Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Identification and validation of aging-related genes and their classification models based on myelodysplastic syndromes

  • Received: 21 August 2023 Revised: 23 October 2023 Accepted: 31 October 2023 Published: 14 November 2023
  • Background 

    Myelodysplastic syndrome is a malignant clonal disorder of hematopoietic stem cells (HSC) with both myelodysplastic problems and hematopoietic disorders. The greatest risk factor for the development of MDS is advanced age, and aging causes dysregulation and decreased function of the immune and hematopoietic systems. However, the mechanisms by which this occurs remain to be explored. Therefore, we explore the association between MDS and aging genes through a classification model and use bioinformatics analysis tools to explore the relationship between MDS aging subtypes and the immune microenvironment.

    Methods 

    The dataset of MDS in the paper was obtained from the GEO database, and aging-related genes were taken from HAGR. Specific genes were screened by three machine learning algorithms. Then, artificial neural network (ANN) models and Nomogram models were developed to validate the effectiveness of the methods. Finally, aging subtypes were established, and the correlation between MDS and the immune microenvironment was analyzed using bioinformatics analysis tools. Weighted correlation network analysis (WGCNA) and single cell analysis were also added to validate the consistency of the result analysis.

    Results 

    Seven core genes associated with ARG were screened by differential analysis, enrichment analysis and machine learning algorithms for accurate diagnosis of MDS. Subsequently, two subtypes of senescent expressions were identified based on ARG, illustrating that different subtypes have different biological and immune functions. The cell clustering results obtained from manual annotation were validated using single cell analysis, and the expression of 7 pivotal genes in MDS was verified by flow cytometry and RT-PCR.

    Discussion 

    The findings demonstrate a key role of senescence in the immunological milieu of MDS, giving new insights into MDS pathogenesis and potential treatments. The findings also show that aging plays an important function in the immunological microenvironment of MDS, giving new insights into the pathogenesis of MDS and possible immunotherapy.

    Citation: Xiao-Li Gu, Li Yu, Yu Du, Xiu-Peng Yang, Yong-Gang Xu. Identification and validation of aging-related genes and their classification models based on myelodysplastic syndromes[J]. AIMS Bioengineering, 2023, 10(4): 440-465. doi: 10.3934/bioeng.2023026

    Related Papers:

    [1] Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070
    [2] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [3] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [4] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [5] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [6] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [7] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [8] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [9] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
    [10] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
  • Background 

    Myelodysplastic syndrome is a malignant clonal disorder of hematopoietic stem cells (HSC) with both myelodysplastic problems and hematopoietic disorders. The greatest risk factor for the development of MDS is advanced age, and aging causes dysregulation and decreased function of the immune and hematopoietic systems. However, the mechanisms by which this occurs remain to be explored. Therefore, we explore the association between MDS and aging genes through a classification model and use bioinformatics analysis tools to explore the relationship between MDS aging subtypes and the immune microenvironment.

    Methods 

    The dataset of MDS in the paper was obtained from the GEO database, and aging-related genes were taken from HAGR. Specific genes were screened by three machine learning algorithms. Then, artificial neural network (ANN) models and Nomogram models were developed to validate the effectiveness of the methods. Finally, aging subtypes were established, and the correlation between MDS and the immune microenvironment was analyzed using bioinformatics analysis tools. Weighted correlation network analysis (WGCNA) and single cell analysis were also added to validate the consistency of the result analysis.

    Results 

    Seven core genes associated with ARG were screened by differential analysis, enrichment analysis and machine learning algorithms for accurate diagnosis of MDS. Subsequently, two subtypes of senescent expressions were identified based on ARG, illustrating that different subtypes have different biological and immune functions. The cell clustering results obtained from manual annotation were validated using single cell analysis, and the expression of 7 pivotal genes in MDS was verified by flow cytometry and RT-PCR.

    Discussion 

    The findings demonstrate a key role of senescence in the immunological milieu of MDS, giving new insights into MDS pathogenesis and potential treatments. The findings also show that aging plays an important function in the immunological microenvironment of MDS, giving new insights into the pathogenesis of MDS and possible immunotherapy.



    Fractional calculus is like an extended version of regular calculus that allows us to deal with numbers that are not whole, like 1.5 or 2.3. This might not sound like a big deal, but it is incredibly useful in many fields. When we want to understand how things change or accumulate over time, fractional calculus helps us do that more accurately, especially when things are complicated and do not follow normal rules. These fractional calculations come in handy when we are dealing with stuff like how liquids flow, how materials deform, or how we control things like robots or machines. Inequalities, in the context of fractional calculus, are like special rules that help us understand when things are bigger or smaller than each other, but with these non-whole numbers involved. These rules are important because they help us figure out if systems with fractional calculus are stable and work the way they should. Thus, in a nutshell, fractional calculus and inequalities help us make sense of the world in a more precise and practical way. Thus, the term convexity and inequalities in the frame of fractional calculus have been recommended as an engrossing area for researchers due to their vital role and fruitful importance in numerous branches of science. Integral inequalities have remarkable uses in probability, optimization theory, information technology, stochastic processes, statistics, integral operator theory and numerical integration. For the applications, see references [1,2,3,4,5,6,7,8].

    In [9], a comprehensive and up-to-date review on Hermite-Hadamard-type inequalities for different kinds of convexities and different kinds of fractional integral operators is presented. In this review paper, we aim to discuss and present the up-to-date review of the Grüss type inequality via different fractional integral operators.

    In [10] (see also [11]), the Grüss inequality is defined as the integral inequality that establishes a connection between the integral of the product of two functions and the product of the integrals. The inequality is as follows.

    Theorem 1.1. If Ω,Π:[x1,x2]R are two continuous functions satisfying mΩ(t)M and pΠ(t)P, t[x1,x2], m,M,p,PR, then

    |1x2x1x2x1Ω(s)Π(s)ds1(x2x1)2x2x1Ω(s)dsx2x1Π(s)ds|14(Mm)(Pp).

    Our objective in this paper is to present a comprehensive and up-to-date review on Grüss-type inequalities for different kinds of fractional integral operators. In each section and subsection, we first introduce the basic definitions of fractional integral operators and then include the results on Grüss-type inequalities. We believe that the collection of almost all existing in the literature Grüss-type inequalities in one file will help new researchers in the field learn about the available work on the topic before developing new results. We present the results without proof but instead provide a complete reference for the details of each result elaborated in this survey for the convenience of the reader.

    The remainder of this review paper is as follows. In Sections 2–15, we summarize Grüss-type integral inequalities and especially for Riemann-Liouville fractional integral operators in Section 2, for Riemann-Liouville fractional integrals of a function with respect to another function in Section 3, in Section 4 for Katugampola fractional integral operators, in Section 5 for Hadamard's fractional integral operators, in Section 6 for k-fractional integral operators, in Section 7 for Raina's fractional integral operators, in Section 8 for tempered fractional integral operators, in Section 9 for conformable fractional integrals operators, in Section 10 for proportional fractional integrals operators, in Section 11 for generalized Riemann-Liouville fractional integral operators, in Section 12 for Caputo-Fabrizio fractional integrals operators, for Saigo fractional integral operators in Section 13, in Section 14 for quantum integral operators and in Section 15 for Hilfer fractional differential operators.

    Throughout this survey the following assumptions are used:

    (H) Assume that Ω,Π:IR are integrable functions on I for which there exist constants m,M,p,PR, such that

    mΩ(t)M,pΠ(t)P,tI.

    (H1) There exist two integrable functions Q1,Q2:[0,)R such that

    Q1(t)Ω(t)Q2(t)for allt[0,).

    (H2) There exist two integrable functions R1,R2:[0,)R such that

    R1(t)Π(t)R2(t)for allt[0,).

    In this subsection we give generalizations for Grüss-type inequalities by using the Riemann-Liouville fractional integrals. The first result deals with some inequalities using one fractional parameter.

    Definition 2.1. [12] A real valued function Ω(t),t0 is said to be in

    (ⅰ) the space Cμ,μR if there exists a real number p>μ such that Ω(t)=tpΩ1(t), where Ω1(t)C([0,),R),

    (ⅰ) the space Cnμ,μR if Ω(n)Cμ.

    Definition 2.2. [12] The Riemann-Liouville integral operator of fractional order α0, for an integrable function Ω is defined by

    JαΩ(t)=1Γ(α)t0(ts)α1Ω(s)ds,α>0,t>0,

    and J0Ω(t)=Ω(t).

    Theorem 2.1. [12] Assume that (H) holds on [0,). Then for all t>0 and α>0 we have:

    |tαΓ(α+1)JαΩ(t)Π(t)JαΩ(t)JαΠ(t)|(tα2Γ(α+1))2(Mm)(Pp).

    In the next result two real positive parameters are used.

    Theorem 2.2. [12] Assume that (H) holds on [0,). Then for all t>0 and α>0,β>0 we have:

    (tαΓ(α+1)JβΩ(t)Π(t)+tβΓ(β+1)JαΩ(t)Π(t)JαΩ(t)JβΠ(t)JβΩ(t)JαΠ(t))2[(MtαΓ(α+1)JαΩ(t))(JβΩ(t)mtβΓ(β+1))+(JαΩ(t)mtαΓ(α+1))(MtβΓ(β+1)JβΩ(t))]×[(PtαΓ(α+1)JαΠ(t))(JβΠ(t)ptβΓ(β+1))+(JαΠ(t)ptαΓ(α+1))(PtβΓ(β+1)JβΠ(t))].

    Next, we present some fractional integral inequalities of Grüss type by using the Riemann-Liouville fractional integral. The constants appeared as bounds of the functions Ω and Π, are replaced by four integrable functions.

    Theorem 2.3. [13] Assume that Ω:[0,)R is an integrable function satisfying (H1). Then, for t>0, α,β>0, we have:

    JβQ1(t)JαΩ(t)+JαQ2(t)JβΩ(t)JαQ2(t)JβQ1(t)+JαΩ(t)JβΩ(t).

    Theorem 2.4. [13] Suppose that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then, for t>0, α, β>0, the fractional integral inequalities hold:

    (i)JβR1(t)JαΩ(t)+JαQ2(t)JβΠ(t)JβR1(t)JαQ2(t)+JαΩ(t)JβΠ(t).(ii)JβQ1(t)JαΠ(t)+JαR2(t)JβΩ(t)JβQ1(t)JαR2(t)+JβΩ(t)JαΠ(t).(iii)JαQ2(t)JβR2(t)+JαΩ(t)JβΠ(t)JαQ2(t)JβΠ(t)+JβR2(t)JαΩ(t).(iv)JαQ1(t)JβR1(t)+JαΩ(t)JβΠ(t)JαQ1(t)JβΠ(t)+JβR1(t)JαΩ(t).

    Theorem 2.5. [13] Assume that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then for all t>0, α>0, we have:

    |tαΓ(α+1)JαΩ(t)Π(t)JαΩ(t)JαΠ(t)|T(Ω,Q1,Q2)T(Π,R1,R2),

    where T(y,z,w) is defined by

    T(y,z,w)=(Jαw(t)Jαy(t))(Jαy(t)Jαz(t))+tαΓ(α+1)Jαz(t)y(t)Jαz(t)Jαy(t)+tαΓ(α+1)Jαw(t)y(t)Jαw(t)Jαy(t)+Jαz(t)Jαw(t)tαΓ(α+1)Jαz(t)w(t).

    In the next theorem we give an Ostrowski-Grüss type inequality of fractional type via Riemann-Liouville fractional integral.

    Theorem 2.6. [14] Let Ω:[x1,x2]R be a differentiable mapping on (x1,x2) and |Ω(x)|M for all x[x1,x2]. Then

    |12Ω(x)(α+1)Γ(α)(x2x)1α2(x2x1)Jαx1Ω(x2)+12Jα1x1((x2x)1αΓ(α)Ω(x2))+(x2x)2α2(x2x1)Γ(α)Jα1x1Ω(x2)+(x2x)1α(xx1)2(x2x1)2αΩ(x1)|M(x2x)1αx2x1[(x2x1)α(xx1)+(x2x)α(x1+x22x)2α],

    where x1x<x2.

    Definition 3.1. [15] Let ψ:[0,)R be positive, increasing function and also its derivative ψ be continuous on [0,) and ψ(0)=0. The fractional integral of Riemann-Liouville type of an integrable function Ω with respect to another function ψ is defined as

    Iα,ψΩ(t)=1Γ(α)t0(ψ(t)ψ(s))α1ψ(s)Ω(s)ds.

    In the next we include Grüss type integral inequalities with the help of ψ-Riemann-Liouville fractional integral.

    Theorem 3.1. [16] Assume that ψ:[0,)R is a positive, increasing function and also its derivative ψ is continuous on [0,) and ψ(0)=0. Assume that Ω:[0,)R is an integrable function satisfying (H1). Then the following inequality holds:

    Iβ,ψQ1(t)Iα,ψΩ(t)+Iα,ψQ2(t)Iβ,ψΩ(t)Iα,ψQ2(t)Iβ,ψQ1(t)+Iβ,ψΩ(t)Iβ,ψΩ(t).

    Theorem 3.2. [16] Let ψ be as in Theorem 3.1 and Ω,Π be two integrable functions satisfying (H1) and (H2). Then we have:

    (a) Iβ,ψR1(t)Iα,ψΩ(t)+Iα,ψQ2(t)Iβ,ψΠ(t)Iβ,ψR1(t)Iα,ψQ2(t)+Iα,ψΩ(t)Iβ,ψΠ(t).

    (b) Iβ,ψQ1(t)Iα,ψΠ(t)+Iα,ψR2(t)Iβ,ψΩ(t)Iβ,ψQ1(t)Iα,ψR2(t)+Iβ,ψΩ(t)Iα,ψΠ(t).

    (c) Iα,ψQ2(t)Iβ,ψR2(t)+Iα,ψΩ(t)Iβ,ψΠ(t)Iα,ψQ2(t)Iβ,ψΠ(t)+Iβ,ψR2(t)Iα,ψΩ(t).

    (d) Iα,ψQ1(t)Iβ,ψR1(t)+Iα,ψΩ(t)Iβ,ψΠ(t)Iα,ψQ1(t)Iβ,ψΠ(t)+Iβ,ψR1(t)Iα,ψΩ(t).

    Theorem 3.3. [16] Let ψ be as in Theorem 3.1 and Ω,Π be two integrable functions satisfying (H1) and (H2). Then the following inequality holds:

    |ψα(t)Γ(α+1)Iα,ψΩ(t)Π(t)Iα,ψΩ(t)Iα,ψΠ(t)|T(Ω,Q1,Q2)T(Π,R1,R2),

    where

    T(y,z,w)=(Iα,ψw(t)Iα,ψy(t))(Iα,ψy(t)Iα,ψz(t))+ψα(t)Γ(α+1)Iα,ψv(t)Iα,ψy(t)Iα,ψz(t)Iα,ψy(t)+ψα(t)Γ(α+1)Iα,ψw(t)y(t)Iα,ψw(t)Iα,ψy(t)+Iα,ψz(t)Iα,ψw(t)ψα(t)Γ(α+1)Iα,ψz(t)w(t).

    Now we define the space Xpc(x1,x2) in which Katugampola's fractional integrals are defined.

    Definition 4.1. [17] The space Xpc(x1,x2)(cR,1p<) consists of those complex-valued Lebesgue measurable functions ϕ on (x1,x2) for which ϕXpc<, with

    ϕXpc=(x2x1|xcϕ(x)|pdxx)1/p(1p<),

    and

    ϕXc=esssupx(x1,x2)[xc|ϕ(x)|].

    Definition 4.2. [17] Let ϕXpc(x1,x2), α>0 and β,ρ,η,κR. Then, the left- and right- sided fractional integrals of a function ϕ are defined respectively by

    ρJα,βx1+,η,κϕ(x)=ρ1βxκΓ(α)xx1τρ(η+1)1(xρτρ)1αϕ(τ)dτ,0x1<x<x2,

    and

    ρJα,βx2,η,κϕ(x)=ρ1βxρηΓ(α)x2xτκ+ρ1(τρxρ)1αϕ(τ)dτ,0x1<x<x2,

    if the integrals exist.

    Now, we present several Grüss-type inequalities involving Katugampola's fractional integral.

    Theorem 4.1. [17] Assume that (H) holds on [0,). Then we have:

    |Λρ,βx,κ(α,η)ρJα,βη,κΩ(x)Π(x)ρJα,βη,κΩ(x)ρJα,βη,κΠ(x)|(Λρ,βx,κ(α,η))2(Mm)(Pp),

    for all β,κR, x>0, α>0, ρ>0 and η0, where

    Λρ,βx,κ(α,η)=Γ(η+1)Γ(η+α+1)ρβxκ+ρ(η+α).

    Theorem 4.2. [17] Assume that (H) holds on [0,). Then for all β,κR, x>0, α>0, γ>0 and η0, we have:

    (Λρ,βx,κ(α,η)ρJγ,βη,κΩ(x)Π(x)+Λρ,βx,κ(γ,η)ρJα,βη,κΩ(x)Π(x)ρJα,βη,κΩ(x)ρJα,βη,κΠ(x)ρJγ,βη,κΩ(x)ρJα,βη,κΠ(x))2[(MΛρ,βx,κ(α,η)ρJα,βη,κΩ(x))(ρJγ,βη,κΩ(x)mΛρ,βx,κ(α,η))+(ρJα,βη,κΩ(x)mΛρ,βx,κ(α,η))(MΛρ,βx,κ(γ,η)ρJγ,βη,κΩ(x))]×[(PΛρ,βx,κ(α,η)ρJα,βη,κΠ(x))(ρJγ,βη,κΠ(x)pΛρ,βx,κ(γ,η))+(ρJα,βη,κΠ(x)pΛρ,βx,κ(α,η))(PΛρ,βx,κ(γ,η)ρJγ,βη,κΠ(x))].

    Theorem 4.3. [17] Let α>0, β,ρ,η,κR, Ω,ΠXpc(0,x) x>0 and p,q>1 such that 1p+1q=1. Then we have:

    (a)1pρJα,βη,κΩp(x)+1qρJα,βη,κΠq(x)Γ(η+α+1)ρβΓ(η+1)xρ(η+α)+κ(ρJα,βη,κΩ(x)ρJα,βη,κΠ(x)).(b)1pρJα,βη,κΩp(x)ρJα,βη,κΠp(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠq(x)(ρJα,βη,κΩ(x)Π(x))2.(c)1pρJα,βη,κΩp(x)ρJα,βη,κΠq(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠp(x)(ρJα,βη,κ(ΩΠ)p1(x))(ρJα,βη,κ(ΩΠ)q1(x)).(d)ρJα,βη,κΩp(x)ρJα,βη,κΠq(x)(ρJα,βη,κΩ(x)Π(x))(ρJα,βη,κΩp1(x)Πq1(x)).(e)1pρJα,βη,κΩp(x)ρJα,βη,κΠ2(x)+1qρJα,βη,κΩ2(x)ρJα,βη,κΠq(x)(ρJα,βη,κΩ(x)Π(x))(ρJα,βη,κΩ2/p(x)Π2/p(x)).(f)1pρJα,βη,κΩ2(x)ρJα,βη,κΠq(x)+1qρJα,βη,κΩq(x)ρJα,βη,κΠ2(x)(ρJα,βη,κΩ2/p(x)Π2/p(x))(ρJα,βη,κΩp1(x)Πq1(x)).(g)ρJα,βη,κΩ2(x)ρJα,βη,κ(Πq(x)p+Πq(x)q)(ρJα,βη,κΩ2/p(x)Π(x))(ρJα,βη,κΩ2/q(x)Π(x)).

    Theorem 4.4. [17]\ Assume that the assumptions of Theorem 4.3 are satisfied. In addition, let

    μ=min0txΩ(t)Π(t)andM=max0txΩ(t)Π(t).

    Then we have:

    (i)0(ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x))(M+μ)24μM(ρJα,βη,κΩ(x)Π(x))2.(ii)0ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x)(ρJα,βη,κΩ(x)Π(x))(Mμ)22μM(ρJα,βη,κΩ(x)Π(x)).(iii)0ρJα,βη,κΩ2(x)ρJα,βη,κΠ2(x)(ρJα,βη,κΩ(x)Π(x))2(Mμ)24μM(ρJα,βη,κΩ(x)Π(x))2.

    Theorem 4.5. [18] Assume that Ω:[0,)R is an integrable function satisfying (H1). Then we have:

    ρJα,βη,kQ2(t)ρJδ,λη,kΩ(t)+ρJα,βη,kΩ(t)ρJδ,λη,kQ1(t)ρJα,βη,kΩ(t)ρJδ,λη,kΩ(t)+ρJα,βη,kQ2(t)ρJδ,λη,kQ1(t),

    for all t>0,α,ρ,δ>0, β,η,k,λR.

    Theorem 4.6. [18] Suppose that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then for all t>0 and α,ρ>0, β,η,kR we have:

    [Λρ,βt,k(α,η)ρJα,βη,kΩ(t)Π(t)(ρJα,βη,kΩ(t)ρJα,βη,kΠ(t))]2T(Ω,Q1,Q2)T(Π,R1,R2),

    where

    T(y,z,w)=(ρJα,βη,kw(t)ρJα,βη,ky(t))(ρJα,βη,ky(t)ρJα,βη,kz(t))+Λρ,βt,k(α,η)ρJα,βη,ky(t)z(t)ρJα,βη,ky(t)ρJα,βη,kz(t)+Λρ,βt,k(α,η)ρJα,βη,ky(t)w(t)ρJα,βη,ky(t)ρJα,βη,kw(t)Λρ,βt,k(α,η)ρJα,βη,kz(t)w(t)+ρJα,βη,kz(t)ρJα,βη,kw(t).

    Theorem 4.7. [18] Suppose that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then for all t>0 and α,δ,ρ>0, β,λ,η,kR we have:

    (a) ρJδ,λη,kΩ(t)ρJα,βη,kQ2(t)+ρJδ,λη,kR1(t)ρJα,βη,kΠ(t)ρJδ,λη,kR1(t)ρJα,βη,kQ2(t)+ρJδ,λη,kΩ(t)ρJα,βη,kΠ(t).

    (b) ρJδ,λη,kQ1(t)ρJα,βη,kΩ(t)+ρJα,βη,kR2(t)ρJδ,λη,kΠ(t)ρJδ,λη,kQ1(t)ρJα,βη,kR2(t)+ρJδ,λη,kΠ(t)ρJα,βη,kΩ(t).

    (c) ρJα,βη,kQ2(t)ρJδ,λη,kR2(t)+ρJα,βη,kΠ(t)ρJδ,λη,kΩ(t)ρJα,βη,kQ2(t)ρJδ,λη,kΩ(t)+ρJδ,λη,kR2(t)ρJα,βη,kΠ(t).

    (d) ρJα,βη,kQ1(t)ρJδ,λη,kR1(t)+ρJα,βη,kΠ(t)ρJδ,λη,kΩ(t)ρJα,βη,kQ1(t)ρJδ,λη,kΩ(t)+ρJδ,λη,kR1(t)ρJα,βη,kΠ(t).

    Definition 5.1. [15] The fractional integral of Hadamard type of order αR+ of an integrable function Ω(t), for all t>1 is defined as

    HJαΩ(t)=1Γ(α)t1(logts)α1Ω(s)dss, (5.1)

    provided the integral exists. (Here log()=loge()).

    We present, by using Hadamard's fractional integral, some Grüss-type fractional integral inequalities.

    Theorem 5.1. [19] Assume that Ω:[1,)R is an integrable function satisfying (H1). Then, for t>1, α,β>0, we have

    HJβQ1(t)HJαΩ(t)+HJαQ2(t)HJβΩ(t)HJαQ2(t)HJβQ1(t)+HJαΩ(t)HJβΩ(t).

    Theorem 5.2. [19] Assume that Ω:[1,)R is an integrable function satisfying (H1). Let θ1,θ2>0 satisfying 1/θ1+1/θ2=1. Then, for t>1, α,β>0, we have

    1θ1(logt)βΓ(β+1)HJα((Q2Ω)θ1)(t)+1θ2(logt)αΓ(α+1)HJβ((ΩQ1)θ2)(t)+HJαQ2(t)HJβQ1(t)+HJαΩ(t)HJβΩ(t)HJαQ2(t)HJβΩ(t)+HJαΩ(t)HJβQ1(t).

    Theorem 5.3. [19] Assume that Ω:[1,)R is an integrable function satisfying (H1). Let θ1,θ2>0 satisfying θ1+θ2=1. Then, for t>1, α,β>0, we have

    θ1(logt)βΓ(β+1)HJαQ2(t)+θ2(logt)αΓ(α+1)HJβΩ(t)HJα(Q2Ω)θ1(t)HJβ(ΩQ1)θ2(t)+θ1(logt)βΓ(β+1)HJαΩ(t)+θ2(logt)αΓ(α+1)HJβQ1(t).

    Theorem 5.4. [19] Assume that Ω:[1,)R is an integrable function satisfying (H1). Let pq0, p0. Then, we have the following two inequalities, for any k>0, t>1, α, β>0,

    (i)HJα(Q2Ω)qp(t)+qpkqppHJαΩ(t)qpkqppHJαQ2(t)+pqpkqp(logt)αΓ(α+1).(ii)HJα(ΩQ1)qp(t)+qpkqppHJαQ1(t)qpkqppHJαΩ(t)+pqpkqp(logt)αΓ(α+1).

    Theorem 5.5. [19] Suppose that Ω,Π:[1,)R are two integrable functions satisfying (H1) and (H2). Then, for t>0, α, β>0, we have:

    (a) HJβR1(t)HJαΩ(t)+HJαQ2(t)HJβΠ(t)HJβR1(t)HJαQ2(t)+HJαΩ(t)HJβΠ(t).

    (b) HJβQ1(t)HJαΠ(t)+HJαR2(t)HJβΩ(t)HJβQ1(t)HJαR2(t)+HJβΩ(t)HJαΠ(t).

    (c) HJβR2(t)HJαQ2(t)+HJαΩ(t)HJβΠ(t)HJαQ2(t)HJβΠ(t)+HJβR2(t)HJαΩ(t).

    (d) HJαQ1(t)HJβR1(t)+HJαΩ(t)HJβΠ(t)HJαQ1(t)HJβΠ(t)+HJβR1(t)HJαΩ(t).

    Theorem 5.6. [19] Suppose that Ω,Π:[1,)R are two integrable functions satisfying (H1) and (H2). Let θ1,θ2>0 such that 1/θ1+1/θ2=1. Then, for t>1, α, β>0, the following inequalities hold:

    () 1θ1(logt)βΓ(β+1)HJα(Q2Ω)θ1(t)+1θ2(logt)αΓ(α+1)HJβ(R2Π)θ2(t) HJα(Q2Ω)(t)HJβ(R2Π)(t).

    () 1θ1HJα(Q2Ω)θ1(t)HJβ(R2Π)θ1(t)+1θ2HJα(R2Π)θ2(t)HJβ(Q2Ω)θ2(t) HJα(Q2Ω)(R2Π)(t)HJβ(Q2Ω)(R2Π)(t).

    () 1θ1(logt)βΓ(β+1)HJα(ΩQ1)θ1(t)+1θ2(logt)αΓ(α+1)HJβ(ΠR1)θ2(t) HJα(ΩQ1)(t)HJβ(ΠR1)(t).

    () 1θ1HJα(ΩQ1)θ1(t)HJβ(ΠR1)θ1(t)+1θ2HJα(ΠR1)θ2(t)HJβ(ΩQ1)θ2(t) HJα(ΩQ1)(ΠR1)(t)HJβ(ΩQ1)(ΠR1)(t).

    Theorem 5.7. [19] Suppose that Ω,Π:[1,)R are two integrable functions satisfying (H1) and (H2). Let θ1,θ2>0 such that θ1+θ2=1. Then, for t>1, α, β>0, we have:

    (a) θ1(logt)βΓ(β+1)HJαQ2(t)+θ2(logt)αΓ(α+1)HJβR2(t) HJα(Q2Ω)θ1(t)HJβ(R2Π)θ2(t)+θ1(logt)βΓ(β+1)HJαΩ(t)+θ2(logt)αΓ(α+1)HJβΠ(t).

    (b) θ1HJαQ2(t)HJβR2(t)+θ1HJαΩ(t)HJβΠ(t) +θ2HJαR2(t)HJβQ2(t)+θ2HJαΠ(t)HJβΩ(t) HJα(Q2Ω)θ1(R2Π)θ2(t)HJβ(R2Π)θ1(Q2Ω)θ2(t) +θ1HJαQ2(t)HJβΠ(t)+θ1HJαΩ(t)HJβR2(t) +θ2HJαR2(t)HJβΩ(t)+θ2HJαΠ(t)HJβQ2(t).

