Research article Special Issues

The sharp lifespan for a system of multiple speed wave equations: Radial case

  • Published: 01 July 2025
  • 35L05, 35L71, 35A01

  • Ohta examined a system of multiple speed wave equations with small initial data and demonstrated a finite time blowup. We show, in the radial case, that the same system exists almost globally with the same lifespan as a lower bound. To do this, we use integrated local energy estimates, $ r^p $ weighted local energy estimates, the Morawetz estimate that results from using the scaling vector field as a multiplier, and mixed-speed ghost weights.

    Citation: Marvin Koonce, Jason Metcalfe. The sharp lifespan for a system of multiple speed wave equations: Radial case[J]. Communications in Analysis and Mechanics, 2025, 17(3): 662-682. doi: 10.3934/cam.2025026

    Related Papers:

  • Ohta examined a system of multiple speed wave equations with small initial data and demonstrated a finite time blowup. We show, in the radial case, that the same system exists almost globally with the same lifespan as a lower bound. To do this, we use integrated local energy estimates, $ r^p $ weighted local energy estimates, the Morawetz estimate that results from using the scaling vector field as a multiplier, and mixed-speed ghost weights.



    加载中


    [1] M. Ohta, Counterexample to global existence for systems of nonlinear wave equations with different propagation speeds, Funkcial. Ekvac., 46 (2003), 471–477. https://doi.org/10.1619/fesi.46.471 doi: 10.1619/fesi.46.471
    [2] H. Lindblad, On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math., 43 (1990), 445–472. https://doi.org/10.1002/cpa.3160430403 doi: 10.1002/cpa.3160430403
    [3] J. Metcalfe, T. Rhoads, Long-time existence for systems of quasilinear wave equations, Matematica, 2 (2023), 37–84. https://doi.org/10.1007/s44007-022-00036-9 doi: 10.1007/s44007-022-00036-9
    [4] S. Klainerman, T. C. Sideris, On almost global existence for nonrelativistic wave equations in $3$D, Comm. Pure Appl. Math., 49 (1996), 307–321. https://doi.org/10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H doi: 10.1002/(SICI)1097-0312(199603)49:3%3C307::AID-CPA4%3E3.0.CO;2-H
    [5] S. Klainerman, The null condition and global existence to nonlinear wave equations, In Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI (1986), 293–326.
    [6] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math., 39 (1986), 267–282. https://doi.org/10.1002/cpa.3160390205 doi: 10.1002/cpa.3160390205
    [7] T. C. Sideris, S. Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477–488. https://doi.org/10.1137/S0036141000378966 doi: 10.1137/S0036141000378966
    [8] T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math., 151 (2000), 849–874. https://doi.org/10.2307/121050 doi: 10.2307/121050
    [9] C. D. Sogge. Global existence for nonlinear wave equations with multiple speeds. In Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), volume 320 of Contemp. Math., Amer. Math. Soc., Providence, RI (2003), 353–366. https://doi.org/10.1090/conm/320/05618
    [10] J. Metcalfe, M. Nakamura, C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391–472. https://doi.org/10.4099/math1924.31.391 doi: 10.4099/math1924.31.391
    [11] J. Metcalfe, M. Nakamura, C. D. Sogge, Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains, Forum Math., 17 (2005), 133–168. https://doi.org/10.1515/form.2005.17.1.133 doi: 10.1515/form.2005.17.1.133
    [12] M. Keel, H. F. Smith, C. D. Sogge, Almost global existence for some semilinear wave equations, J. Anal. Math., 87 (2002), 265–279. https://doi.org/10.1007/BF02868477 doi: 10.1007/BF02868477
    [13] M. Keel, H. F. Smith, C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc., 17 (2004), 109–153. https://doi.org/10.1090/S0894-0347-03-00443-0 doi: 10.1090/S0894-0347-03-00443-0
    [14] J. Metcalfe, C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75–117. https://doi.org/10.1007/s00222-004-0383-2 doi: 10.1007/s00222-004-0383-2
    [15] J. Metcalfe, C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188–209. https://doi.org/10.1137/050627149 doi: 10.1137/050627149
    [16] J. Metcalfe, C. D. Sogge, Global existence of null-form wave equations in exterior domains, Math. Z., 256 (2007), 521–549. https://doi.org/10.1007/s00209-006-0083-2 doi: 10.1007/s00209-006-0083-2
    [17] C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A, 306 (1968), 291–296. https://doi.org/10.1098/rspa.1968.0151 doi: 10.1098/rspa.1968.0151
    [18] M. Dafermos, I. Rodnianski, A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, In XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, (2010), 421–432. https://doi.org/10.1142/9789814304634_0032
    [19] S. Alinhac, The null condition for quasilinear wave equations in two space dimensions Ⅰ, Invent. Math., 145 (2001), 597–618. https://doi.org/10.1007/s002220100165 doi: 10.1007/s002220100165
    [20] C. S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), 561–568. https://doi.org/10.1002/cpa.3160140327 doi: 10.1002/cpa.3160140327
    [21] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math., 38 (1985), 321–332. https://doi.org/10.1002/cpa.3160380305 doi: 10.1002/cpa.3160380305
    [22] J. Metcalfe, D. Tataru, M. Tohaneanu, Price's law on nonstationary space-times, Adv. Math., 230 (2012), 995–1028. https://doi.org/10.1016/j.aim.2012.03.010 doi: 10.1016/j.aim.2012.03.010
    [23] B. Bechtold, J. Metcalfe, On a weakly null multiple speed system of wave equations, Work in progress.
    [24] S. Katayama, Lifespan for radially symmetric solutions to systems of semilinear wave equations with multiple speeds, Osaka J. Math., 45 (2008), 691–717.
    [25] J. Metcalfe, A. Stewart, On a system of weakly null semilinear wave equations, Anal. Math. Phys., 12 (2022), 125. https://doi.org/10.1007/s13324-022-00730-5 doi: 10.1007/s13324-022-00730-5
    [26] T. C. Sideris, B. Thomases, Local energy decay for solutions of multi-dimensional isotropic symmetric hyperbolic systems, J. Hyperbolic Differ. Equ., 3 (2006), 673–690. https://doi.org/10.1142/S0219891606000975 doi: 10.1142/S0219891606000975
    [27] J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not., 2005 (2005), 187–231. With an appendix by Igor Rodnianski. https://doi.org/10.1155/IMRN.2005.187 doi: 10.1155/IMRN.2005.187
    [28] J. Metcalfe, J. Sterbenz, D. Tataru, Local energy decay for scalar fields on time dependent non-trapping backgrounds, Amer. J. Math., 142 (2020), 821–883. https://doi.org/10.1353/ajm.2020.0019 doi: 10.1353/ajm.2020.0019
    [29] K. Hidano, C. Wang, K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations, 17 (2012), 267–306. https://doi.org/10.57262/ade/1355703087 doi: 10.57262/ade/1355703087
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(773) PDF downloads(76) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog