathbb{R}^{3}) \setminus(\Omega^c\times\Omega^c),dxdy) $ |
with the following norm
$ ||u||^2_X = ||u||^2_{L^2}+\int_{Q}|u(x)-u(y)|^{2}K(x-y)dxdy, $ |
where
$ \langle u,v\rangle = \frac a2\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}(u(x)-u(y))(v(x)-v(y))K(x-y)dxdy +\int_{\Omega}V(x)uvdx, \forall \;u,\;v\in E $ |
and the norm
$ \|u\|^{2} = \frac a2\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}|u(x)-u(y)|^{2}K(x-y)dxdy +\int_{\Omega}V(x)u^{2}dx. $ |
The following result for the space
Lemma 1.1. ([12]) Let
A weak solution
$ 12(a+b‖u‖2K)∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)u(x)v(x)dx−∫Ω|u(x)|2∗α−2u(x)v(x)dx−k∫Ωf(x,u(x))v(x)dx=0, $
|
for any
$ \langle u,v\rangle+b\|u\|_K^{2}(u,v)_K - k\int_{\Omega}f(x,u)vdx-\int_{\Omega}|u|^{2^{\ast}_{\alpha}-2}uvdx = 0,\;\forall v\in E. $ |
As for the function
(f1):
(f2): There exists
(f3):
Remark 1. We note that under the conditions (
The main results can be stated as follows.
Theorem 1.2. Suppose that
Remark 2. The ground state nodal solution
$ J_{ k}(u_{k}) = c_k: = \inf\limits_{u\in\mathcal{M}_{k}}J_{ k}(u), $ |
where
$ u^{+} = \max\{u(x),0\},\quad u^{-} = \min\{u(x),0\}. $ |
We recall that the nodal set of a continuous function
Theorem 1.3. Suppose that
$ J _{ k}({ u_k}) > 2c^{\ast}, $ |
where
Comparing with the literature, the above two results can be regarded as a supplementary of those in [3,4,14,17].
The remainder of this paper is organized as follows. In Section 2, we give some useful preliminaries. In Section 3, we study the existence of ground state and nodal solutions of (1) and we prove Theorems 1.1-1.2.
We define the energy functional associated with equation (1) as follows:
$ Jk(u)=12‖u‖2+b4‖u‖4K−k∫ΩF(x,u)dx−12∗α∫Ω|u|2∗αdx,∀u∈E. $
|
According to our assumptions on
$ ⟨J′k(u),v⟩=⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx,∀u,v∈E. $
|
Note that, since (1) involves pure critical nonlinearity
For fixed
$ H(s,t) = \langle J'_k(su^{+}+tu^{-}),su^{+}\rangle,\;\; G(s,t) = \langle J'_k(su^{+}+tu^{-}),tu^{-}\rangle. $ |
The argument generally used is to modify the method developed in [11]. The nodal Nehari manifold is defined by
$ Mk={u∈E,u±≠0and⟨J′k(u),u+⟩=⟨J′k(u),u−⟩=0}, $
|
(7) |
which is a subset of the Nehari manifold
$ J _{ k}(u) = J _{ k}(u^{+})+J _{ k}(u^{-}), $ |
it brings difficulties to construct a nodal solution.
The following result describes the shape of the nodal Nehari manifold
Lemma 2.1. Assume that
Proof. From
$ |f(x,t)|≤ε|t|+Cε|t|q−1,∀t∈R. $
|
(8) |
By above equality and Sobolev's embedding theorems, we have
