We consider the initial boundary value problem for the compressible Navier-Stokes equations of barotropic type. It is well-known that the equations maintain its structure nearly invariant under the scaling invariance and by the Fujita–Kato principle, the problem can be solved in the scaling invariant homogeneous Besov space locally in time for the Cauchy problem. We show the initial boundary value problem of the system with $ 0 $-Dirichlet boundary condition has a unique local solution in the nearly half Euclidean space. We employ the Lagrangian transform to transfer the equation in the Lagrangian coordinate, and flattening the boundary function to the half space and show the local well-posedness of the system. The key for the proof is employing end-point $ L^1 $ maximal regularity for the parabolic equations in half space shown in [
Citation: Noboru Chikami, Takayoshi Ogawa, Senjo Shimizu. Local well-posedness for the initial boundary value problem of the scaling critical compressible Navier–Stokes equations in nearly half space[J]. Communications in Analysis and Mechanics, 2025, 17(3): 749-778. doi: 10.3934/cam.2025030
We consider the initial boundary value problem for the compressible Navier-Stokes equations of barotropic type. It is well-known that the equations maintain its structure nearly invariant under the scaling invariance and by the Fujita–Kato principle, the problem can be solved in the scaling invariant homogeneous Besov space locally in time for the Cauchy problem. We show the initial boundary value problem of the system with $ 0 $-Dirichlet boundary condition has a unique local solution in the nearly half Euclidean space. We employ the Lagrangian transform to transfer the equation in the Lagrangian coordinate, and flattening the boundary function to the half space and show the local well-posedness of the system. The key for the proof is employing end-point $ L^1 $ maximal regularity for the parabolic equations in half space shown in [
| [1] | T. Ogawa, S. Shimizu, Maximal $L^1$-regularity for parabolic initial-boundary value problems with inhomogeneous data, J. Evol. Equ., 22 (2022). https://doi.org/10.1007/s00028-022-00778-7 |
| [2] |
J. Nash, Le problḿe de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France, 90 (1962), 487–497. https://doi.org/10.24033/bsmf.1586 doi: 10.24033/bsmf.1586
|
| [3] |
N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid, Kōdai Math. Sem. Rep., 23 (1971), 60–120. https://doi.org/10.2996/kmj/1138846265 doi: 10.2996/kmj/1138846265
|
| [4] |
A. Matsumura, N. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322
|
| [5] |
A. Matsumura, N. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445–464. https://doi.org/10.1007/BF01214738 doi: 10.1007/BF01214738
|
| [6] |
D. Hoff, K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603–676. https://doi.org/10.1512/iumj.1995.44.2003 doi: 10.1512/iumj.1995.44.2003
|
| [7] |
P. Secchi, On the motion of gaseous stars in the presence of radiation, Commun. Partial Differ. Equ., 15 (1990), 185–204. https://doi.org/10.1080/03605309908820683 doi: 10.1080/03605309908820683
|
| [8] |
P. Secchi, On the uniqueness of motion of viscous gaseous stars, Math. Methods Appl. Sci., 13 (1990), 391–404. https://doi.org/10.1002/mma.1670130504 doi: 10.1002/mma.1670130504
|
| [9] |
H. Fujita, T. Kato, On Navier-Stokes initial value problem. I, Arch. Rat. Mech. Anal., 46 (1964), 269–315. https://doi.org/10.1007/BF00276188 doi: 10.1007/BF00276188
|
| [10] |
T. Kato, Strong $L^p$ - solution of the Navier-Stokes equation in $ \mathbb R^m$ with applications to weak solutions, Math. Z., 187 (1984), 471–480. https://doi.org/10.1007/BF011741824 doi: 10.1007/BF011741824
|
| [11] |
H. Koch, D. Tataru, Well-posedness foir the Navier-Stokes equations, Adv. Math., 154 (2001), 22–35. https://doi.org/10.1006/aima.2000.1937 doi: 10.1006/aima.2000.1937
|
| [12] |
J. Bourgain, N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233–2247. https://doi.org/10.1016/j.jfa.2008.07.008 doi: 10.1016/j.jfa.2008.07.008
|
| [13] |
B. Wang, Ill-posedness for the Navier-Stokes equations in critical Besov spaces $\dot{B}^{-1}_{\infty, q}$, Adv. Math., 268 (2015), 350–372. https://doi.org/10.1016/j.aim.2014.09.024 doi: 10.1016/j.aim.2014.09.024
|
| [14] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
|
| [15] |
T. Ohyama, Interior regularity of weak solutions of the time-dependent Navier-Stokes equation, Proc. Japan Acad., 36 (1960), 273–277. https://doi.org/10.3792/pja/1195524029 doi: 10.3792/pja/1195524029
|
| [16] |
G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pure. Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664
|
| [17] | E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004. |
| [18] | P. L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998. |
| [19] |
R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. https://doi.org/10.1007/s002220000078 doi: 10.1007/s002220000078
|
| [20] |
R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy Soc. Edinburgh, 133 (2003), 1311–1334. https://doi.org/10.1017/S030821050000295X doi: 10.1017/S030821050000295X
|
| [21] |
R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373–1397. https://doi.org/10.1080/03605300600910399 doi: 10.1080/03605300600910399
|
| [22] |
R. Danchin, A Lagrangian approach for the compressible Navier-Stokes equations, Annales de l'Institut Fourier, 64 (2014), 753–791. https://doi.org/10.5802/aif.2865 doi: 10.5802/aif.2865
|
| [23] |
F. Charve, R. Danchin, A global exsistence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch Rat. Mech. Anal, 198 (2010), 233–271. https://doi.org/10.1007/s00205-010-0306-x doi: 10.1007/s00205-010-0306-x
|
| [24] |
B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262–2295. https://doi.org/10.1016/j.jde.2011.06.013 doi: 10.1016/j.jde.2011.06.013
|
| [25] |
B. Haspot, Exsistence of global strong solutions in critical spaces for barotoropic viscous fluid, Arch. Rat. Mech. Anal., 202 (2011), 427–460. https://doi.org/10.1007/s00205-011-0430-2 doi: 10.1007/s00205-011-0430-2
|
| [26] | Z. Guo, M. Yan, A. Z. Zhang, On the well-posedness of the compreessible Navier-Stokes equations, preprint, arXive: 2409.01031v1. |
| [27] |
N. Chikami, R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435–3467. https://doi.org/10.1016/j.jde.2015.01.012 doi: 10.1016/j.jde.2015.01.012
|
| [28] |
Q. Chen, C. Miao, Z. Zhang, On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces, Rev. Mat. Iberoam., 31 (2015), 1375–1402. https://doi.org/10.4171/rmi/872 doi: 10.4171/rmi/872
|
| [29] |
J. Chen, R. Wan, Ill-posedness for the compressible Navier-Stokes equations with the velocity in $L^6$ framework, J. Inst. Math. Jussieu, 18 (2019), 829–854. https://doi.org/10.1017/S1474748017000238 doi: 10.1017/S1474748017000238
|
| [30] |
T. Iwabuchi, T. Ogawa, Ill-posedness for thecompressible Navier-Stokes equations under barotropic condition in limiting Besov spaces, J. Math. Soc. Japan, 74 (2022), 353–394. https://doi.org/10.2969/jmsj/81598159 doi: 10.2969/jmsj/81598159
|
| [31] |
R. Danchin, P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space, J. Funct. Anal., 256 (2009), 881–927. https://doi.org/10.1016/j.jfa.2008.11.019 doi: 10.1016/j.jfa.2008.11.019
|
| [32] |
R. Danchin, P. B. Mucha, A Lagrangian approach for the incompressible Navier- Stokes equations with variable density, Comm. Pure Appl. Math., 65 (2012), 1458–1480. https://doi.org/10.1002/cpa.21409 doi: 10.1002/cpa.21409
|
| [33] |
R. Danchin, P. Tolksdorff, Critical regularity issues for the compressible Navier-Stokes system in bounded domains, Math. Ann., 387 (2023), 1903–1959. https://doi.org/10.1007/s00208-022-02501-w doi: 10.1007/s00208-022-02501-w
|
| [34] | R. Danchin, M. Hieber, P. Mucha, P. Tolksdorff, Free boundary problems via Da Prato-Grisvard theory, arXiv: 2011.07918. |
| [35] |
T. Ogawa, S. Shimizu, Maximal $L^1$-regularity and free boundary problem for the incompressible Navier–Stokes equations in critical spaces, J. Math. Soc. Japan, 76 (2024), 593–672. https://doi.org/10.2969/jmsj/88288828 doi: 10.2969/jmsj/88288828
|
| [36] |
T. Ogawa, S. Shimizu, Free boundary problems of the incompressible Navier-Stokes equations with non-flat initial surface in the critical space, Math. Ann., 390 (2024), 3155–3219. https://doi.org/10.1007/s00208-024-02823-x doi: 10.1007/s00208-024-02823-x
|
| [37] | I. Denisova, V. A. Solonnikov, Local and global solvability of free boundary problems for the compressible Navier–Stokes equarions near equilibria, In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, 2018, 1947–2035. https://doi.org/10.1007/978-3-319-13344-7_51 |
| [38] | J. Bergh, J. Löfström, Interpolation Spaces: an introduction, Springer-Verlag, Berlin, 1976. https://doi.org/10.1007/978-3-642-66451-9 |
| [39] | H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York-Oxford, 1978. |
| [40] | H. Triebel, Theory of function spaces, Birkhäuser, Basel, 1983. https://doi.org/10.1007/978-3-0346-0416-1 |
| [41] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematische Wisssenshaften 343, Springer-Verlag, Berlin-Heidelberg-Dordrecht-London-New York 2011. |
| [42] |
H. Abidi, M. Paicu, Existence globale pour un fluide inhomogène, Ann. Inst. Fourier (Grenoble), 57 (2007), 883–917. https://doi.org/10.5802/aif.2280 doi: 10.5802/aif.2280
|
| [43] | G. Da Prato, P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationelles, J. Math. Pure Appl., 54 (1975), 305–387. |
| [44] |
R. Denk, M. Hieber, J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of AMS, 166 (2003), 788. https://doi.org/10.1090/memo/0788 doi: 10.1090/memo/0788
|
| [45] |
R. Denk, M. Hieber, J. Prüss, Optimal $L_p$-$L_q$-regularity for parabolic problems with inhomogeneous boundary data, Math. Z., 257 (2007), 193–224. https://doi.org/10.1007/s00209-007-0120-9 doi: 10.1007/s00209-007-0120-9
|
| [46] |
G. Dore, Maximal regularity in $L^p$ spaces for an abstract Cauchy problem, Adv. Differential Equations, 5 (2000), 293–322. https://doi.org/10.57262/ade/1356651386 doi: 10.57262/ade/1356651386
|
| [47] |
G. Dore, A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189–201. https://doi.org/10.1007/BF01163654 doi: 10.1007/BF01163654
|
| [48] | P. C. Kunstmann, L. Weis, Maximal $L_p$ regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus, In: Functional analytic methods for evolution equations, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, 65–311. https://doi.org/10.1007/978-3-540-44653-8_2 |
| [49] |
L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann., 319 (2001), 735–758. https://doi.org/10.1007/PL00004457 doi: 10.1007/PL00004457
|
| [50] |
T. Ogawa, S. Shimizu, End-point maximal $L^1$-regularity for the Cauchy problem to a parabolic equation with variable coefficients, Math. Ann., 365 (2016), 661–705. https://doi.org/10.1007/s00208-015-1279-8 doi: 10.1007/s00208-015-1279-8
|
| [51] | P. L. Lizorkin, Properties of functions of class $\Lambda^r_{p, \theta}$, Trudy Mat. Inst. Steklov, 131 (1974), 158–181. |
| [52] |
J. Peetre, On spaces of Triebel-Lizorkin type, Arch. Mat., 11 (1975), 123–130. https://doi.org/10.1007/BF02386201 doi: 10.1007/BF02386201
|
| [53] |
H. Triebel, Spaces of distributions of Besov type in Euclidean $n$-space, Duality, interpolation, Ark. Mat., 11 (1973), 13–64. https://doi.org/10.1007/BF02388506 doi: 10.1007/BF02388506
|