    (c) θ1(logt)βΓ(β+1)HJαΩ(t)+θ2(logt)αΓ(α+1)HJβΠ(t) HJα(ΩQ1)θ1(t)HJβ(ΠR1)θ2(t)+θ1(logt)βΓ(β+1)HJαQ1(t)+θ2(logt)αΓ(α+1)HJβR1(t).

    (d) θ1HJαΩ(t)HJβΠ(t)+θ1HJαQ1(t)HJβR1(t) +θ2HJαΠ(t)HJβΩ(t)+θ2HJαR1(t)HJβQ1(t) HJα(ΩQ1)θ1(ΠR1)θ2(t)HJβ(ΠR1)θ1(ΩQ1)θ2(t) +θ1HJαΩ(t)HJβR1(t)+θ1HJαQ1(t)HJβΠ(t) +θ2HJαΠ(t)HJβQ1(t)+θ2HJαR1(t)HJβΩ(t).

    Theorem 5.8. [19] Suppose that Ω,Π:[1,)R are two integrable functions satisfying (H1) and (H2). Then for all t>1, α>0, we have

    |(logt)αΓ(α+1)HJαΩ(t)Π(t)HJαΩ(t)HJαΠ(t)||T(Ω,Q1,Q2)|12|T(Π,R1,R2)|12,

    where T(y,z,w) is defined by

    T(y,z,w)=(HJαw(t)HJαy(t))(HJαy(t)HJαz(t))+(logt)αΓ(α+1)HJαz(t)y(t)HJαz(t)HJαy(t)+(logt)αΓ(α+1)HJαw(t)y(t)HJαw(t)HJαy(t)+HJαz(t)HJαw(t)(logt)αΓ(α+1)HJαz(t)w(t).

    In this section we present Grüss-type fractional integral inequalities concerning k-fractional integral operators.

    k-fractional integral inequalities of Grüss-type are included in this section.

    Definition 6.1. [20] The k-fractional integral of the Riemann-Liouville type is defined as follows:

    kJαx1Ω(t)=1kΓk(α)tx1(xs)αk1Ω(s)ds,α>0,t>a.

    Theorem 6.1. [21] Assume that Ω:[0,) is an integrable function satisfying (H1). Then, for t>0, α,β>0, k>0, we have

    kJβQ1(t)kJαΩ(t)+ kJαQ2(t)kJβΩ(t) kJαQ2(t)kJβQ1(t)+ kJαΩ(t)kJβΩ(t).

    Theorem 6.2. [21] Assume that Ω:[0,) is an integrable function satisfying (H1). Let θ1,θ2>0 such that 1/θ1+1/θ2=1. Then, we have for t>0, α,β>0 and k>0,

    1θ1tβkΓk(β+k)kJα((Q2Ω)θ1)(t)+1θ2tαkΓk(α+k)kJβ((ΩQ1)θ2)(t)+kJαQ2(t)kJβQ1(t)+kJαΩ(t)kJβΩ(t)kJαQ2(t)kJβΩ(t)+kJαΩ(t)kJβQ1(t).

    Theorem 6.3. [21] Assume that Ω:[0,) is an integrable function satisfying (H1). Let θ1,θ2>0 such that θ1+θ2=1. Then, for t>0, α,β>0 and k>0, we have

    θ1tβkΓk(β+k)kJαQ2(t)+θ2tαkΓk(α+k)kJβΩ(t)kJα(Q2Ω)θ1(t)kJβ(ΩQ1)θ2(t)+θ1tβkΓk(β+k)kJαΩ(t)+θ2tαkΓk(α+k)kJβQ1(t).

    Theorem 6.4. [21] Assume that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then, for t>0, α, β>0, k>0  we have:

    (ⅰ) kJβR1(t) kJαΩ(t)+ kJαQ2(t) kJβΠ(t) kJβR1(t) kJαQ2(t)+ kJαΩ(t) kJβΠ(t).

    (ⅱ) kJβQ1(t) kJαΠ(t)+ kJαR2(t) kJβΩ(t) kJβQ1(t) kJαR2(t)+ kJβΩ(t) kJαΠ(t).

    (ⅲ) kJαQ2(t) kJβR2(t)+ kJαΩ(t) kJβΠ(t) kJαQ2(t) kJβΠ(t)+ kJβR2(t) kJαΩ(t).

    (ⅳ) kJαQ1(t)JβR1(t)+ kJαΩ(t) kJβΠ(t) kJαQ1(t) kJβΠ(t)+ kJβR1(t) kJαΩ(t).

    Theorem 6.5. [21] Assume that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Then for all t>0, α>0, k>0, we have

    |tαkΓk(α+k) kJαΩ(t)Π(t) kJαΩ(t) kJαΠ(t)|T(Ω,Q1,Q2)T(Π,R1,R2),

    where

    T(y,z,w)=( kJαw(t) kJαy(t))( kJαy(t) kJαz(t))+tαkΓk(α+k) kJαz(t)y(t)kJαz(t) kJαy(t)+tαkΓk(α+k)Jαw(t)y(t)kJαw(t) kJαy(t)+kJαz(t) kJαw(t)tαkΓk(α+k) kJαz(t)w(t).

    Theorem 6.6. [22] Assume that (H) holds on [x1,x2] and p be a positive function on [x1,x2]. Then for all t>0, k>0,α>0, we have

    |(kJαx1p(t))(kJαx1p(t)Ω(t)Π(t))(kJαx1p(t)Ω(t))(kJαx1p(t)Π(t))|(kJαx1p(t))24(Mm)(Pp).

    Theorem 6.7. [22] Let the assumptions of Theorem 6.6 be satisfied. Then, for all t>0, k>0,α,β>0, t he following inequality holds:

    [(kJαx1p(t))(kJβx1p(t)Ω(t)Π(t))+(kJβx1p(t))(kJαx1p(t)Ω(t)Π(t))(kJαx1p(t)Ω(t))(kJαx1p(t)Π(t))(kJβx1p(t)Ω(t))(kJαx1p(t)Π(t))]2{[M(kJαx1p(t))(kJαx1p(t)Ω(t))][(kJβx1p(t)Ω(t))m(kJβx1p(t))]+[(kJαx1p(t)Ω(t))m(kJαx1p(t))][M(kJβx1p(t))(kJβx1pΩ(t))]}×{[P(kJαx1p(t))(kJαx1p(t)Π(t))][(kJβx1p(t)Π(t))p(kJβx1p(t))]+[(kJαx1p(t)Π(t))p(kJαx1p(t))][P(kJβx1p(t))(kJβx1p(t)Π(t))]}.

    Definition 6.2. [23] Let ψ be a positive and increasing function on [x1,x2]. Then the left-sided and right-sided generalized Riemann–Liouville fractional integrals of a function Ω with respect to another function ψ of order α>0 are defined by

    Jα,ψx1+,kΩ(t)=1kΓk(α)tx1(ψ(t)ψ(s))αk1ψ(s)Ω(s)ds,t>x1,
    Jα,ψx2,kΩ(t)=1kΓk(α)x2t(ψ(s)ψ(t))αk1ψ(s)Ω(s)ds,t<x2.

    Theorem 6.8. [23] Assume that Ω:[0,)R is an integrable function satisfying (H1). Then, for t>0, α,β>0, k>0, we have:

    Jβ,ψ0+,kQ1(t)Jα,ψ0+,kΩ(t)+ Jα,ψ0+,kQ2(t)Jβ,ψ0+,kΩ(t) Jα,ψ0+,kQ2(t)Jβ,ψ0+,kQ1(t)+ Jα,ψ0+,kΩ(t)Jβ,ψ0+,kΩ(t).

    Theorem 6.9. [23] Suppose that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Assume that ψ is a positive and increasing function with ψ(0)=0 and ψ continuous on [0,). Then, for t>0, α, β>0, k>0 we have:

    (ⅰ) Jβ,ψ0+,kR1(t) Jα,ψ0+,kΩ(t)+ Jα,ψ0+,kQ2(t) Jβ,ψ0+,kΠ(t) Jβ,ψ0+,kR2(t) Jα,ψ0+,kQ2(t)+ Jα,ψ0+,kΩ(t) Jβ,ψ0+,kΠ(t).

    (ⅱ) Jβ,ψ0+,kQ1(t) Jα,ψ0+,kΠ(t)+ Jα,ψ0+,kR2(t) Jβ,ψ0+,kΩ(t) Jβ,ψ0+,kQ1(t) Jα,ψ0+,kR2(t)+ Jβ,ψ0+,kΩ(t) Jα,ψ0+,kΠ(t).

    (ⅲ) Jα,ψ0+,kQ2(t) kJβ,ψ0+,kR2(t)+ Jα,ψ0+,kΩ(t) Jβ,ψ0+,kΠ(t) Jα,ψ0+,kQ2(t) Jβ,ψ0+,kΠ(t)+ Jβ,ψ0+,kR2(t) Jα,ψ0+,kΩ(t).

    (ⅳ) Jα,ψ0+,kQ1(t)Jβ,ψ0+,kR1(t)+ Jα,ψ0+,kΩ(t) Jβ,ψ0+,kΠ(t) Jα,ψ0+,kQ1(t) Jβ,ψ0+,kΠ(t)+ Jβ,ψ0+,kR1(t) Jα,ψ0+,kΩ(t).

    Theorem 6.10. [23] Suppose that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). Assume that ψ is a positive and increasing function on [0,) such that ψ(0)=0 and ψ is continuous on [0,). Then for all t>0, α>0, k>0, we have

    |ψ(t)αkΓk(α+k) Jα,ψ0+,kΩ(t)Π(t) Jα,ψ0+,kΩ(t) Jα,ψ0+,kΠ(t)|T(Ω,Q1,Q2)T(Π,R1,R2),

    where

    T(y,z,w)=( Jα,ψ0+,kw(t) Jαy(t))( Jα,ψ0+,ky(t) Jα,ψ0+,kz(t))+ψ(t)αkΓk(α+k) Jα,ψ0+,kz(t)y(t)Jα,ψ0+,kz(t) Jα,ψ0+,ky(t)+ψ(t)αkΓk(α+k)Jα,ψ0+,kw(t)y(t)Jα,ψ0+,kw(t) Jα,ψ0+,ky(t)+Jα,ψ0+,kz(t) Jα,ψ0+,kw(t)tαkΓk(α+k) Jα,ψ0+,kz(t)w(t).

    Definition 7.1. [24] The function Ω is said to be Lp,r[x1,x2] if

    (x2x1|Ω(t)|ptrdt)1/p<,1<p<,r>0.

    Definition 7.2. [24] The Γk (generalized gamma function) is defined by

    Γk(z)=limnn!kn(nk)zk1(z)nk,k>0.

    Definition 7.3. [24] The function Fσ,kρ,λ is defined by

    Fσ,kρ,λ(z)=F(σ(0),σ(1),,),kρ,λ=m=0σ(m)kΓk(ρkm+λ)zm,ρ,λ>0,zC,|z|<R,

    where RR+ and σ=(σ(1),,σ(m),) is a bounded sequence of positive real numbers.

    Definition 7.4. [24] Let k>0, λ>0, ρ>0 and ωR. Assume that ψ:[x1,x2]R is an increasing function for which ψ is continuous on (x1,x2). Then the left and right generalized k-fractional integrals of the function Ω with respect to ψ on [x1,x2] are defined by

    Jσ,k,ψρ,λ,a+;ωΩ(z)=zx1ψ(t)(ψ(z)ψ(t))1λkFσ,kρ,λ[ω(ψ(z)ψ(t))ρ]Ω(t)dt,z>x1

    and

    Jσ,k,ψρ,λ,x2;ωΩ(z)=x2zψ(t)(ψ(t)ψ(z))1λkFσ,kρ,λ[ω(ψ(t)ψ(z))ρ]Ω(t)dt,z<x2,

    respectively.

    Theorem 7.1. [24] Let ρ,λ,δ>0, ωR, ΩL1,r[x1,x2], and (H1) holds. Then we have:

    Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΩ(x).

    Theorem 7.2. [24] Under the assumptions of Theorem 7.1, we have:

    Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΩ(x).

    Theorem 7.3. [24] Let ρ,λ,δ>0, ωR, Ω,ΠL1,r[x1,x2] satifying (H1) and (H2) for all x[0,). Then we have

    |Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Aδ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Aλ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωΠ(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x)|(Aλ(x)Aδ(x)2)2(Q2Q1)(R1R2),

    where Aλ and Aδ are defined as

    Aλ(z)=(ψ(z))λkFσ,kρ,λ+1(ω(ψ(z))ρ)andAδ=(ψ(z))δkFσ,kρ,δ+1(ω(ψ(z))ρ),

    respectively.

    Theorem 7.4. [24] Under the assumptions of Theorem 7.3, we have

    (i)Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωQ2(x)+Jσ,k,ψρ,δ,0+;ωΠ(x)Jσ,k,ψρ,λ,0+;ωΩ(x),(ii)Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)+Jσ,k,ψρ,λ,0+;ωΠ(x)Jσ,k,ψρ,δ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωΠ(x)Jσ,k,ψρ,δ,0+;ωΩ(x)+Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,δ,0+;ωQ1(x),(iii)Jσ,k,ψρ,λ,0+;ωQ2(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,δ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωQ2(x),(iv)Jσ,k,ψρ,λ,0+;ωQ1(x)Jσ,k,ψρ,δ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωR1(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x)+Jσ,k,ψρ,λ,0+;ωQ1(x)Jσ,k,ψρ,λ,0+;ωR1(x).

    Now we present certain other associated fractional integral inequalities.

    Theorem 7.5. [24] Let α,β>1 and a1+β1=1, and Ω,ΠL1,r[x1,x2]. Then we have:

    (i)a1Aδ(x)Jσ,k,ψρ,λ,0+;ωΩα(x)+β1Aλ(x)Jσ,k,ψρ,λ,0+;ωΠβ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΠ(x).(ii)a1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠα(x)+β1Jσ,k,ψρ,λ,0+;ωΠβJσ,k,ψρ,δ,0+;ωΩβ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Π(x).(iii)a1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)+β1Jσ,k,ψρ,δ,0+;ωΩβ(x)Jσ,k,ψρ,λ,0+;ωΠα(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Πα1(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Πβ1(x).(iv)a1Jσ,k,ψρ,δ,0+;ωΩα(x)Jσ,k,ψρ,λ,0+;ωΠβ(x)+β1Jσ,k,ψρ,δ,0+;ωΠβ(x)Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,λ,0+;ωΩα1(x)Πβ1(x)Jσ,k,ψρ,δ,0+;ωΩ(x)Π(x).(v)a1Jσ,k,ψρ,λ,0+;ωΩα(x)Jσ,k,ψρ,δ,0+;ωΠ2(x)+β1Jσ,k,ψρ,λ,0+;ωΠβ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)Jσ,k,ψρ,δ,0+;ωΩ2/β(x)Π2/α(x).(vi)a1Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)+β1Jσ,k,ψρ,δ,0+;ωΩα(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)Jσ,k,ψρ,λ,0+;ωΩ2/α(x)Π2/β(x)Jσ,k,ψρ,δ,0+;ωΩα1(x)Πβ1(x).(vii)a1Aδ(x)Jσ,k,ψρ,λ,0+;ωΩ2(x)Πβ(x)+β1Aλ(x)Jσ,k,ψρ,δ,0+;ωΠβ(x)Ω2(x)Jσ,k,ψρ,λ,0+;ωΩ2/α(x)Πβ1(x)Jσ,k,ψρ,δ,0+;ωΩ2/β(x)Πα1(x).

    Theorem 7.6. [24] Assume that Ω,Π:[0,)R are two positive and integrable functions such that

    μ=min0txΩ(t)Ω(t),M=max0txΩ(t)Π(t).

    Then we have

    (a)0Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)(μ+M)24μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2,(b)0Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)(Mμ)22μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x)),(c)0Jσ,k,ψρ,λ,0+;ωΩ2(x)Jσ,k,ψρ,λ,0+;ωΠ2(x)(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2(Mμ)24μM(Jσ,k,ψρ,λ,0+;ωΩ(x)Π(x))2.

    In this section we define a generalized left sided tempered fractional integral with respect to another function. Then we present Grüss-type integral inequalities.

    Definition 8.1. [16] Suppose ΩL1[0,) and the function ψ:[0,)R is positive, and increasing with continuous derivative and ψ(0)=0. Then the Lebesgue real-valued measurable function Ω defined on [0,) is said to be in the space Xpψ, (1p<) for which

    ΩXpψ=(x2x1|Ω(t)|ψ(t)dt)1/p<,1p<.

    When p=, then

    ΩXψ=esssup0t<[ψ(t)Ω(t)].

    Definition 8.2. [25] Suppose that κ,ξC with (κ)>0 and (ξ)0. The tempered fractional left sided integral is defined by

    (x1Jκ,ξΩ)(t)=1Γ(κ)tx1eξ(ts)(ts)κ1Ω(s)ds,t>x1.

    Definition 8.3. [26] Let Ω be an integrable function in the space Xpψ(0,) and assume that ψ:[0,)R is positive, and increasing with continuous derivative and ψ(0)=0. Then the generalized left sided tempered fractional integral of a function Ω with respect to another function ψ is defined by

    (ψJκ,ξΩ)(t)=1Γ(κ)t0eξ(ψ(t)ψ(s))(ψ(t)ψ(s))κ1ψ(s)Ω(s)ds,t>0,

    where ξ>0, κC with (κ)>0.

    Theorem 8.1. [27] Suppose that ΩXpψ(0,) and assume that ψ:[0,)R is positive, and increasing with continuous derivative and ψ(0)=0. Moreover, we assume that (H1) holds. Then for t>0, κ,λ>0, we have

    ψJκ,ξQ2(t)ψJλ,ξΩ(t)+ψJκ,ξΩ(t)ψJλ,ξQ1(t)ψJκ,ξQ2(t)ψJλξQ1(t)+ψJκ,λΩ(t)ψJλ,ξΩ(t).

    Theorem 8.2. [27] Assume that Ω,Π:[0,)R are two integrable functions satisfying (H1) and (H2). In addition, we suppose that ψ:[0,)R is positive, and increasing with continuous derivative and ψ(0)=0. Then, for t>0 and κ,λ>0, the following inequalities hold:

    (a)ψJκ,ξQ2(t)ψJλ,ξΠ(t)+ψJλ,ξΩ(t)ψJκ,ξR1(t)ψJκ,ξQ2(t)ψJλ,ξR1(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t).(b)ψJλ,ξQ1(t)ψJκ,ξΠ(t)+ψJκ,ξR2(t)ψJλ,ξΩ(t)ψJκ,ξQ1(t)ψJλ,ξR2(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t).(c)ψJκ,ξQ2(t)ψJλ,ξR2(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t)ψJκ,ξQ2(t)ψJλ,ξΠ(t)+ψJκ,ξΩ(t)ψJλ,ξR2(t).(d)ψJκ,ξQ1(t)ψJλ,ξR1(t)+ψJκ,ξΩ(t)ψJλ,ξΠ(t)ψJκ,ξQ1(t)ψJλ,ξΠ(t)+ψJκ,ξΩ(t)ψJλ,ξR1(t).

    We present in the next certain other types of inequalities for tempered fractional integral.

    Theorem 8.3. [27] Assume that the assumptions on Theorem 8.2 hold. If p,q>1 are such that 1p+1q=1, then, for t>0 we have:

    (i)1pψJκ,ξΩp(t)ψJλ,ξΠp(t)+1qψJκ,ξΠq(t)ψJλ,ξΩq(t)ψJκ,ξΩ(t)Π(t)ψJλ,ξΠ(t)Ω(t).(ii)1pψJκ,ξΩp(t)ψJλ,ξΠp(t)+1qψJκ,ξΠq(t)ψJλ,ξΩp(t)ψJλ,ξΠq1(t)Ωp1(t)ψJκ,ξΠ(t)Ω(t).(iii)1pψJκ,ξΩp(t)ψJλ,ξΠ2(t)+1qψJκ,ξΠq(t)ψJλ,ξΩ2(t)ψJλ,ξΩ2/p(t)Π2/q(t)ψJκ,ξΩ(t)Π(t).(iv)1pψJκ,ξΩ2(t)ψJλ,ξΠq(t)+1qψJκ,ξΠ2(t)ψJλ,ξΩp(t)ψJλ,ξΩp1(t)Πq1(t)ψJκ,ξΩ2/p(t)Π2/q(t).

    Theorem 8.4. [27] Assume that the assumptions on Theorem 8.2 hold. If p,q>1 are such that 1p+1q=1, then, for t>0 we have:

    (a)pψJκ,ξΩ(t)ψJλ,ξΠ(t)+qψJκ,ξΠ(t)ψJλ,ξΩ(t)ψJκ,ξΩp(t)Πq(t)ψJλ,ξΩq(t)Πp(t).(b)pψJκ,ξΩp1(t)ψJλ,ξΩ(t)Πq(t)+qψJκ,ξΩq1(t)ψJλ,ξΩq(t)Π(t)ψJκ,ξΠq(t)ψJλ,ξΩp(t).(c)pψJκ,ξΩ(t)ψJλ,ξΠ2/p(t)+qψJκ,ξΠq(t)ψJλ,ξΩ2/q(t))ψJλ,ξΩp(t)Π(t)ψJκ,ξΠq(t)Ω2(t).(d)pψJκ,ξΩ2/p(t)Πq(t)ψJλ,ξΠq1(t)+qψJκ,ξΠq1(t)ψJλ,ξΩ2/q(t)Πp(t)ψJλ,ξΩ2(t)ψJκ,ξΠ2(t).

    Theorem 8.5. [27] Assume that the assumptions on Theorem 8.2 hold. Let p,q>1 be such that 1p+1q=1. Suppose that

    K=min0stΩ(t)Π(t)andH=max0stΩ(t)Π(t).

    Then, for t>0 we have:

    (i)ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)(K+H)24KH(ψJκ,ξΩ(t)Π(t))2,(ii)0ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)(ψJκ,ξΩ(t)Π(t))HK2KH(ψJκ,ξΩ(t)Π(t)),(iii)0ψJκ,ξΩ2(t)ψJκ,ξΠ2(t)(ψJκ,ξΩ(t)Π(t))2HK4KH(ψJκ,ξΩ(t)Π(t))2.

    In this section we deal with Grüss-type integral inequalities concerning conformable fractional integrals.

    We now introduced the definition of the generalized mixed η-conformable fractional integral.

    Definition 9.1. [28] Assume that Ω:[x1,x2]R and αC, (α)>0, ρ>0, η is defined on [x1,x2]×[x1,x2]. Then the mixed left η-conformable generalized fractional integral of Ω is defined by

    Jα,ρηΩ(x)=1Γ(α)x2x1+η(x,x1)Ω(s)((η(x2,s))ρ(x1x+η(x2,x1))ρρ)α1(η(x2,s))ρ1ds,

    and the mixed right η-conformable generalized fractional integral of Ω is defined by

    Jα,ρηΩ(x)=1Γ(α)x1+η(x,x1)x1Ω(s)((η(s,x1))ρ(xb+η(x2,x1))ρρ)α1(η(s,x1))ρ1ds.

    Theorem 9.1. [28] Assume that Ω:[0,) is an integrable function satisfying (H1) and t>0, α,β,ρ>0. Then, we have:

    Jβ,ρηQ1(t)Jα,ρηΩ(t)+Jα,ρηQ2(t)Jβ,ρηΩ(t)Jα,ρηQ2(t)Jβ,ρηQ1(t)+Jα,ρηΩ(t)Jβ,ρηΩ(t).

    Theorem 9.2. [28] Assume that Ω,Π:[0,)R are two integrable function satisfying (H1) and (H2) and t>0, α,β,ρ>0. Then we have:

    (ⅰ). Jβ,ρηR1(t)Jα,ρηΩ(t)+Jα,ρηQ2(t)Jβ,ρηΠ(t)Jβ,ρηR1(t)Jα,ρηQ2(t)+Jα,ρηΩ(t)Jβ,ρηΠ(t).

    (ⅱ). Jβ,ρηQ1(t)Jα,ρηΠ(t)+Jα,ρηR2(t)Jβ,ρηΩ(t)Jβ,ρηQ1(t)Jα,ρηR2(t)+Jβ,ρηΩ(t)Jα,ρηΠ(t).

    (ⅲ). Jα,ρηQ2(t)Jβ,ρηR2(t)+Jα,ρηΩ(t)Jβ,ρηΠ(t)Jα,ρηQ2(t)Jβ,ρηΠ(t)+Jβ,ρηR2(t)Jα,ρηΩ(t).

    (ⅳ). Jα,ρηQ1(t)Jβ,ρηR1(t)+Jα,ρηΩ(t)Jβ,ρηΠ(t)Jα,ρηQ1(t)Jβ,ρηΠ(t)+Jβ,ρηR1(t)Jα,ρηΩ(t).

    Theorem 9.3. [28] Assume that Ω,Π:[0,)R are two integrable function satisfying (H1) and (H2) and t>0, α,β,ρ>0. Then:

    |Jα,ρηΩ(t)Π(t){(η(x2,x1+η(t,x1))ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα(η(x2,x1)ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα}Jα,ρηΩ(t)Jα,ρηΠ(t)|T(Ω,Q1,Q2)T(Π,R1,R2),

    where

    T(u,v,w)=(Jα,ρηw(t)Jα,ρηu(t))(Jα,ρηu(t)Jα,ρηv(t))+Jα,ρηv(t)u(t)×{(η(x2,x1+η(t,x1))ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα(η(x2,x1)ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα}Jα,ρηv(t)Jα,ρηu(t)+Jα,ρηw(t){(η(x2,x1+η(t,x1))ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα(η(x2,x1)ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα}Jα,ρηw(t)Jα,ρηu(t)+Jα,ρηv(t)Jα,ρηw(t)Jα,ρηv(t)w(t){(η(x2,x1+η(t,x1))ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα(η(x2,x1)ρ(x1t+η(x2,x1))ρ)αΓ(α+1)ρα}.

    The -fractional conformable integral operator is defined as

    Definition 9.2. [29] Let be an integrable function, and The -fractional conformable integral operator is defined as

    Here, we present Grüss type inequalities involving the -fractional conformable integral defined in Definition 9.2.

    Theorem 9.4. [29] Assume that is an integrable function satisfying and Then we have:

    Theorem 9.5. [29] Assume that are two integrable function satisfyingt and and Then we have:

    (ⅰ).

    (ⅱ).

    (ⅲ).

    (ⅳ).

    Theorem 9.6. [29] Assume that are two integrable function satisfyingt and and Then we have:

    where

    Definition 9.3. [30] Let We define the left and right sided fractional conformable integral operators as

    For the results in this section we consider

    Theorem 9.7. [30] Suppose that is an integrable function satisfying Then for we have:

    Theorem 9.8. [30] Assume that are two integrable functions satisfying and Then for we have:

    (1)

    (2)

    (3)

    (4)

    Theorem 9.9. [30] Assume that are two integrable functions satisfying and Then for we have:

    where

    Definition 10.1. [31] The proportional fractional integrals, left- and right-sided, of a function of order and are defined by

    and

    where

    In what follows, we present Grüss-type inequality with the help of the proportional fractional integral defined above.

    Theorem 10.1. [31] Assume that is an integrable function satisfying Then:

    Theorem 10.2. [31] Let Suppose that are two integrable functions satisfying and Then the following inequalities hold:

    (a)

    (b)

    (c)

    (d)

    Theorem 10.3. [31] Let and satisfying and be two positive integrable functions. Then we have:

    Theorem 10.4. [31] Let the assumptions of Theorem 10.1 be hold. In addition, let

    Then, we have:

    Definition 10.2. [32] Assume that is integrable and is a strictly increasing continuous function on For we define the left- and right-sided proportional -fractional integrals, respectively, as

    and

    In what follows, we present Grüss-type inequality with the help of the generalized -fractional integral.

    Theorem 10.5. [32] Let be positive integrable functions. satisfying with positive integrable functions and be a strictly increasing continuous function. Tthen the following inequality also holds:

    where

    Definition 11.1. A function is said to be if

    Definition 11.2. [33] Let The Riemann-Liouville generalized fractional integral of of order and is defined by

    In this section, we present some Grüss type inequalities via the fractional integral defined in Definition 11.2.

    Theorem 11.1. [34] Let satisfying and Then we have the following inequality:

    Theorem 11.2. [34] Assume that are two integrable functions satisfying and and Then we have the following inequalities:

    (ⅰ)

    (ⅱ)

    (ⅲ)

    (ⅳ)

    Theorem 11.3. [35] Under the assumptions of Theorem 11.2 we have for all and

    where

    Now we define -Riemann-Liouville fractional integral.

    Definition 11.3. [33] Let be a continuous function. Then -Riemann-Liouville fractional integral of of order is defined by

    where

    Now, for the generalized -Riemann-Liouville fractional integral defined above, we give some Grüss type inequalities.

    Theorem 11.4. [35] Let satisfying and Then we have the following inequality:

    Theorem 11.5. [35] Assume that two integrable functions satisfying and and Then we have:

    (ⅰ)

    (ⅱ)

    (ⅲ)

    (ⅳ)

    Theorem 11.6. [35] Under the assumptions of Theorem 11.5 we have for all and

    where

    In this section, we present the Grüss-type fractional integral inequalities involving the Caputo-Fabrizio fractional integral.

    Definition 12.1. [36] Assume that such that We define the Caputo-Fabrizio fractional integral of a function of order by

    Theorem 12.1. [37] Assume that is an integrable function satisfying Then, for , , , we have:

    Theorem 12.2. [37] Suppose that are two integrable functions satisfying and Then, for , , , we have the inequalities:

    (a)

    (b)

    (c)

    (d)

    Theorem 12.3. [37] Assume that are two integrable functions satisfying and Then for all , , we have:

    where

    In this section, Grüss-type fractional integral inequalities are presented via Saigo fractional integer operator.

    Definition 13.1. [38] Assume that The Saigo fractional integral of order for a real-valued continuous function is defined by

    where is the Gaussian hypergeometric function defined by

    and is the Pochhammer symbol

    Theorem 13.1. [39] Assume that are two integrable functions satisfying and Then for all one has

    where

    Theorem 13.2. [39] Suppose that are two integrable functions satisfying and Then for all we have:

    We define a fractional integral associated with the Gauss hypergeometric function as follows:

    Definition 13.2. [40] Let For we define a fractional integral as follows:

    where is the right-hand sided Gauss hypergeometric fractional integral of order defined in Definition 13.1.

    We present integral inequalities of Grüss type for the above defined hypergeometric fractional integral.

    Theorem 13.3. [40] Let satisfying the condition on Then for all we have

    Theorem 13.4. [40] Let and be two synchronous functions on Then the following inequality holds:

    Another fractional integral operator associated with the Gauss hypergeometric function is defined as follows.

    Definition 13.3. [41] Let For we define a fractional integral as follows:

    where is the right-hand sided Gauss hypergeometric fractional integral of order defined by

    and is the Gaussian hypergeometric function defined in Definition 13.1.

    We establish two Grüss-type fractional integral inequalities involving the Gauss hypergeometric function.

    Theorem 13.5. [41] Assume that are two integrable functions satisfying the condition on Then, for all and with and we have:

    Theorem 13.6. [41] Suppose that are two synchronous functions (i.e ). Then, for all and with and we have:

    Now we give some Grüss-type inequalities for generalized hypergeometric function fractional order integral operators. We start with the following definitions.

    Definition 13.4. [42] Let and Then the Saigo and Maeda fractional integral operator of order for a real-valued continuous function is defined by

    where is the Appell hypergeometric function defined by

    and is the Pochhammer symbol.

    Definition 13.5. [43] Assume that such that

    Then we define a fractional integral operator

    where is the Saigo-Maeda fractional integral of order

    The main results for Grüss inequalities are given now.

    Theorem 13.7. [43] Assume that is an integrable function satisfying the condition for all Then for we have:

    provided

    Theorem 13.8. [43] Assume that (H) holds on In addition, let Then for and we have:

    Theorem 13.9. [43] Let and be two synchronous functions on and let Then for all

    In this section we present Grüss-type integral inequalities via quantum calculus.

    Definition 14.1. [44] The Jakson's -derivarive and -integral of a function defined on are, respectively, given by

    Definition 14.2. [45] The Riemann-Liouville fractional -integral operator of a function of order is given by

    where

    and

    Now, we present some -Grüss integral inequalities.

    Theorem 14.1. [46] Assume that are two integrable functions satisfyingt and Then, for and we have:

    where

    Definition 14.3. [47] Assume is a continuous function and let . Then the expression

    is called the -derivative on of function at .

    Definition 14.4. [47] Assume is a continuous function. Then the -integral on is defined by

    for . Moreover, if then the definite -integral on is defined by

    Theorem 14.2. [47] Assume are continuous functions on satisfying the vondition Then we have the inequality

    Now, we are going to present the -Grüss-ebyev integral inequality on interval .

    Theorem 14.3. [47] Let be , -Lipschitzian continuous functions on , so that

    for all . Then we have:

    Let and let be any interval of containing and denote by the set

    Definition 14.5. [44] Let The -symmetric difference operator of is defined by

    and

    Definition 14.6. [44] Suppose that and For and for the -symmetric integral of is given by

    where

    provided that the series converges at and

    Now, the concepts of -symmetric derivative and -symmetric integral are extended on finite intervals. We fix Let be an interval containing and be a constant. For a function we define the -symmetric derivative at a point as follows:

    Definition 14.7. [48] Assume that is continuous and The -symmetric derivative of at is defined as

    Definition 14.8. [48] Assume that is a continuous function. The -symmetric integral is defined as

    Now, we present -symmetric analogue of Grüss-Chebyshev integral inequality.

    Theorem 14.4. [48] Let and be -Lipschitzian continuous functions on so that

    for all Then:

    The following concepts are adapted by Ref. ([49]). We state a -shifting operator as

    The -analog is stated by

    The number is stated by

    The -Gamma function is stated by

    Here, we add some definitions regarding fractional -calculus, namely the Riemann-Liouville fractional -integral.

    Definition 14.9. [49] Let and function be a continuous stated on Then is given by

    Now, we present the fractional -Grüss integral inequality on the interval

    Theorem 14.5. [50] Let be continuous functions satisfying For and we have the inequality

    Next, we give the fractional -Grüss-Čebyšev integral inequality on the interval

    Theorem 14.6. [50] Let be -, -Lipschitzian continuous functions, so that

    for all and Then we have the inequality

    In this section we give Grüss-type integral inequalities via fractional Hilfer derivative operators.

    In this section we present several integral inequalities for the -Hilfer fractional derivative operator.

    Definition 15.1. [51] Let Then the following

    is called the Hiler -fractional derivative.

    Theorem 15.1. [51] Let and be a positive function on and let denote the Hilfer -fractional derivative of order and type Suppose that:

    There exist such that

    for all

    Then

    In this section, we present inequalities of the Grüss-type via -fractional Hilfer-Katugampola generalized derivative.

    Definition 15.2. [52] Let and The generalized -fractional Hilfer-Katugampola derivatives (left-sided and right-sided) are defined as

    where

    Theorem 15.2. [52] Let and be positive integrable function on satisfying Then we have:

    Theorem 15.3. [52] Let and be positive integrable functions on satisfying and Then we have:

    Theorem 15.4. [52] Let and be positive integrable functions on satisfying and If and then we have:

    Theorem 15.5. [52] Let and be positive integrable functions on Let

    Then we have:

    Our objective in this paper was to present a comprehensive and up-to-date review on Grüss-type inequalities for fractional differential operators. We presented results including inequalities of the Grüss-type for different kinds of fractional integral and differential operators. Grüss-type inequalities for fractional integrals of Riemann-Liouville, Katugampola, Hadamard's, Raina's, tempered, conformable, proportional, Caputo-Fabrizio, Saigo's are included. Moreover Grüss-type inequalities concerning Hilfer fractional differential operators and quantum Grüss-type integral inequalities are also presented. We believe that the present survey will provide a platform for the researchers working on Grüss-type inequalities to learn about the available work on the topic before developing the new results. Future research regarding this review paper is fascinating. Our review paper might inspire a good number of additional studies.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-340-1).

    The authors declare that they do not have conflict of interest regarding this manuscript.


    Acknowledgments



    We thank the teachers, editors and institutions who have made any effort to contribute to this article. This study was supported by a Grant from the National Natural Science Foundation of China (grant no. 8227143168 and grant no. 81774140) to Yong-Gang Xu and Science and Technology Innovation Project of China Academy of Chinese Medical Sciences (C12021 A01706) to Xiu-Peng Yang.

    Conflict of interest



    The authors declare no conflicts of interest.