$ H(s,t):=s2‖u+‖2+b‖su++tu−‖2K(su++tu−,su+)K−∫Ω|su+|2∗αdx−k∫Ωf(x,su+)su+dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy≥s2‖u+‖2−C1s2∗α‖u+‖2∗α−kεC2s2‖u+‖2−kCεC3sq‖u+‖q. $
|
(9) |
By choosing
$ G(s,t):=t2‖u−‖2+b‖su++tu−‖2K(su++tu−,tu−)K−∫Ω|tu−|2∗αdx−k∫Ωf(x,tu−)tu−dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy>0, $
|
(10) |
for
$ H(δ1,t)>0,G(s,δ1)>0. $
|
(11) |
For any
$ H(δ2,t)≤δ22‖u+‖2+b‖δ2u++tu−‖2K(δ2u++tu−,δ2u+)K−δ22∗α∫R3|u+|2∗αdx+δ2tD(u). $
|
Similarly, we have
$ G(s,δ2)≤δ22‖u−‖2+b‖su++δ2u−‖2K(su++δ2u−,δ2u−)K−δ22∗α∫R3|u−|2∗αdx+sδ2D(u). $
|
By choosing
$ H(δ2,t)<0,G(s,δ2)<0 $
|
(12) |
for all
Following (11) and (12), we can use Miranda's Theorem (see Lemma 2.4 in [17]) to get a positive pair
Lastly, we will prove that
$ s2u‖u+‖2+s2uD(u)+s4ub(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≥s2u‖u+‖2+sutuD(u)+b(s2u‖u+‖2K+t2u‖u−‖2K+2sutuD(u))(s2u‖u+‖2K+sutuD(u))=s2∗αu∫R3|u+|2∗αdx+k∫R3f(x,suu+)suu+dx. $
|
(13) |
On the other hand,
$ ‖u+‖2+D(u)+b(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≤∫R3|u+|2∗αdx+k∫R3f(x,u+)u+dx. $
|
(14) |
From (13) - (14), we can see that
$ (1s2u−1)(‖u+‖2+D(u))≥(s2∗α−4u−1)∫R3|u+|2∗αdx+k∫R3[f(x,suu+)(suu+)3−f(x,u+)(u+)3](u+)4dx. $
|
So we have
Lemma 2.2. There exists
Proof. For any
$ ‖u±‖2+b‖u‖2K(u,u±)K=k∫R3f(x,u±)u±dx+∫R3|u±|2∗αdx. $
|
Hence, in view of (8), we have
$ ‖u±‖2≤kεC1‖u±‖2+kC2‖u±‖q+C3‖u±‖2∗α. $
|
By choosing
$ ‖u±‖≥ρ $
|
(15) |
for some
$ f(x,t)t−4F(x,t)≥0, $
|
(16) |
and
$ Jk(u)=14‖u‖2+(14−12∗α)∫R3|u|2∗αdx+k4∫R3[f(x,u)u−4F(x,u)]dx≥14‖u‖2. $
|
So
Let
$ s2∗αk∫R3|u+|2∗αdx+t2∗αk∫R3|u−|2∗αdx≤‖sku++tku−‖2+b‖sku++tku−‖4K≤2s2k‖u+‖2+2t2k‖u−‖2+4bs4k‖u+‖4K+4bt4k‖u−‖4K, $
|
which implies
$ ‖sknu++tknu−‖2+b‖sknu++tknu−‖4K=∫R3|sknu++tknu−|2∗αdx+kn∫R3f(sknu++tknu−)(sknu++tknu−)dx. $
|
(17) |
Because
$ 0≤ck≤Jk(sku++tku−)≤s2k‖u+‖2+t2k‖u−‖2+2bs4k‖u+‖4K+2bt4k‖u−‖4K, $
|
so
$ u±n→u±inLp(R3)∀p∈(2,2∗α),u±n(x)→u±(x)a.e.x∈R3. $
|
Denote
$ S: = \inf\limits_{u\in E\backslash\{0\}}\frac{\|u\|^{2}}{(\int_{\mathbb{R}^{3}}|u|^{2^{\ast}_{\alpha}}dx)^{\frac{2}{2^{\ast}_{\alpha}}}}. $ |
Sobolev embedding theorem insures that
By
$ ‖u±n‖2−‖u±n−u±‖2=2⟨u±n,u±⟩−‖u±‖2. $
|
By taking
$ \lim\limits_{n\to \infty}\|u^{\pm}_{n}\|^2 = \lim\limits_{n\to \infty}\|u^{\pm}_{n}-u^{\pm}\|^{2}+\|u^{\pm}\|^{2}. $ |
On the other hand, by (8) we have
$ ∫R3F(x,su±n)dx→∫R3F(x,su±)dx. $
|
Then,
$ lim infn→∞Jk(su+n+tu−n)≥s22limn→∞(‖u+n−u+‖2+‖u+‖2)+t22limn→∞(‖u−n−u−‖2+‖u−‖2)+bs44[limn→∞‖u+n−u+‖2K+‖u+‖2K]2+bt44[limn→∞‖u−n−u−‖2K+‖u−‖2K]2+stlim infn→∞D(un)+bs2t24a2lim infn→∞D2(un)+bs2t22lim infn→∞(‖u+n‖2K‖u−n‖2K)+bs3t2alim infn→∞(D(un)‖u+n‖2K)+bst32alim infn→∞(D(un)‖u−n‖2K)−s2∗α2∗αlimn→∞(|u+n−u+|2∗α2∗α+|u+|2∗α2∗α)−t2∗α2∗αlimn→∞(|u−n−u−|2∗α2∗α+|u−|2∗α2∗α)−k∫R3F(x,su+)dx−k∫R3F(x,tu−)dx, $
|
where
$ lim infn→∞Jk(su+n+tu−n)≥Jk(su++tu−)+s22limn→∞‖u+n−u+‖2+t22limn→∞‖u−n−u−‖2−s2∗α2∗αlimn→∞|u+n−u+|2∗α2∗α−t2∗α2∗αlimn→∞|u−n−u−|2∗α2∗α+bs42limn→∞‖u+n−u+‖2K‖u+‖2K+bs44(limn→∞‖u+n−u+‖2K)2+bt42limn→∞‖u−n−u−‖2K‖u−‖2K+bt44(limn→∞‖u−n−u−‖2K)2=Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24, $
|
where
$ A1=limn→∞‖u+n−u+‖2,A2=limn→∞‖u−n−u−‖2,B1=limn→∞|u+n−u+|2∗α2∗α,B2=limn→∞|u−n−u−|2∗α2∗α,A3=limn→∞‖u+n−u+‖2K,A4=limn→∞‖u−n−u−‖2K. $
|
From the inequality above, we deduce that
$ Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24≤ck. $
|
(18) |
We next prove
$ β=α3S32α≤α3(A1(B1)22∗α)32α. $
|
It happens that,
$ α3(A1(B1)22∗α)32α=maxs≥0{s22A1−s2∗α2∗αB1}≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}. $
|
The inequality (18) and
$ β≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}≤ck<β, $
|
which is a contradiction. Thus
Then, we consider the key point to the proof of Theorem 1.1, that is
Similarly, we only prove
Case 1:
$ ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23=maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}, $
|
$ ˉt22A2−ˉt2∗α2∗αB2+bˉt42A4‖u−‖2K+bˉt44A24=maxt≥0{t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24}. $
|
Since
$ φu(su,tu)=max(s,t)∈[0,ˉs]×[0,ˉt]φu(s,t). $
|
If
By direct computation, we get
$ s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23>0, $
|
(19) |
$ t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24>0, $
|
(20) |
for all
$ β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24, $
|
$ β≤ˉt22A2−ˉt2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+s22A1−s2∗α2∗αB1+bˉt42A4‖u−‖2K+bˉt44A24. $
|
In view of (18), it follows that
$ ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck. $
|
It is impossible. The proof of Case 1 is completed.
Case 2:
$ φu(su,tu)=max(s,t)∈[0,ˉs]×[0,∞)φu(s,t). $
|
We need to prove that
$ β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24. $
|
Thus also from (20) and
$ ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck, $
|
which is a contradiction.
Since
$ ⟨J′k(u),u±⟩≤lim infn→∞‖u±n‖2+blim infn→∞‖un‖2K(un,u±n)K−limn→∞∫R3f(x,u±n)u±ndx−limn→∞∫R3|u±n|2∗α+lim infn→∞L(un)≤limn→∞⟨J′k(un),u±n⟩=0. $
|
By Lemma 2.1, we know
$ ck≤Jk(˜u)−14⟨J′k(˜u),˜u⟩=14(‖suu+‖2+‖tuu−‖2)+(14−12∗α)(|suu+|2∗α2∗α+|tuu−|2∗α2∗α)+k4∫R3[f(x,suu+)(suu+)−4F(x,suu+)]dx+k4∫R3[f(x,tuu−)(tuu−)−4F(x,tuu−)]dx≤lim infn→∞[Jk(un)−14⟨J′k(un),un⟩]=ck. $
|
So, we have completed proof of Lemma 2.2.
In this section, we will prove main results.
Proof. Since
$ Jk(su+k+tu−k)<ck. $
|
(21) |
If
$ \|J'_k(v)\|\geq\theta,\; {\text{for}}\; {\text{all}}\; \|v-u_k\|\leq3\delta. $ |
We know by the result (15), if
$ ¯ck:=max∂QI∘g<ck. $
|
(22) |
Let
To finish the proof of Theorem 1.1, one of the key points is to prove that
$ max(s,t)∈ˉQJk(η(1,g(s,t)))<ck. $
|
(23) |
The other is to prove that
$ Jk(η(1,v))≤Jk(η(0,v))=Jk(v),∀v∈E. $
|
(24) |
For
$ Jk(η(1,g(s,t)))≤Jk(g(s,t))<ck. $
|
If
$ Jk(η(1,g(1,1)))≤ck−ε<ck. $
|
Thus (23) holds. Then, let
$ Υ(s,t):=(1s⟨J′k(φ(s,t)),(φ(s,t))+⟩,1t⟨J′k(φ(s,t)),(φ(s,t))−⟩). $
|
The claim holds if there exists
$ ‖g(s,t)−uk‖2=‖(s−1)u+k+(t−1)u−k‖2≥|s−1|2‖u+k‖2>|s−1|2(6δ)2, $
|
and
$ Υ(12,t)=(2⟨J′k(12u+k+tu−k),12u+k⟩,1t⟨J′k(12u+k+tu−k),tu−⟩). $
|
On the other hand, from (9) and
$ H(t,t)=(t2−t4)(‖u+‖2+D(u))+(t4−t2∗α)∫R3|u+|2∗αdx+kt4∫R3(f(x,u+)−f(x,tu+)t3)u+dx. $
|
According to
$ H(12,t)=‖12u+k‖2+t2D(uk)+b(14‖u+k‖2K+t2‖u−k‖2K+taD(uk))(14‖u+k‖2K+t2aD(uk))−(12)2∗α∫R3|u+k|2∗αdx−k∫R3f(x,12u+k)12u+kdx≥H(12,12)>0, $
|
which implies that
$ H(12,t)>0,∀t∈[12,32]. $
|
(25) |
Analogously,
$ H(32,t)=‖32u+k‖2+3t2D(uk)+b(94‖u+k‖2K+t2‖u−k‖2K+3taD(uk))(94‖u+k‖2K+3t2aD(uk))−(32)2∗α∫R3|u+k|2∗αdx−k∫R3f(x,32u+k)32u+kdx≤H(32,32)<0, $
|
that is,
$ H(32,t)<0,∀t∈[12,32]. $
|
(26) |
By the same way,
$ G(s,12)>0,∀s∈[12,32],andG(s,32)>0,∀s∈[12,32]. $
|
(27) |
From (25)-(27), the assumptions of Miranda's Theorem (see Lemma 2.4 in [17]) are satisfied. Thus, there exists
Proof. Recall that
Firstly, we prove that
$ β≤˜t22A−˜t2∗α2∗αB:=maxt≥0{t22A−t2∗α2∗αB}≤maxt≥0{t22A−t2∗α2∗αB+bt44(C2+2C‖vk‖2K)}≤c∗<β. $
|
Which is a contradiction.
Then, we prove that
$ c^*\le J _{ k}(t_vv_k) < J _{ k}(t_vv_k)+\frac{t_v^{2}}{2}A-\frac{t_v^{2^{\ast}_{\alpha}}}{2^{\ast}_{\alpha}}B +\frac{bt_v^{4}}{4}(C^2+2C\|v_k\|_{K}^2)\le c^*. $ |
From the above arguments we know
$ c∗≤Jk(˜v)−14⟨J′k(˜v),˜v⟩≤14‖vk‖2+(14−12∗α)|vk|2∗α2∗α+k4∫R3[f(x,vk)vk−4F(x,vk)]dx=lim infn→∞[Jk(vn)−14⟨J′k(vn),vn⟩]=c∗. $
|
Therefore,
By standard arguments, we can find
$ s_{u^{+}}u^{+}\in \mathcal{N}_k,\;\;\; t_{u^{-}}u^{-}\in \mathcal{N}_k. $ |
Thus, the above fact follows that
$ 2c∗≤Jk(su+u+)+Jk(tu−u−)≤Jk(su+u++tu−u−)<Jk(u++u−)=ck. $
|
[1] | United States Department of Energy, 2012 Renewable Energy Data Book. 2013. Available from: http://www.nrel.gov/docs/fy14osti/60197.pdf. |
[2] | CANWEA, Wind by the numbers in Ontario. Canadian Wind Energy Association, 2014. Available from: http://canwea.ca/wind-energy/ontario/. |
[3] | OSEA, A Green Energy Act for Ontario: Executive Summary. Ontario Sustainable Energy Association, 2009. Available from: http://www.ontario-sea.org/Storage/27/1890_GEA_ExecSum_Jan-09-09_print.pdf. |
[4] | IESO, Energy Output By Fuel Type. Independent Energy System Operator, 2014. Available from: http://ieso-public.sharepoint.com/Pages/Power-Data/Supply.aspx. |
[5] | Government of Ontario, Electricity prices are changing. Find out why. 2011. Available from: http://www.veridian.on.ca/pdf/newsletter_energy-plan_feb-2011.pdf. |
[6] |
Deignan B, Harvey E, Hoffman-Goetz L (2013) Fright factors about wind turbines and health in Ontario newspapers before and after the Green Energy Act. Health Risk Soc 15: 234-250. doi: 10.1080/13698575.2013.776015
![]() |
[7] |
Knopper LD, Ollson CA (2011) Health effects and wind turbines: A review of the literature. Environ Health 10: 78. doi: 10.1186/1476-069X-10-78
![]() |
[8] |
Watson I, Betts S, Rapaport E (2012) Determining appropriate wind turbine setback distances: Perspectives from municipal planners in the Canadian provinces of Nova Scotia, Ontario, and Quebec. Energ Policy 41: 782-789. doi: 10.1016/j.enpol.2011.11.046
![]() |
[9] | Stats Canada, Population, urban and rural by province and territory. 2011. Available from: http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo62g-eng.htm. |
[10] | OWR, Setbacks. Ontario Wind Resistance. 2014. Available from: http://ontario-wind-resistance.org/setbacks/. |
[11] | Heintzelman MD, Tuttle CM (2012) Values in the wind: A hedonic analysis of wind power facilities. Land Econ 88: 571-588. |
[12] | Hoen B, Wiser R, Cappers P, et al. (2011) Wind energy facilities and residential properties: the effect of proximity and view on sales prices. J Real Estate Res 33: 279-316. |
[13] |
Krogh C, Gillis L, Kouwen N, et al. (2011) WindVOiCe, a self-reporting survey: adverse health effects, industrial wind turbines, and the need for vigilance monitoring. Bulletin Sci Technol Soc 31: 334-345. doi: 10.1177/0270467611412551
![]() |
[14] |
McMurtry RY (2011) Toward a case definition of adverse health effects in the environs of industrial wind turbines: facilitating a clinical diagnosis. Bulletin Sci Technol Soc 31: 316-320. doi: 10.1177/0270467611415075
![]() |
[15] |
Songsore E, Buzzelli M (2014) Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns. Energ Policy 69: 285-296. doi: 10.1016/j.enpol.2014.01.048
![]() |
[16] | Walker C, Baxter J, Ouellette D (2014) Adding insult to injury: The development of psychosocial stress in Ontario wind turbine communities. Soc Sci Med [Epub ahead of print]. |
[17] | Gibbons S, Gone with the Wind: Valuing the Visual Impacts of Wind Turbines through House Prices (No. 0159). Spatial Economics Research Centre, LSE, 2014. Available from: http://eprints.lse.ac.uk/58422/. |
[18] | Municipal Property Assessment Corporation, Impact of Industrial Wind Turbines on Residential Property Assessment in Ontario. 2012. Available from: http://www.mpac.ca/pdf/ReportWindTurbines.pdf. |
[19] | Hoen B, The impact of wind power projects on residential property values in the United States: A multi-site hedonic analysis. Lawrence Berkeley National Laboratory, 2010. Available from: http://emp.lbl.gov/sites/all/files/PRESENTATION%20lbnl-2829e.pdf. |
[20] |
Mulvaney KK, Woodson P, Prokopy LS (2013) A tale of three counties: Understanding wind development in the rural Midwestern United States. Energ Policy 56: 322-330. doi: 10.1016/j.enpol.2012.12.064
![]() |
[21] | Jordal-Jorgensen J, Social Assessment of Wind Power: Visual Effect and Noise from Windmills-Quantifying and Valuation. AKF-Institute of Local Government Studies, Denmark, 1996. Available from: http://www.akf/dk/eng/wind0.htm. |
[22] |
Farber S (1998) Undesirable facilities and property values: a summary of empirical studies. Ecol Econ 24: 1-14. doi: 10.1016/S0921-8009(97)00038-4
![]() |
[23] | Van der Horst D (2007) NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energ policy 35: 2705-2714. |
[24] | Atkinson-Palombo C, Hoen B, Relationship between Wind Turbines and Residential Property Values in Massachusetts. University of Connecticut and Lawrence Berkeley National Laboratory, 2014. Available from: http://emp.lbl.gov/sites/all/files/lbnl-6371e_0.pdf. |
[25] | Hoen B, Brown JP, Jackson T, et al. (2014) Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities on Surrounding Property Values. J Real Estate Finan Econ 1-30. |
[26] |
Vyn RJ, McCullough RM (2014) The Effects of Wind Turbines on Property Values in Ontario: Does Public Perception Match Empirical Evidence?. Can J Agr Econ 62: 365-392. doi: 10.1111/cjag.12030
![]() |
[27] | Sterzinger G, The effect of wind development on local property values. Renewable Energy Policy Project, 2003. Available from: http://dekalbcounty.org/PlanningZoningBuilding/FPL/Exhibit%20F%20%28part%205%29.pdf. |
[28] | Poletti P (2005) A Real Estate Study of the Proposed White Oak Wind Energy Center Dodge and Fond Du Lac Counties, Wisconsin. Poletti and Associates. Prepared for Invenergy Wind LLC. |
[29] | Sims S, Dent P (2007) Property stigma wind farms are just the latest fashion, J Property Investment & Finance 25: 626-651. |
[30] |
Lang C, Opaluch JJ, Sfinarolakis G (2014) The Windy City: Property Value Impacts of Wind Turbines in an Urban Setting. Energ Econ 44: 413-421. doi: 10.1016/j.eneco.2014.05.010
![]() |
[31] | Stone A, Bachrach C, Jobe J, et al. (1999). The science of self-report: Implications for research and practice. Psychology Press. |
[32] | Bond S (2008) Attitudes towards the development of wind farms in Australia. Environ Health 8: 19. |
[33] |
Baxter J, Morzaria R, Hirsch R (2013) A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict. Energ Policy 61: 931-943. doi: 10.1016/j.enpol.2013.06.050
![]() |
[34] | Haughton J, Giuffre D, Barrett J, et al., An Economic Analysis of a Wind Farm in Nantucket Sound. Beacon Hill Institute at Suffolk University, 2004. Available from: http://www.beaconhill.org/BHIStudies/Windmills2004/WindFarmArmyCorps.pdf. |
[35] | Kielisch K (2009) Wind Turbine Impact Study: Dodge and Fond Du Lac Counties, WI. Appraisal Group One. Prepared for Calumet County Citizens for Responsible Energy (CCCRE), Calumet County, WI. |
[36] | Khatri M (2004) RICS Wind Farm Research: Impact of Wind Farms on the Value of Residential Property and Agricultural Land. Prepared for Royal Institute of Chartered Surveyors. London, UK. |
[37] | Goldman JC (2006) A Study in the Impact of Windmills on Property Values in Tucker County, West Virginia for the Proposed Beech Ridge Energy, L.L.C. project in Greenbrier County, West Virginia. Goldman Associates Inc. Prepared for Spilman Thomas & Battle, P.L.L.C., Charleston, WV. 51 pages. West Virginia Case No. 05-1590-E-CS. |
[38] | Grover D, Economic Impacts of Wind Power in Kittitas County, WA. ECONorthwest, Prepared for Phoenix Economic Development Group, 2002. Available from: http://www.efsec.wa.gov/kittitaswind/adj/prefiled/edg/80-2.pdf. |
[39] | Eilperin J, Climate Skeptic Group Works to Reverse Renewable Energy Mandates. The Washington Post, 2012. Available from: http://www.washingtonpost.com/national/health-science/climate-skeptic-group-works-to-reverse-renewable-energy-mandates/2012/11/24/124faaa0-3517-11e2-9cfa-e41bac906cc9_story.html. |
[40] | Mistler S, Skeptics Blast Study Making Energy Claims. The Portland Press Herald, 2012. Available from: http://www.pressherald.com/2012/11/26/skeptics-blast-study-making-energy-claims_2012-11-27/ |
[41] |
Nissenbaum M, Aramini J, Hanning C (2012) Effects of industrial wind turbine noise on sleep and health. Noise Health 14: 237-243. doi: 10.4103/1463-1741.102961
![]() |
[42] | Lansink B, Case Studies: Diminution/Change in Price. Lansink Appraisals and Consulting, 2013. Availabe from: http://www.lansinkappraisals.com/downloads/CaseStudy_DiminutionInValue_InjuriousAffection_WindTurbines.pdf. |
[43] |
Baxter J (2009) A quantitative assessment of the insider/outsider dimension of the cultural theory of risk and place. J Risk Res 12: 771-791. doi: 10.1080/13669870802579806
![]() |
[44] | Hill SD, Knott JD (2010) Too close for comfort: Social controversies surrounding wind farm noise setback policies in Ontario. Renewable Energy Law & Policy Rev. 153. |
[45] |
Kasperson RE, Renn O, Slovic P, et al. (1988) The social amplification of risk: A conceptual framework. Risk Anal 8:177-187. doi: 10.1111/j.1539-6924.1988.tb01168.x
![]() |
[46] | Bosley P, Bosley K (1988) Public acceptability of California’s wind energy developments: three studies. Wind Eng 12: 311-318. |
[47] | Gipe P (1995) Wind energy comes of age (Vol. 4). John Wiley & Sons. |
[48] |
Sims S, Dent P, Oskrochi G (2008) Modelling the impact of wind farms on house prices in the UK. Int J Strategic Property Manage 12: 251-269. doi: 10.3846/1648-715X.2008.12.251-269
![]() |
[49] | Giorgi AP, Giorgi B (2008) Phenomenological psychology. The SAGE handbook of qualitative research in psychology, 165-179. |
[50] | Pollio HR, Thompson CJ (1997) The phenomenology of everyday life: Empirical investigations of human experience. Cambridge University Press. |
[51] |
Saunders P (1989) The meaning of ‘home’in contemporary English culture. Housing Stud 4: 177-192. doi: 10.1080/02673038908720658
![]() |
[52] | Saunders P (1986) Social Theory and the Urban Question. London: Hutchinson. |
[53] |
Saunders P (1984) Beyond housing classes: the sociological significance of private property rights in means of consumption. Int J Urban Regional Res 8: 202-227. doi: 10.1111/j.1468-2427.1984.tb00608.x
![]() |
[54] |
Dupuis A, Thorns D (1998) Home, Home Ownership and the Search for Ontological Security. Sociological Rev 46: 24-47. doi: 10.1111/1467-954X.00088
![]() |
[55] | Dunn JR (2000) Housing and health inequalities: review and prospects for research. Housing Stud 15: 341e366. |
[56] | Howden-Chapman P (2004) Housing standards: a glossary of housing and health. J Epidemiol Commun H 58: 162e168. |
[57] | Kearns A, Hiscock R, Ellaway A, et al. (2000) ‘Beyond four walls’. The psycho-social benefits of home: evidence from West Central Scotland. Housing Stud 15: 387e410. |
[58] | Pevalin DJ, Taylor MP, Todd J (2008) The Dynamics of unhealthy housing in the UK: a panel data analysis. Housing Stud 23: 679e695. |
[59] |
Arku G, Luginaah I, Mkandawire P, et al. (2011) Housing and health in three contrasting neighbourhoods in Accra, Ghana. Soc Sci Med 72: 1864-1872. doi: 10.1016/j.socscimed.2011.03.023
![]() |
[60] | Benjamin DN, Stea D, Arén E (1995) The Home: Words, Interpretations, Meanings and Environments. Avebury. |
[61] |
Ellaway A, Macintyre S (1998) Does housing tenure predict health in the UK because it exposes people to different levels of housing related hazards in the home or its surroundings? Health Place 4: 141-150. doi: 10.1016/S1353-8292(98)00006-9
![]() |
[62] |
Evans GW, Wells NM, Moch A (2003) Housing and mental health: A review of the evidence and a methodological and conceptual critique. J Soc Iss 59: 475-500. doi: 10.1111/1540-4560.00074
![]() |
[63] | Leavitt J, Loukaitou-Sideris A (1995) A Decent Home and a suitable environment-dilemmas of public-housing residents in Los Angeles. J Architect Plan Res 12: 221-239. |
[64] |
Luginaah I, Arku G, Baiden P (2010) Housing and health in Ghana: The psychosocial impacts of renting a home. Int J Environ Res Public Health 7: 528-545. doi: 10.3390/ijerph7020528
![]() |
[65] |
Mueller EJ, Tighe JR (2007) Making the case for affordable housing: Connecting housing with health and education outcomes. J Plan Literature 21: 371-385. doi: 10.1177/0885412207299653
![]() |
[66] |
Nettleton S, Burrows R (1998) Mortgage debt, insecure home ownership and health: an exploratory analysis. Sociol Health Illness 20: 731-753. doi: 10.1111/1467-9566.00127
![]() |
[67] |
Dunn JR (2002) Housing and inequalities in health: a study of socioeconomic dimensions of housing and self-reported health from a survey of Vancouver residents. J Epidemiol Commun H 56: 671-681. doi: 10.1136/jech.56.9.671
![]() |
[68] |
Shaw M (2004) Housing and public health. Annu Rev Public Health 25: 397-418. doi: 10.1146/annurev.publhealth.25.101802.123036
![]() |
[69] |
Eser SG, Luloff AE (2003) Community controversy over a proposed limestone quarry. Soc Nat Resour 16: 793-806. doi: 10.1080/08941920309169
![]() |
[70] |
Krannich RS, Schreyer R, Cadez G (1988) Recreation impacts of western energy development. Soc Nat Resour 1: 31-43. doi: 10.1080/08941928809380636
![]() |
[71] | Graber EE (1974) Newcomers and oldtimers: Growth and change in a mountain town. Rural Sociol 39: 503-513. |
[72] | Mason SA, Dixon J, Mambulu F, et al. (2014) Management challenges of urban biosolids: narratives around facility siting in rural Ontario. J Environ Plan Manage [ahead-of-print] 1-21. |
[73] | Smith MD, Krannich RS (2000) “Culture Clash” Revisited: Newcomer and Longer-Term Residents Attitudes Toward Land Use, Development, and Environmental Issues in Rural Communities in the Rocky Mountain West. Rural Sociol 65: 396-421. |
[74] |
Devine-Wright P, Howes Y (2010) Disruption to place attachment and the protection of restorative environments: A wind energy case study. J Environ Psychol 30: 271-280. doi: 10.1016/j.jenvp.2010.01.008
![]() |
[75] | Charmaz K (2003) Grounded theory: Obejectivist and constructivist methods. In: Denzin N.K., Lincoln Y.S., Strategies of qualitative inquiry, 2 Eds., London: Sage Publications, 249-291. |
[76] | Strauss A, Corbin J (1997) Grounded theory in practice. London: Sage Publications. |
[77] |
Walker C, Baxter J, Ouellette D (2014) Beyond rhetoric to understanding determinants of wind turbine support and conflict in two Ontario, Canada communities. Environ Plan A 46: 730-745. doi: 10.1068/a130004p
![]() |
[78] |
Browne K (2005) Snowball sampling: using social networks to research non-heterosexual women. Int J Soc Res Meth 8: 47-60. doi: 10.1080/1364557032000081663
![]() |
[79] |
Heckathorn DD (2002) Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Soc Probs 49: 11. doi: 10.1525/sp.2002.49.1.11
![]() |
[80] |
Noy C (2008) Sampling knowledge: The hermeneutics of snowball sampling in qualitative research. Int J Soc Res Meth 11: 327-344. doi: 10.1080/13645570701401305
![]() |
[81] | Cutter SL (1993) Living with risk: the geography of technological hazards. London: Edward Arnold, 214. |
[82] |
Gross C (2007) Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance. Energ Policy 35: 2727-2736. doi: 10.1016/j.enpol.2006.12.013
![]() |
[83] |
Cowell R, Bristow G, Munday M (2011) Acceptance, acceptability and environmental justice: the role of community benefits in wind energy development. J Environ Plan Manage 54: 539-557. doi: 10.1080/09640568.2010.521047
![]() |
[84] |
Devine-Wright P (2005) Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energ 8: 125-139. doi: 10.1002/we.124
![]() |
[85] | Thomas W, Thomas D (1928) The Child in America: Behavior Problems and Progress. New York: Knopf. |
[86] |
Palmquist RB (1992) Valuing localized externalities. J Urban Econ 31: 59-68. doi: 10.1016/0094-1190(92)90032-G
![]() |
[87] |
Fiorino DJ (1990) Citizen participation and environmental risk: A survey of institutional mechanisms. Sci Technol Hum Value 15: 226-243. doi: 10.1177/016224399001500204
![]() |
[88] |
Renn O (1998) Three decades of risk research: accomplishments and new challenges. J Risk Res 1: 49-71. doi: 10.1080/136698798377321
![]() |
[89] | Short L (2002) Wind power and English landscape identity. In: Pasqualetti M., Gipe P., Righter R., Wind power in view: Energy landscapes in a crowded world, New York: Academic Press, 43-58. |
[90] |
Woods M (2003) Conflicting environmental visions of the rural: windfarm development in Mid Wales. Sociologia Ruralis 43: 271-288. doi: 10.1111/1467-9523.00245
![]() |
[91] |
Chapman S, George AS, Waller K, et al. (2013) The pattern of complaints about Australian wind farms does not match the establishment and distribution of turbines: Support for the psychogenic, ‘communicated disease’ hypothesis. PloS One 8: e76584. doi: 10.1371/journal.pone.0076584
![]() |
[92] | Chapman S (2012) The sickening truth about wind farm syndrome. New Sci 216: 26-27. |
[93] |
Krohn S, Damborg S (1999) On public attitudes towards wind power. Renew Energ 16: 954-960. doi: 10.1016/S0960-1481(98)00339-5
![]() |
[94] |
Johansson M, Laike T (2007) Intention to respond to local wind turbines: the role of attitudes and visual perception. Wind Energ 10: 435-451. doi: 10.1002/we.232
![]() |
[95] |
Jones CR, Eiser JR (2010) Understanding ‘local’ opposition to wind development in the UK: How big is a backyard?. Energ Policy 38: 3106-3117. doi: 10.1016/j.enpol.2010.01.051
![]() |
[96] | Health Canada. Health Canada Wind Turbine Noise and Health Study Design Consultation. Environmental and Workplace Health. Government of Canada, 2013. Available from: http://www.hc-sc.gc.ca/ewh-semt/consult/_2013/wind_turbine-eoliennes/index-eng.php. |
1. | Yue Wang, Wei Wei, Ying Zhou, The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations, 2023, 12, 2075-1680, 45, 10.3390/axioms12010045 |