Citation: Giuseppe Zanotti. Methodological trends in structural biology[J]. AIMS Biophysics, 2021, 8(3): 264-266. doi: 10.3934/biophy.2021020
Related Papers:
[1]
Hsiu-Chuan Wei .
Mathematical modeling of ER-positive breast cancer treatment with AZD9496 and palbociclib. AIMS Mathematics, 2020, 5(4): 3446-3455.
doi: 10.3934/math.2020223
[2]
Inmaculada Galván-Sánchez, Alexis J. López-Puig, Margarita Fernández-Monroy, Sara M. González-Betancor .
The mediating role of mathematical literacy in first-year educational outcomes in Business Administration and Management degrees: A gender-based analysis. AIMS Mathematics, 2024, 9(11): 29974-29999.
doi: 10.3934/math.20241448
Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen .
Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850.
doi: 10.3934/math.2022660
[5]
Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas .
Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402.
doi: 10.3934/math.20241284
[6]
Arsalan D. Mizhidon .
A generalized mathematical model for a class of mechanical systems with lumped and distributed parameters. AIMS Mathematics, 2019, 4(3): 751-762.
doi: 10.3934/math.2019.3.751
[7]
Valeriy Rozenberg .
On a problem of dynamical input reconstruction for a system of special type under conditions of uncertainty. AIMS Mathematics, 2020, 5(5): 4108-4120.
doi: 10.3934/math.2020263
[8]
Irina Volinsky, Svetlana Bunimovich-Mendrazitsky .
Mathematical analysis of tumor-free equilibrium in BCG treatment with effective IL-2 infusion for bladder cancer model. AIMS Mathematics, 2022, 7(9): 16388-16406.
doi: 10.3934/math.2022896
[9]
Julian Osorio, Carlos Trujillo, Diego Ruiz .
Construction of a cryptographic function based on Bose-type Sidon sets. AIMS Mathematics, 2024, 9(7): 17590-17605.
doi: 10.3934/math.2024855
[10]
A. M. Mishra, D. Kumar, S. D. Purohit .
Unified integral inequalities comprising pathway operators. AIMS Mathematics, 2020, 5(1): 399-407.
doi: 10.3934/math.2020027
References
[1]
Garman EF (2014) Developments in x-ray crystallographic structure determination of biological macromolecules. Science 343: 1102-1108. doi: 10.1126/science.1247829
[2]
Woolfson MM (2018) The development of structural x-ray crystallography. Phys. Scr. 93: 032501. doi: 10.1088/1402-4896/aa9c30
[3]
Monaco S, Gordon E, Bowler MW, et al. (2013) Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF. J Appl Crystallogr 46: 804-810. doi: 10.1107/S0021889813006195
[4]
Liebschner D, Afinine PV, Baker ML, et al. (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D 75: 861-877. doi: 10.1107/S2059798319011471
Chayen NE, Helliwell JR, Snell EH (2010) Macromolecular crystallization and crystal perfection. IUCr Monographs on Crystallography Oxford University Press.
[7]
Ruska E (1987) The development of the electron microscope and of electron microscopy (Nobel Lecture). Angew Chem Int Edit Engl 26: 595-605. doi: 10.1002/anie.198705953
[8]
Dubochet J, Adrian M, Lepault J, et al. (1985) Emerging techniques: Cryo-electron microscopy of vitrified biological specimens. Trends Biochem Sci 10: 143-146. doi: 10.1016/0968-0004(85)90150-1
[9]
Kühlbrandt W (2014) The resolution revolution. Science 343: 1443-1444. doi: 10.1126/science.1251652
[10]
Kuijper M, van Hoften G, Janssen B, et al. (2015) FEI's direct electron detector developments: Embarking on a revolution in cryo-TEM. J Struct Biol 192: 179-187. doi: 10.1016/j.jsb.2015.09.014
[11]
Clabbers MTB, Xu H (2021) Macromolecular crystallography using microcrystal electron diffraction. Acta Crystallogr. D 77: 313-324. doi: 10.1107/S2059798320016368
[12]
Wider G (2005) NMR techniques used with very large biological macromolecules in solution. Method Enzymol 394: 382-398. doi: 10.1016/S0076-6879(05)94015-9
[13]
Margaritondo G, Rebernik Ribic P (2011) A simplified description of X-ray free-electron lasers. J Synchrotron Radiat 18: 101-108. doi: 10.1107/S090904951004896X
[14]
Pellegrini C (2012) The history of X-ray free-electron lasers. Eur Phys J H 37: 659-708. doi: 10.1140/epjh/e2012-20064-5
[15]
Neutze R, Wouts R, Van der Spoel D, et al. (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406: 752-757. doi: 10.1038/35021099
[16]
Ekeberg T, Svenda M, Abergel C, et al. (2015) Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys Rev Lett 114: 098102. doi: 10.1103/PhysRevLett.114.098102
[17]
Spence JCH (2017) XFELs for structure and dynamics in biology. IUCrJ 4: 322-339. doi: 10.1107/S2052252517005760
[18]
Martin-Garcia JM, Conrad CE, Coe J, et al. (2016) Serial femtosecond crystallography: A revolution in structural biology. Arch Biochem Biophys 602: 32-47. doi: 10.1016/j.abb.2016.03.036
This article has been cited by:
1.
Jinping Feng, Xinan Zhang, Tianhai Tian,
Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways,
2024,
25,
1422-0067,
10204,
10.3390/ijms251810204
2.
Alireza Poshtkohi, John Wade, Liam McDaid, Junxiu Liu, Mark L. Dallas, Angela Bithell,
Mathematical Modeling of PI3K/Akt Pathway in Microglia,
2024,
36,
0899-7667,
645,
10.1162/neco_a_01643