    [1] Sekeres MA, Taylor J (2022) Diagnosis and treatment of myelodysplastic syndromes: a review. Jama 328: 872-880. https://doi.org/10.1001/jama.2022.14578
    [2] Trowbridge JJ, Starczynowski DT (2021) Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 218: e20201544. https://doi.org/10.1084/jem.20201544
    [3] López-Otín C, Blasco MA, Partridge L, et al. (2013) The hallmarks of aging. Cell 153: 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
    [4] Steensma DP, Bejar R, Jaiswal S, et al. (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126: 9-16. https://doi.org/10.1182/blood-2015-03-631747
    [5] Prasanna PG, Citrin DE, Hildesheim J, et al. (2021) Therapy-induced senescence: opportunities to improve anticancer therapy. JNCI 113: 1285-1298. https://doi.org/10.1093/jnci/djab064
    [6] Ogrodnik M, Evans SA, Fielder E, et al. (2021) Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging cell 20: e13296. https://doi.org/10.1111/acel.13296
    [7] Tian J, Bai Y, Liu A, et al. (2021) Identification of key biomarkers for thyroid cancer by integrative gene expression profiles. Exp Biol Med 246: 1617-1625. https://doi.org/10.1177/15353702211008809
    [8] Xie X, Wang EC, Xu D, et al. (2021) Bioinformatics analysis reveals the potential diagnostic biomarkers for abdominal aortic aneurysm. Front Cardiovasc Med 8: 656263. https://doi.org/10.3389/fcvm.2021.656263
    [9] Liu J, Zhou S, Li S, et al. (2019) Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis. Cancer Cell Int 19: 136. https://doi.org/10.1186/s12935-019-0859-1
    [10] Szklarczyk D, Franceschini A, Wyder S, et al. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: D447-D452. https://doi.org/10.1093/nar/gku1003
    [11] Zhou X, Du J, Liu C, et al. (2021) A pan-cancer analysis of CD161, a potential new immune checkpoint. Front Immunol 12: 688215. https://doi.org/10.3389/fimmu.2021.688215
    [12] Wang L, Wang D, Yang L, et al. (2022) Cuproptosis related genes associated with Jab1 shapes tumor microenvironment and pharmacological profile in nasopharyngeal carcinoma. Front Immunol 13: 989286. https://doi.org/10.3389/fimmu.2022.989286
    [13] Guo C, Gao YY, Ju QQ, et al. (2021) The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J Transl Med 19: 228. https://doi.org/10.1186/s12967-021-02914-2
    [14] Yang L, Pan X, Zhang Y, et al. (2022) Bioinformatics analysis to screen for genes related to myocardial infarction. Front Genet 13: 990888. https://doi.org/10.3389/fgene.2022.990888
    [15] Ding L, Yu Q, Yang S, et al. (2022) Comprehensive analysis of HHLA2 as a prognostic biomarker and its association with immune infiltrates in hepatocellular carcinoma. Front Immunol 13: 831101. https://doi.org/10.3389/fimmu.2022.831101
    [16] Ranade NV, Nagarajan S, Sarvothaman V, et al. (2021) ANN based modelling of hydrodynamic cavitation processes: biomass pre-treatment and wastewater treatment. Ultrason Sonochem 72: 105428. https://doi.org/10.1016/j.ultsonch.2020.105428
    [17] Hu X, Wang J, Ju Y, et al. (2022) Combining metabolome and clinical indicators with machine learning provides some promising diagnostic markers to precisely detect smear-positive/negative pulmonary tuberculosis. BMC Infect Dis 22: 707. https://doi.org/10.1186/s12879-022-07694-8
    [18] Ning L, Wang X, Xuan B, et al. (2023) Identification and investigation of depression-related molecular subtypes in inflammatory bowel disease and the anti-inflammatory mechanisms of paroxetine. Front Immunol 14: 1145070. https://doi.org/10.3389/fimmu.2023.1145070
    [19] Wang X, Wu Y, Wen D, et al. (2020) An individualized immune prognostic index is a superior predictor of survival of hepatocellular carcinoma. Med Sci Monit 26: e921786. https://doi.org/10.12659/MSM.921786
    [20] Lin W, Wang Y, Chen Y, et al. (2021) Role of calcium signaling pathway-related gene regulatory networks in ischemic stroke based on multiple WGCNA and single-cell analysis. Oxid Med Cell Longev 2021: 8060477. https://doi.org/10.1155/2021/8060477
    [21] Zhuang W, Sun H, Zhang S, et al. (2021) An immunogenomic signature for molecular classification in hepatocellular carcinoma. Mol Ther Nucleic Acids 25: 105-115. https://doi.org/10.1016/j.omtn.2021.06.024
    [22] Liu K, Chen S, Lu R (2021) Identification of important genes related to ferroptosis and hypoxia in acute myocardial infarction based on WGCNA. Bioengineered 12: 7950-7963. https://doi.org/10.1080/21655979.2021.1984004
    [23] Wu X, Sui Z, Zhang H, et al. (2020) Integrated analysis of lncRNA-mediated ceRNA network in lung adenocarcinoma. Front Oncol 10: 554759. https://doi.org/10.3389/fonc.2020.554759
    [24] Korsunsky I, Millard N, Fan J, et al. (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16: 1289-1296. https://doi.org/10.1038/s41592-019-0619-0
    [25] Yu L, Shen N, Shi Y, et al. (2022) Characterization of cancer-related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front Immunol 13: 1009789. https://doi.org/10.3389/fimmu.2022.1009789
    [26] Aran D, Looney AP, Liu L, et al. (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20: 163-172. https://doi.org/10.1038/s41590-018-0276-y
    [27] Sinha D, Kumar A, Kumar H, et al. (2018) dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res 46: e36. https://doi.org/10.1093/nar/gky007
    [28] Zheng SC, Stein-O'Brien G, Augustin JJ, et al. (2022) Universal prediction of cell-cycle position using transfer learning. Genome Biol 23: 41. https://doi.org/10.1186/s13059-021-02581-y
    [29] Prata LGPL, Ovsyannikova IG, Tchkonia T, et al. (2018) Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol 40: 101275. https://doi.org/10.1016/j.smim.2019.04.003
    [30] López-Domínguez JA, Rodríguez-López S, Ahumada-Castro U, et al. (2021) Cdkn1a transcript variant 2 is a marker of aging and cellular senescence. Aging 13: 13380-13392. https://doi.org/10.18632/aging.203110
    [31] Kaya Z, Karan BM, Almalı N (2022) CDKN1A (p21 gene) polymorphisms correlates with age in esophageal cancer. Mol Biol Rep 49: 249-258. https://doi.org/10.1007/s11033-021-06865-1
    [32] Wu Y, Li D, Wang Y, et al. (2018) Beta-defensin 2 and 3 promote bacterial clearance of pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene-1 and c-FOS. Front Immunol 9: 211. https://doi.org/10.3389/fimmu.2018.00211
    [33] Wang B, Guo H, Yu H, et al. (2021) The role of the transcription factor EGR1 in cancer. Front Oncol 11: 642547. https://doi.org/10.3389/fonc.2021.642547
    [34] Feng X, Shikama Y, Shichishima T, et al. (2013) Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients. PLoS One 8: e61107. https://doi.org/10.1371/journal.pone.0061107
    [35] Schmid JA, Birbach A (2008) IκB kinase β (IKKβ/IKK2/IKBKB)—A key molecule in signaling to the transcription factor NF-κB. Cytokine Growth Factor Rev 19: 157-165. https://doi.org/10.1016/j.cytogfr.2008.01.006
    [36] Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18: 2195-2224. https://doi.org/10.1101/gad.1228704
    [37] Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 13: 759-772. https://doi.org/10.1038/sj.cdd.4401838
    [38] Nguyen HCB, Adlanmerini M, Hauck AK, et al. (2020) Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature 584: 286-290. https://doi.org/10.1038/s41586-020-2576-2
    [39] Sarkar R, Banerjee S, Amin SA, et al. (2020) Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem 192: 112171. https://doi.org/10.1016/j.ejmech.2020.112171
    [40] Meng Q, Xia Y (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2: 889-898. https://doi.org/10.1007/s13238-011-1113-3
    [41] Shaulian E (2010) AP-1--The Jun proteins: oncogenes or tumor suppressors in disguise?. Cell Signal 22: 894-899. https://doi.org/10.1016/j.cellsig.2009.12.008
    [42] Padhy B, Hayat B, Nanda GG, et al. (2017) Pseudoexfoliation and Alzheimer's associated CLU risk variant, rs2279590, lies within an enhancer element and regulates CLU, EPHX2 and PTK2B gene expression. Hum Mol Genet 26: 4519-4529. https://doi.org/10.1093/hmg/ddx329
    [43] Leroy H, Roumier C, Huyghe P, et al. (2005) CEBPA point mutations in hematological malignancies. Leukemia 19: 329-334. https://doi.org/10.1038/sj.leu.2403614
    [44] Pabst T, Mueller BU (2009) Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin Cancer Res 15: 5303-5307. https://doi.org/10.1158/1078-0432.CCR-08-2941
    [45] Spitz AZ, Gavathiotis E (2022) Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 43: 206-220. https://doi.org/10.1016/j.tips.2021.11.001
    [46] Matsuyama S, Palmer J, Bates A, et al. (2016) Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med 241: 1265-1271. https://doi.org/10.1177/1535370216654587
    [47] Ying Z, Huang XF, Xiang X, et al. (2019) A safe and potent anti-CD19 CAR T cell therapy. Nat Med 25: 947-953. https://doi.org/10.1038/s41591-019-0421-7
    [48] Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18: 385-397. https://doi.org/10.3109/10428199509059636
    [49] Huse K, Bai B, Hilden VI, et al. (2022) Mechanism of CD79A and CD79B support for IgM+ B cell fitness through B cell receptor surface expression. J Immunol 209: 2042-2053. https://doi.org/10.4049/jimmunol.2200144
    [50] Petersdorf EW (2017) In celebration of ruggero ceppellini: HLA in transplantation. HLA 89: 71-76. https://doi.org/10.1111/tan.12955
    [51] Visentin J, Couzi L, Taupin JL (2021) Clinical relevance of donor-specific antibodies directed at HLA-C: a long road to acceptance. HLA 97: 3-14. https://doi.org/10.1111/tan.14106
    [52] Gulandris F, Bacis S, Campoli R, et al. (2021) A novel HLA-C allele, HLA-C* 14: 125. HLA 97: 375-377. https://doi.org/10.1111/tan.14192
    [53] Zhao S, Chen N, He Y, et al. (2022) The novel HLA-C allele, HLA-C*03:537 in a Chinese individual. HLA 100: 376-377. https://doi.org/10.1111/tan.14715
    [54] Popēna I, Ābols A, Saulīte L, et al. (2018) Effect of colorectal cancer-derived extracellular vesicles on the immunophenotype and cytokine secretion profile of monocytes and macrophages. Cell Commun Signal 16: 17. https://doi.org/10.1186/s12964-018-0229-y
    [55] Liu J, Wang H, Zhang L, et al. (2022) Periodontal ligament stem cells promote polarization of M2 macrophages. J Leukoc Biol 111: 1185-1197. https://doi.org/10.1002/JLB.1MA1220-853RR
  • bioeng-10-04-026-s001.pdf
  • This article has been cited by:

    1. HUI-YAN CHENG, IBRAHIM MEKAWY, JUAN WANG, HUMERA BATOOL, MUHAMMAD IMRAN QURESHI, ANALYSIS OF NEWTON AND HERMITE–HADAMARD-TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES ON FRACTAL SETS USING GENERALIZED PRE-INVEXITY, 2025, 33, 0218-348X, 10.1142/S0218348X25401036
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1778) PDF downloads(93) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog