
Citation: Mingyong Xiong, Ping Yu, Jingyu Wang, Kechun Zhang. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate[J]. AIMS Bioengineering, 2015, 2(2): 60-74. doi: 10.3934/bioeng.2015.2.60
[1] | Haixia Lu, Li Sun . Positive solutions to a semipositone superlinear elastic beam equation. AIMS Mathematics, 2021, 6(5): 4227-4237. doi: 10.3934/math.2021250 |
[2] | Mohammed Alkinidri, Rab Nawaz, Hani Alahmadi . Analytical and numerical investigation of beam-spring systems with varying stiffness: a comparison of consistent and lumped mass matrices considerations. AIMS Mathematics, 2024, 9(8): 20887-20904. doi: 10.3934/math.20241016 |
[3] | Jianan Qiao, Guolin Hou, Jincun Liu . Analytical solutions for the model of moderately thick plates by symplectic elasticity approach. AIMS Mathematics, 2023, 8(9): 20731-20754. doi: 10.3934/math.20231057 |
[4] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[5] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[6] | Ebrahem A. Algehyne, Nifeen Hussain Altaweel, Mounirah Areshi, Faizan Ahmad Khan . Relation-theoretic almost $ \phi $-contractions with an application to elastic beam equations. AIMS Mathematics, 2023, 8(8): 18919-18929. doi: 10.3934/math.2023963 |
[7] | Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714 |
[8] | Kun Li, Peng Wang . Properties for fourth order discontinuous differential operators with eigenparameter dependent boundary conditions. AIMS Mathematics, 2022, 7(6): 11487-11508. doi: 10.3934/math.2022640 |
[9] | Ammar Khanfer, Lazhar Bougoffa . On the fourth-order nonlinear beam equation of a small deflection with nonlocal conditions. AIMS Mathematics, 2021, 6(9): 9899-9910. doi: 10.3934/math.2021575 |
[10] | Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220 |
We consider characteristic equations, i.e., equations for eigenvalues and eigenfunctions of the class of integral operators on the Hilbert space $ L^2[-l, l] $ of the form
$ KM[w](x)=∫l−lGM(x,ξ)w(ξ)dξ,x∈[−l,l], w∈L2[−l,l], $ | (1.1) |
where $ G_{\bf{M}} $ is the Green function [1,2] for the boundary value problem consisting of the fourth-order linear differential equation
$ EI⋅u(4)(x)+k⋅u(x)=w(x),x∈[−l,l] $ | (1.2) |
and a well-posed two-point boundary condition
$ M⋅(u(−l)u′(−l)u′′(−l)u′′′(−l)u(l)u′(l)u′′(l)u′′′(l))T=0. $ | (1.3) |
Here, $ {\bf{M}} \in \operatorname{gl}(4, 8, \mathbb{C}) $ is called a boundary matrix, where $ \operatorname{gl}(4, 8, \mathbb{C}) $ is the set of $ 4 \times 8 $ matrices with complex entries. For example, the two-point boundary condition $ u(-l) = u^\prime(-l) = u(l) = u^\prime(l) = 0 $ can be expressed by (1.3) with
$ {\bf{M}} = \left( 10000000010000000000100000000100 \right). $ |
The differential equation (1.2) is the classical Euler–Bernoulli beam equation [3] which governs the vertical downward deflection $ u(x) $ of a linear-shaped beam with finite length $ 2l $ resting horizontally on an elastic foundation with spring constant density $ k $. The constants $ E $ and $ I $ are the Young's modulus and the mass moment of inertia of the beam respectively, and $ w(x) $ is the downward load density applied vertically on the beam. The beam deflection problem has been one of the central topics in mechanical engineering with diverse and important applications [3,4,5,6,7,8,9,10,11,12].
Throughout this paper, we assume that $ l $, $ E $, $ I $, $ k $ in (1.2) are positive constants and put $ \alpha = \sqrt[4]{k/(E I)} > 0 $. When the boundary value problem consisting of (1.2) and (1.3) is well-posed or, equivalently, when (1.2) and (1.3) has a unique solution, we call the boundary matrix $ {\bf{M}} $ well-posed. The set of well-posed boundary matrices is denoted by $ \operatorname{wp}(4, 8, \mathbb{C}) $. It was shown in [2] that, up to a natural equivalence relation, $ \operatorname{wp}(4, 8, \mathbb{C}) $ is in one-to-one correspondence with the $ 16 $-dimensional algebra $ \operatorname{gl}(4, \mathbb{C}) $ of $ 4 \times 4 $ matrices with complex entries.
For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, we denote by $ \operatorname{Spec}\mathcal{K}_{\bf{M}} $ the spectrum or, the set of eigenvalues, of the integral operator $ \mathcal{K}_{\bf{M}} $ in (1.1). Since $ \mathcal{K}_{\bf{M}}[w] $ is the unique solution of the boundary value problem (1.2) and (1.3) for every $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, analyzing the behavior of the integral operators $ \mathcal{K}_{\bf{M}} $ is important in understanding the beam deflection problem. In general, spectral analysis for integral operators arising from various differential equations is crucial in many applications such as inverse problem [13] and nonlinear problem [5,6]. In contrast to this importance, there are few explicit spectral analyses for the integral operators $ \mathcal{K}_{\bf{M}} $ which arise from a most fundamental and basic differential equation (1.2) in the history of mechanical engineering.
Choi [14] analyzed $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ of a special integral operator $ \mathcal{K}_{\bf{Q}} $ in detail, where
$ Q=(0α2−√2α10000√2α3−α201000000000α2√2α10000−√2α3−α201), $ | (1.4) |
which is in $ \operatorname{wp}(4, 8, \mathbb{C}) $ [2]. The Green function $ G_{\bf{Q}}(x, \xi) $ corresponding to $ {\bf{Q}} $ is the restriction in $ [-l, l] \times [-l, l] $ of the Green function for the boundary value problem consisting of the infinite version $ E I \cdot u^{(4)}(x) + k \cdot u(x) = w(x) $, $ x \in (-\infty, \infty) $ of (1.2) and the boundary condition $ \lim_{x \to \pm \infty} u(x) = 0 $.
For two positive sequences $ a_n $, $ b_n $, we denote $ a_n \sim b_n $ if there exists $ N > 0 $ such that $ m \leq a_n/b_n \leq M $ for every $ n > N $ for some constants $ 0 < m \leq M < \infty $.
Proposition 1.1 ([14]). For every $ l > 0 $, the spectrum $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ of the operator $ \mathcal{K}_{\bf{Q}} $ is of the form $ \left\{ \mu_n/k \, |\, n = 1, 2, 3, \cdots \right\} \cup \left\{ \nu_n/k \, |\, n = 1, 2, 3, \cdots \right\} \subset (0, 1/k) $, where $ 1 > \mu_1 > \nu_1 > \mu_2 > \nu_2 > \cdots \searrow 0 $. Each of $ \mu_n $ and $ \nu_n $ for $ n = 1, 2, 3, \ldots $ is determined only by the intrinsic length $ L = 2 l \alpha $ of the beam. $ \mu_n \sim \nu_n \sim n^{-4} $, and
$ 11+{h−1(2πn+π2)}4<νn<11+{h−1(2πn)}4<μn<11+{h−1(2πn−π2)}4,n=1,2,3,…,11+{h−1(2πn−π2)}4−μn∼νn−11+{h−1(2πn+π2)}4∼n−5e−2πn,11+1L4(2π(n−1)−π2)4−μn∼11+1L4(2π(n−1)+π2)4−νn∼n−6. $ |
Here, $ h : [0, \infty) \to [0, \infty) $ is the strictly increasing real-analytic function defined in Supplementary D, with the properties $ h(0) = 0 $ and $ h^{-1}\left(a_n \right) \sim a_n/L $ for any positive sequence $ a_n $ such that $ a_n \to \infty $. See [14] for numerical computations of $ \mu_n $, $ \nu_n $ with arbitrary precision.
Recently, Choi [2] derived explicit characteristic equations for the integral operator $ \mathcal{K}_{\bf{M}} $ in (1.1) for arbitrary well-posed $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, which are stated in more detail in Section 2. Although these characteristic equations are expressed in terms of the explicit $ 4 \times 4 $ matrices $ \mathcal{G}({\bf{M}}) $, $ {\bf{X}}_\lambda $, $ {\bf{Y}}_\lambda $, they still involve determinants of full $ 4 \times 4 $ matrices, which makes it hard to analyze the structure of $ \operatorname{Spec}\mathcal{K}_{\bf{M}} $ for general well-posed boundary matrix $ {\bf{M}} $.
In this paper, we utilize some of the symmetries in the $ 4 \times 4 $ matrices $ {\bf{X}}_\lambda $, $ {\bf{Y}}_\lambda $ to block-diagonalize them with explicit $ 2 \times 2 $ blocks $ {\bf{X}}_\lambda^\pm $, $ {\bf{Y}}_\lambda^\pm $, which enables us to obtain new and simpler forms of characteristic equations for the integral operator $ \mathcal{K}_{\bf{M}} $ for arbitrary well-posed boundary matrix $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $. In particular, the entries of the $ 2 \times 2 $ blocks $ {\bf{X}}_\lambda^\pm $ and $ {\bf{Y}}_\lambda^\pm $ are represented explicitly with the concrete holomorphic functions $ \delta^\pm(z, \kappa) $ and $ p^\pm(z) $ introduced in Section 3.
Our results significantly reduce the complexity of dealing with determinants of $ 4 \times 4 $ matrices and facilitate to represent $ \operatorname{Spec}\mathcal{K}_{\bf{M}} $ for arbitrary $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $ essentially as the zero set of one explicit holomorphic function composed with the concrete functions $ \delta^\pm(z, \kappa) $. For example, Corollary 1 in Section 3 states that $ 0, 1/k \neq \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ if and only if $ \lambda $ is a zero of the holomorphic function $ \delta^+\left(\alpha l, \chi(\lambda) \right) \cdot \delta^-\left(\alpha l, \chi(\lambda) \right) $, where $ \chi $ is a $ 4 $th root transformation introduced in Section 2. In particular, the holomorphic functions $ \delta^\pm(z, \kappa) $ unify the real-analytic functions which were analyzed in detail in [14,15] to obtain concrete results on $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ such as Proposition 1.1. The fact that $ \delta^\pm(z, \kappa) $ encapsulate condensed information on $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $, and hence on $ \operatorname{Spec}\mathcal{K}_{\bf{M}} $ in general, is demonstrated in Supplementary D by showing that the seemingly complex-looking conditions $ \varphi^\pm(\kappa) = p(\kappa) $, which were derived in [14] with the help of computer algebra systems, can be directly and elegantly recovered from $ \delta^\pm(z, \kappa) $.
Our results open up practical ways to direct and concrete spectral analysis for the whole $ 16 $-dimensional class of the integral operators $ \mathcal{K}_{\bf{M}} $ arising from arbitrary well-posed boundary value problem of finite beam deflection on elastic foundation.
After introducing basic notations, definitions, and previous results relevant to our analysis in Section 2, we state our main results Theorems 1, 2 and 3 in Section 3, which are proved in Sections 4, 5 and 6 respectively. Some remarks and future directions are given in Section 7. In Supplementary D, the conditions $ \varphi^\pm(\kappa) = p(\kappa) $ on $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ in [14] are derived from our holomorphic functions $ \delta^\pm(z, \kappa) $.
We denote $ \mathbb{i} = \sqrt{-1} $. Denote by $ \mathbb{Z} $, $ \mathbb{R} $, and $ \mathbb{C} $, the set of integers, the set of real numbers, and the set of complex numbers respectively. The set of $ m \times n $ matrices with entries in $ \mathbb{C} $ is denoted by $ \operatorname{gl}(m, n, \mathbb{C}) $. When $ m = n $, we also denote $ \operatorname{gl}(m, n, \mathbb{C}) = \operatorname{gl}(n, \mathbb{C}) $. We write $ {\bf{A}} = \left(a_{i, j} \right)_{1 \leq i \leq m, \, 1 \leq j \leq n} $ when the $ (i, j) $th entry of $ {\bf{A}} \in \operatorname{gl}(m, n, \mathbb{C}) $ is $ a_{i, j} $. When $ m = n $, we also write $ {\bf{A}} = \left(a_{i, j} \right)_{1 \leq i, j \leq n} $. For $ {\bf{A}} \in \operatorname{gl}(m, n, \mathbb{C}) $, we denote the $ (i, j) $th entry of $ {\bf{A}} $ by $ {\bf{A}}_{i, j} $. The complex conjugate, the transpose, and the conjugate transpose of $ {\bf{A}} \in \operatorname{gl}(m, n, \mathbb{C}) $ are denoted by $ \overline{{\bf{A}}} $, $ {\bf{A}}^T $, and $ {\bf{A}}^* $ respectively. For $ {\bf{A}} \in \operatorname{gl}(n, \mathbb{C}) $, $ \operatorname{adj}{{\bf{A}}} $ is the classical adjoint of $ {\bf{A}} $, so that, if $ {\bf{A}} $ is invertible then $ {\bf{A}}^{-1} = \operatorname{adj}{{\bf{A}}} /\det{\bf{A}}. $
Regardless of size, the identity matrix and the zero matrix are denoted by $ {\bf{I}} $ and $ {\bf{O}} $ respectively. The zero column vector with any size is denoted by $ {\bf{0}} $. The diagonal matrix with diagonal entries $ c_1, c_2, \cdots, c_n $ is denoted by $ \operatorname{diag}\left(c_1, c_2, \cdots, c_n \right) $.
Definition 2.1. Denote $ \omega = e^{\mathbb{i} \frac{\pi}{4}} = \frac{1}{\sqrt{2}} + \mathbb{i} \frac{1}{\sqrt{2}} $ and $ \omega_n = \mathbb{i}^{n-1} \omega $ for $ n \in \mathbb{Z} $. Denote $ {\bf{\Omega}} = \operatorname{diag}\left(\omega_1, \omega_2, \omega_3, \omega_4 \right) $ and $ {\bf{W}}_0 = \left(\omega_j^{i-1} \right)_{1 \leq i, j \leq 4} $.
$ \omega_1 = \omega $, $ \omega_2 $, $ \omega_3 $, $ \omega_4 $ are the primitive $ 4 $th roots of $ -1 $ and satisfy
$ ¯ω=ω4=−ω2=−iω,ω3=−ω,¯ωn=ω−1n, n∈Z,ω+¯ω=√2,ω−¯ω=i√2,ω2=i,ω¯ω=1. $ | (2.1) |
Definition 2.2. Denote $ \epsilon_1 = \epsilon_4 = 1 $, $ \epsilon_2 = \epsilon_3 = -1 $, and $ \epsilon_{n+4} = \epsilon_n $ for $ n \in \mathbb{Z} $. Denote $ \mathcal{E} = \operatorname{diag} \left(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4 \right) = \operatorname{diag}(1, -1, -1, 1) $.
By Definitions 2.1, 2.2 and (2.1), we have
$ e−EΩz=diag(e−ω1z,eω2z,eω3z,e−ω4z)=diag(e−ωz,e−¯ωz,e−ωz,e−¯ωz)=(diag(e−ωz,e−¯ωz)OOdiag(e−ωz,e−¯ωz)),z∈C. $ | (2.2) |
Definition 2.3. Denote
$ {\bf{V}} = \frac{1}{\sqrt{2}} (II−II) = \frac{1}{\sqrt{2}} \left( 10100101−10100−101 \right), \qquad \widehat{{\bf{V}}} = \left( 1000001001000001 \right). $ |
Note that $ {\bf{V}} $ and $ \widehat{{\bf{V}}} $ are orthogonal and
$ V−1=VT,ˆV−1=ˆVT=ˆV,detV=1,detˆV=−1. $ | (2.3) |
Lemma 2.1. $ {\bf{V}} (ABBA) {\bf{V}}^T = (A+BOOA−B) $ for $ {\bf{A}}, {\bf{B}} \in \operatorname{gl}(2, \mathbb{C}) $.
Proof. By Definition 2.3,
$ V(ABBA)VT=1√2(II−II)⋅(ABBA)⋅1√2(I−III)=12(A+BA+B−A+BA−B)(I−III)=(A+BOOA−B). $ |
By (2.2) and Lemma 2.1,
$ Ve−EΩzVT=(diag(e−ωz,e−¯ωz)+OOOdiag(e−ωz,e−¯ωz)−O)=(diag(e−ωz,e−¯ωz)OOdiag(e−ωz,e−¯ωz))=e−EΩz,z∈C. $ | (2.4) |
By (2.1),
$ detdiag(e−ωz,e−¯ωz)=e−ωz⋅e−¯ωz=e−(ω+¯ω)z=e−√2z,z∈C. $ | (2.5) |
Definition 2.4. For $ \lambda \in \mathbb{C} \setminus \left\{ 0, 1/k \right\} $, define $ \chi(\lambda) $ to be the unique complex number satisfying $ \chi(\lambda)^4 = 1 - 1/(\lambda k) $ and $ 0 \leq \operatorname{Arg}{\chi(\lambda)} < \pi/2 $.
Note that $ \chi $ is a one-to-one correspondence from $ \mathbb{C} \setminus \left\{ 0, 1/k \right\} $ to the set $ \left\{ \kappa \in \mathbb{C} \, |\, 0 \leq \operatorname{Arg}{\kappa} < \pi/2 \right\} \setminus \{ 0, 1 \} $.
Definition 2.5. Let $ 0 \neq \lambda \in \mathbb{C} $ and $ x \in \mathbb{R} $. For $ \lambda \neq 1/k $, let $ \kappa = \chi(\lambda) $. Denote
$ {\bf{W}}(x) = (y(x)y′(x)y′′(x)y′′′(x))^T, \qquad {\bf{W}}_\lambda(x) = \left( y_{\lambda,j}^{(i-1)}(x) \right)_{1 \leq i,j \leq 4}, $ |
where $ {\bf{y}}(x) = (eω1αxeω2αxeω3αxeω4αx)^T $ and $ y_{\lambda, j}(x) = \left\{ 1(j−1)!⋅xj−1,if λ=1/k,eωjκαx,if λ≠1/k, \right. \; j = 1, 2, 3, 4 $. Denote $ {\bf{X}}_\lambda(x) = \operatorname{diag}(0, 1, 1, 0) \cdot {\bf{W}}(-x)^{-1} {\bf{W}}_\lambda(-x) + \operatorname{diag}(1, 0, 0, 1) \cdot {\bf{W}}(x)^{-1} {\bf{W}}_\lambda(x) $. When $ \det {\bf{X}}_\lambda(x) \neq 0 $, denote $ {\bf{Y}}_\lambda(x) = {\bf{X}}_\lambda(-x) {\bf{X}}_\lambda(x)^{-1} - {\bf{I}} $.
Definition 2.6. Define $ \mathcal{G} : \operatorname{wp}(4, 8, \mathbb{C}) \to \operatorname{gl}(4, \mathbb{C}) $ by
$ \mathcal{G}({\bf{M}}) = \left\{ {\bf{M}}^- {\bf{W}}(-l) + {\bf{M}}^+ {\bf{W}}(l) \right\}^{-1} {\bf{M}}^+ {\bf{W}}(l) \mathcal{E} - \operatorname{diag}(1,0,0,1), $ |
where $ {\bf{M}}^-, {\bf{M}}^+ \in \operatorname{gl}(4, \mathbb{C}) $ are the $ 4 \times 4 $ minors of $ {\bf{M}} $ such that $ {\bf{M}} = \left(M−M+ \right) $. Define $ \psi : \operatorname{gl}(4, \mathbb{C}) \to \operatorname{gl}(4, 8, \mathbb{C}) $ by
$ \psi({\bf{G}}) = \left( {diag(0,1,1,0)−GE}W(−l)−1{diag(1,0,0,1)+GE}W(l)−1 \right). $ |
The map $ \mathcal{G} $ in Definition 2.6 is well defined since, for $ {\bf{M}} = \left(M−M+ \right) \in \operatorname{gl}(4, 8, \mathbb{C}) $, $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $ if and only of $ \det \left\{ {\bf{M}}^- {\bf{W}}(-l) + {\bf{M}}^+ {\bf{W}}(l) \right\} \neq 0 $ [2,Lemma 3.1]. $ \mathcal{G}({\bf{M}}) $ is denoted by $ {\bf{G}}_{\bf{M}} $ in [2]. Define the equivalence relation $ \approx $ on $ \operatorname{wp}(4, 8, \mathbb{C}) $ by $ {\bf{M}} \approx {\bf{N}} $ if and only if $ {\bf{M}} = {\bf{A}} {\bf{N}} $ for some invertible $ {\bf{A}} \in \operatorname{gl}(4, \mathbb{C}) $.
Proposition 2.1. (a) ([2,Lemma 6.1]) For $ {\bf{M}}, {\bf{N}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, the following $ \rm(i) $, $ \rm(ii) $, $ \rm(iii) $ are equivalent: $\rm {(i)}\; {\bf{M}} \approx {\bf{N}} $, $ \rm(ii) \; \mathcal{G}({\bf{M}}) = \mathcal{G}({\bf{N}}) $, $ \rm(iii) \; \mathcal{K}_{\bf{M}} = \mathcal{K}_{\bf{N}} $.
(b)([2,Eq 6.4]) For $ {\bf{G}} \in \operatorname{gl}(4, \mathbb{C}) $, $ \psi({\bf{G}}) \in \operatorname{wp}(4, 8, \mathbb{C}) $ and $ \mathcal{G}\left(\psi({\bf{G}}) \right) = {\bf{G}} $.
Denote by $ \operatorname{wp}(\mathbb{C}) $ the quotient set $ \operatorname{wp}(4, 8, \mathbb{C})/\approx $ of $ \operatorname{wp}(4, 8, \mathbb{C}) $ with respect to the relation $ \approx $. For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, denote by $ [{\bf{M}}] $ the equivalence class in $ \operatorname{wp}(4, 8, \mathbb{C})/\approx $ which contains $ {\bf{M}} $. Then we have the canonical projection $ \pi : \operatorname{wp}(4, 8, \mathbb{C}) \to \operatorname{wp}(\mathbb{C}) $ defined by $ \pi({\bf{M}}) = [{\bf{M}}] $. By Proposition 2.1, the map $ \pi \circ \psi : \operatorname{gl}(4, \mathbb{C}) \to \operatorname{wp}(\mathbb{C}) $ is a one-to-one correspondence, and we denote its inverse by $ \mathrm{\mathrm{\Gamma}} : \operatorname{wp}(\mathbb{C}) \to \operatorname{gl}(4, \mathbb{C}) $. Thus we have the commutative diagram in Figure 1 which holds for any invertible $ {\bf{A}} \in \operatorname{gl}(4, \mathbb{C}) $. Here, the map $ P_{\bf{A}} : \operatorname{wp}(4, 8, \mathbb{C}) \to \operatorname{wp}(4, 8, \mathbb{C}) $ is defined by $ P_{\bf{A}}({\bf{M}}) = {\bf{A}} {\bf{M}} $.
By Proposition 2.1, the set of integral operators $ \mathcal{K}_{\bf{M}} $ in (1.1) is in one-to-one correspondence with the set $ \operatorname{wp}(\mathbb{C}) $ of equivalent well-posed boundary matrices, and hence is also in one-to-one correspondence with $ \operatorname{gl}(4, \mathbb{C}) $. Note that both of the maps $ \mathcal{G} $ and $ \psi $ in Definition 2.6 are explicitly computable, hence $ \mathrm{\Gamma} $ and its inverse $ \mathrm{\Gamma}^{-1} $ are explicitly computable. For the special boundary matrix $ {\bf{Q}} $ in (1.4), we have [2,Eq 6.2]
$ G(Q)=O. $ | (2.6) |
Proposition 2.2. For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $ and $ \lambda \in \mathbb{C} $, the following $ \rm(a) $ and $ \rm(b) $ hold.
(a) ([2,Theorem 1 and Corollary 1]) $ \mathcal{K}_{\bf{M}}[u] = \lambda \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ \lambda \neq 0 $ and $ u = {\bf{c}}^T {\bf{y}}_\lambda $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that $ \left[ \mathcal{G}({\bf{M}}) \left\{ {\bf{X}}_\lambda(l) - {\bf{X}}_\lambda(-l) \right\} + {\bf{X}}_\lambda(l) \right] {\bf{c}} = {\bf{0}} $. $ \mathcal{K}_{\bf{Q}}[u] = \lambda \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ \lambda \neq 0 $ and $ u = {\bf{c}}^T {\bf{y}}_\lambda $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that $ {\bf{X}}_\lambda(l) {\bf{c}} = {\bf{0}} $. In particular, $ 0 \neq \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ if and only if $ \det{\bf{X}}_\lambda(l) = 0 $.
(b) ([2,Corollary 2]) Let $ 0 \neq \lambda \in \mathbb{C} \setminus \operatorname{Spec}\mathcal{K}_{\bf{Q}} $. Then $ \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{M}} $ if and only if $ \det \left\{ \mathcal{G}({\bf{M}}) {\bf{Y}}_\lambda(l) - {\bf{I}} \right\} = 0 $.
The following is well defined since the range $ \chi \left(\mathbb{C} \setminus \{ 0, 1/k \} \right) $ of $ \chi $ in Definition 2.4 does not contain $ 1, -1, \mathbb{i}, -\mathbb{i} $.
Definition 3.1. For $ \lambda \in \mathbb{C} \setminus \{ 0, 1/k \} $ and $ x \in \mathbb{R} $, denote
$ {\bf{X}}_\lambda^\pm(x) = \frac{1 - \kappa^4}{4} \cdot \operatorname{diag} \left( e^{-\omega z}, e^{-\overline{\omega} z} \right) (eωκz1−κ±e−ωκz1+κe−¯ωκz1−iκ±e¯ωκz1+iκe−ωκz1+iκ±eωκz1−iκe¯ωκz1−κ±e−¯ωκz1+κ), $ |
where $ z = \alpha x $ and $ \kappa = \chi(\lambda) $.
The following is well defined, since
$ (1+κ21−κ2)2−(2κ1−κ2)2=1,κ∈C∖{−1,1},(1−κ21+κ2)2+(2κ1+κ2)2=1,κ∈C∖{−i,i}. $ |
Definition 3.2. Denote by $ \beta(\kappa) $ any holomorphic branch in $ \mathbb{C} \setminus \{ -1, 1 \} $ satisfying
$ \cosh \beta(\kappa) = \frac {1 + \kappa^2} {1 - \kappa^2}, \qquad \sinh \beta(\kappa) = \frac {2 \kappa} {1 - \kappa^2}, $ |
and denote by $ \gamma(\kappa) $ any holomorphic branch in $ \mathbb{C} \setminus \{ -\mathbb{i}, \mathbb{i} \} $ satisfying
$ \cos \gamma(\kappa) = \frac {1 - \kappa^2} {1 + \kappa^2}, \qquad \sin \gamma(\kappa) = \frac {2 \kappa} {1 + \kappa^2}. $ |
For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{C} \setminus \{ 1, -1, \mathbb{i}, -\mathbb{i} \} $, define
$ \delta^\pm(z,\kappa) = \sinh \left( \sqrt{2} \kappa z + \beta(\kappa) \right) \pm \sin \left( \sqrt{2} \kappa z + \gamma(\kappa) \right). $ |
$ \beta(\kappa) $ and $ \gamma(\kappa) $ are holomorphic branches of $ 2 \operatorname{arctanh}{\kappa} $ and $ 2 \arctan{\kappa} $ respectively, which, in turn, are anti-derivatives of $ 2/\left(1 - \kappa^2 \right) $ and $ 2/\left(1 + \kappa^2 \right) $ respectively.
Definition 3.3. Define $ \mathcal{F} : \operatorname{wp}(4, 8, \mathbb{C}) \to \operatorname{gl}(4, \mathbb{C}) $ by $ \mathcal{F}({\bf{M}}) = {\bf{V}} \mathcal{G}({\bf{M}}) {\bf{V}}^T $ and $ \phi : \operatorname{gl}(4, \mathbb{C}) \to \operatorname{wp}(4, 8, \mathbb{C}) $ by $ \phi({\bf{G}}) = \psi\left({\bf{V}}^T {\bf{G}} {\bf{V}} \right) $. $ \mathcal{F}({\bf{M}}) $ is called the fundamental boundary matrix corresponding to the well-posed boundary matrix $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $.
Denote by $ \operatorname{Sim}_{{\bf{V}}^T}, \operatorname{Sim}_{\bf{V}} : \operatorname{gl}(4, \mathbb{C}) \to \operatorname{gl}(4, \mathbb{C}) $ the similarity transforms defined by $ \operatorname{Sim}_{{\bf{V}}^T} {\bf{G}} = {\bf{V}} {\bf{G}} {\bf{V}}^T $ and $ \operatorname{Sim}_{\bf{V}} {\bf{G}} = {\bf{V}}^T {\bf{G}} {\bf{V}} $ respectively, so that $ \mathcal{F} = \operatorname{Sim}_{{\bf{V}}^T} \circ \mathcal{G} $ and $ \phi = \psi \circ \operatorname{Sim}_{\bf{V}} $ by Definition 3.3. By (2.3), $ \operatorname{Sim}_{{\bf{V}}^T}^{-1} = \operatorname{Sim}_{\bf{V}} $, hence, by Proposition 2.1 (b), $ \mathcal{F}\left(\phi({\bf{G}}) \right) = \operatorname{Sim}_{{\bf{V}}^T} \mathcal{G} \left(\psi \left(\operatorname{Sim}_{\bf{V}} {\bf{G}} \right) \right) = \operatorname{Sim}_{{\bf{V}}^T} \operatorname{Sim}_{\bf{V}} {\bf{G}} = {\bf{G}} $ for $ {\bf{G}} \in \operatorname{gl}(4, \mathbb{C}) $. Thus Definition 3.3 gives a new one-to-one correspondence $ \mathrm{\Phi} : \operatorname{wp}(\mathbb{C}) \to \operatorname{gl}(4, \mathbb{C}) $ defined by $ \mathrm{\Phi} = \operatorname{Sim}_{{\bf{V}}^T} \circ \mathrm{\Gamma} $. See Figure 2 for a commutative diagram which expands the one in Figure 1 to incorporate $ \mathrm{\Phi} $.
By Proposition 2.1 and Definition 3.3, the set of integral operators $ \mathcal{K}_{\bf{M}} $ in (1.1) is in one-to-one correspondence with the $ 16 $-dimensional algebra $ \operatorname{gl}(4, \mathbb{C}) $. Both of $ \mathrm{\Phi} $ and its inverse $ \mathrm{\Phi}^{-1} $ are explicitly computable by using the maps $ \mathcal{F} $ and $ \phi $ in Definition 3.3.
Theorem 1. For $ \lambda \in \mathbb{C} \setminus \{ 0, 1/k \} $, the following $ \rm(a) $ and $ \rm(b) $ hold.
$ \rm(a) $ For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, $ \mathcal{K}_{\bf{M}}[u] = \lambda \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ u = {\bf{c}}^T {\bf{y}}_\lambda $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that
$ \left\{ \mathcal{F}({\bf{M}}) (X+λ(−l)−X+λ(l)OOX−λ(−l)−X−λ(l)) - (X+λ(l)OOX−λ(l)) \right\} {\bf{V}} {\bf{c}} = {\bf{0}}. $ |
$ \mathcal{K}_{\bf{Q}}[u] = \lambda \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ u = {\bf{c}}^T {\bf{y}}_\lambda $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that $ (X+λ(l)OOX−λ(l)) {\bf{V}} {\bf{c}} = {\bf{0}} $.
$ \rm(b) $ Let $ \kappa = \chi(\lambda) $ and $ z = \alpha x $. Then, for $ x \in \mathbb{R} $,
$ detX±λ(x)=e−√2zκ(1−κ4)4⋅δ±(z,κ),detXλ(x)=detX+λ(x)detX−λ(x)=e−2√2zκ2(1−κ4)216⋅δ+(z,κ)δ−(z,κ). $ |
The proof of Theorem 1 will be given at the end of Section 4.
By Proposition 1.1, $ 0, 1/k \not\in \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ for every $ l > 0 $. Note that $ \kappa \neq 0 $ and $ \kappa^4 \neq 1 $ when $ \kappa = \chi(\lambda) $ and $ \lambda \in \mathbb{C} \setminus \{ 0, 1/k \} $. Thus, by Proposition 2.2 (a) and Theorem 1, the zero sets of the holomorphic functions $ \delta^\pm(z, \kappa) $ in Definition 3.2 completely describe $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ in Proposition 1.1.
Corollary 1. For every $ l > 0 $, $ \lambda \in \mathbb{C} $ is in $ \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ if and only if $ \lambda \neq 0 $, $ \lambda \neq 1/k $, and $ \delta^+(\alpha l, \chi(\lambda)) \cdot \delta^-(\alpha l, \chi(\lambda)) = 0 $.
Definition 3.4. For $ z \in \mathbb{C} $, denote $ p_n(z) = \sum_{r = 0}^n \frac{\omega^{n-r}}{r!} z^r $, $ n = 0, 1, 2, 3 $, where it is understood that $ 0^0 = 1 $, and denote
$ {\bf{P}}^+(z) = (¯p0(¯z)¯p2(¯z)p0(z)p2(z)), \qquad {\bf{P}}^-(z) = (−¯p1(¯z)−¯p3(¯z)p1(z)p3(z)). $ |
For $ x \in \mathbb{R} $, denote
$ X+1/k(x)=12√2diag(e−ωz,e−¯ωz)⋅P+(z)⋅diag(1,α−2),X−1/k(x)=12√2diag(e−ωz,e−¯ωz)⋅P−(z)⋅diag(α−1,α−3), $ |
where $ z = \alpha x $.
Definition 3.5. For $ z \in \mathbb{C} $, denote
$ p^+(z) = 1 + \frac{z}{\sqrt{2}}, \qquad p^-(z) = 1 + \sqrt{2} z + z^2 + \frac{z^3}{3 \sqrt{2}}. $ |
Theorem 2. The following $ \rm(a) $ and $ \rm(b) $ hold.
$ \rm(a) $ For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $, $ \mathcal{K}_{\bf{M}}[u] = \frac{1}{k} \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ u = {\bf{c}}^T {\bf{y}}_{1/k} $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that
$ \left\{ \mathcal{F}({\bf{M}}) (X+1/k(−l)−X+1/k(l)OOX−1/k(−l)−X−1/k(l)) - (X+1/k(l)OOX−1/k(l)) \right\} \widehat{{\bf{V}}} {\bf{c}} = {\bf{0}}. $ |
$ \rm(b) $ For $ x \in \mathbb{R} $,
$ detX+1/k(x)=ie−√2z4α2⋅p+(z),detX−1/k(x)=−ie−√2z4α4⋅p−(z),detX1/k(x)=−detX+1/k(x)detX−1/k(x)=−e−2√2z16α6⋅p+(z)p−(z), $ |
where $ z = \alpha x $. $ \det {\bf{X}}_{1/k}^\pm(x) \neq 0 $ and $ \det {\bf{X}}_{1/k}(x) \neq 0 $ for $ x > 0 $.
The proof of Theorem 2 will be given at the end of Section 5.
Definition 3.6. For $ 0 \neq \lambda \in \mathbb{C} $ and $ x \in \mathbb{R} $ such that $ \det {\bf{X}}_\lambda^\pm(x) \neq 0 $, denote $ {\bf{Y}}_\lambda^\pm(x) = {\bf{X}}_\lambda^\pm(-x) \cdot {\bf{X}}_\lambda^\pm(x)^{-1} - {\bf{I}} $.
Theorem 3. The following $ \rm(a) $ and $ \rm(b) $ hold.
$ \rm(a) $ For $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $ and $ 0 \neq \lambda \in \mathbb{C} \setminus \operatorname{Spec}\mathcal{K}_{\bf{Q}} $, $ \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{M}} $ if and only if
$ \det \left\{ \mathcal{F}({\bf{M}}) (Y+λ(l)OOY−λ(l)) - {\bf{I}} \right\} = 0. $ |
$ \rm(b) $ Let $ 0 \neq \lambda \in \mathbb{C} $, $ x \in \mathbb{R} $, and $ z = \alpha x $. Suppose that $ \det {\bf{X}}_\lambda^\pm(x) \neq 0 $. If $ \lambda \neq 1/k $, then
$ {\bf{Y}}_\lambda^\pm(x) = \frac {1} { \delta^\pm(z,\kappa) } (e2ωzδ±(−iz,κ)−δ±(z,κ)√2ωe√2zs±(zκ)√2¯ωe√2zs±(zκ)e2¯ωzδ±(iz,κ)−δ±(z,κ)), $ |
where $ \kappa = \chi(\lambda) $ and $ \operatorname{s}^\pm(\zeta) = \sinh \left(\sqrt{2} \zeta \right) \pm \sin \left(\sqrt{2} \zeta \right) $ for $ \zeta \in \mathbb{C} $. Also,
$ {\bf{Y}}_{1/k}^\pm(x) = \frac {1} { p^\pm(z) } (e2ωzp±(−iz)−p±(z)12∓1ωe√2zz2∓112∓1¯ωe√2zz2∓1e2¯ωzp±(iz)−p±(z)). $ |
The proof of Theorem 3 will be given at the end of Section 6.
Definition 4.1. For $ z, \kappa \in \mathbb{C} $, denote
$ X(z,κ)=14e−EΩz{diag(0,1,1,0)⋅W∗0⋅diag(1,κ,κ2,κ3)⋅W0e−Ωκz+diag(1,0,0,1)⋅W∗0⋅diag(1,κ,κ2,κ3)⋅W0eΩκz}. $ |
Proposition 4.1. ([2,Eq 7.9]) For $ \lambda \in \mathbb{C} \setminus \left\{ 0, 1/k \right\} $ and $ x \in \mathbb{R} $, $ {\bf{X}}_\lambda(x) = {\bf{X}}(z, \kappa) $, where $ z = \alpha x $ and $ \kappa = \chi(\lambda) $.
Definition 4.2. Denote $ \mathbb{D} = \mathbb{C} \setminus \{ 0, 1, -1, \mathbb{i}, -\mathbb{i} \} $. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, denote
$ ˆX(z,κ)=11−κ4{diag(0,1,1,0)⋅W∗0⋅diag(1,κ,κ2,κ3)⋅W0e−Ωκz+diag(1,0,0,1)⋅W∗0⋅diag(1,κ,κ2,κ3)⋅W0eΩκz}. $ |
By Definitions 4.1 and 4.2, we have
$ X(z,κ)=1−κ44⋅e−EΩz⋅ˆX(z,κ),z∈C, κ∈D. $ | (4.1) |
Lemma 4.1. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, $ \widehat{{\bf{X}}}(z, \kappa) = \left(\frac { e^{\epsilon_i \omega_j \kappa z} } { 1 - \frac{\omega_j}{\omega_i} \kappa } \right)_{1 \leq i, j \leq 4} $.
Proof. By Definition 2.1 and (2.1), $ {\bf{W}}_0^* = \left(\overline{\omega_i}^{j-1} \right)_{1 \leq i, j \leq 4} = \left(\omega_i^{1-j} \right)_{1 \leq i, j \leq 4} $, hence
$ {W∗0⋅diag(1,κ,κ2,κ3)⋅W0}i,j=4∑r=1ω1−ri⋅κr−1⋅ωr−1j=4∑r=1(ωjωi⋅κ)r−1=1−ω4jω4i⋅κ41−ωjωi⋅κ=1−κ41−ωjωiκ $ |
for $ 1 \leq i, j \leq 4 $. So by Definition 4.2, we have
$ ˆX(z,κ)=diag(0,1,1,0)⋅(11−ωjωiκ)1≤i,j≤4⋅e−Ωκz+diag(1,0,0,1)⋅(11−ωjωiκ)1≤i,j≤4⋅eΩκz=diag(0,1,1,0)⋅(e−ωjκz1−ωjωiκ)1≤i,j≤4+diag(1,0,0,1)⋅(eωjκz1−ωjωiκ)1≤i,j≤4. $ |
Thus the result follows by Definition 2.2.
Definition 4.3. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, denote
$ ˆX±(z,κ)=(eωκz1−κ±e−ωκz1+κe−¯ωκz1−iκ±e¯ωκz1+iκe−ωκz1+iκ±eωκz1−iκe¯ωκz1−κ±e−¯ωκz1+κ),X±(z,κ)=1−κ44⋅diag(e−ωz,e−¯ωz)⋅ˆX±(z,κ). $ |
Note from Definitions 3.1 and 4.3 that
$ X±λ(x)=X±(z,κ),λ∈C∖{0,1/k}, x∈R, $ | (4.2) |
where $ z = \alpha x $ and $ \kappa = \chi(\lambda) $.
Lemma 4.2. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, $ {\bf{V}} \widehat{{\bf{X}}}(z, \kappa) {\bf{V}}^T = (ˆX+(z,κ)OOˆX−(z,κ)) $.
Proof. By (2.1), Definition 2.2 and Lemma 4.1,
$ ˆX(z,κ)i+2,j+2=eϵi+2ωj+2κz1−ωj+2ωi+2κ=e(−ϵi)(−ωj)κz1−(−ωj)(−ωi)κ=eϵiωjκz1−ωjωiκ=ˆX(z,κ)i,j,ˆX(z,κ)i+2,j=eϵi+2ωjκz1−ωjωi+2κ=e(−ϵi)(−ωj+2)κz1−(−ωj+2)(−ωi)κ=eϵiωj+2κz1−ωj+2ωiκ=ˆX(z,κ)i,j+2 $ |
for $ 1 \leq i, j \leq 2 $, which implies that $ \widehat{{\bf{X}}}(z, \kappa) = (ABBA) $, where we put $ {\bf{A}} = \left\{ \widehat{{\bf{X}}}(z, \kappa)_{i, j} \right\}_{1 \leq i, j \leq 2}, {\bf{B}} = \left\{ \widehat{{\bf{X}}}(z, \kappa)_{i, j+2} \right\}_{1 \leq i, j \leq 2} \in \operatorname{gl}(2, \mathbb{C}) $. So by Lemma 2.1, we have
$ VˆX(z,κ)VT=(A+BOOA−B). $ | (4.3) |
By Lemma 4.1, we have
$ A±B={ˆX(z,κ)i,j}1≤i,j≤2±{ˆX(z,κ)i,j+2}1≤i,j≤2=(eϵiωjκz1−ωjωiκ±eϵiωj+2κz1−ωj+2ωiκ)1≤i,j≤2=(eϵ1ω1κz1−ω1ω1κ±eϵ1ω3κz1−ω3ω1κeϵ1ω2κz1−ω2ω1κ±eϵ1ω4κz1−ω4ω1κeϵ2ω1κz1−ω1ω2κ±eϵ2ω3κz1−ω3ω2κeϵ2ω2κz1−ω2ω2κ±eϵ2ω4κz1−ω4ω2κ), $ |
hence, by (2.1) and Definitions 2.2, 4.3,
$ A±B=(eωκz1−κ±e−ωκz1+κe−¯ωκz1−iκ±e¯ωκz1+iκe−ωκz1+iκ±eωκz1−iκe¯ωκz1−κ±e−¯ωκz1+κ)=ˆX±(z,κ). $ |
Thus the lemma follows by (4.3).
Lemma 4.3. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, $ {\bf{V}} {\bf{X}}(z, \kappa) {\bf{V}}^T = (X+(z,κ)OOX−(z,κ)) $.
Proof. By (2.3), (2.4), (4.1) and Lemma 4.2,
$ VX(z,κ)VT=V{1−κ44⋅e−EΩz⋅ˆX(z,κ)}VT=1−κ44⋅Ve−EΩzVT⋅VˆX(z,κ)VT=1−κ44⋅(diag(e−ωz,e−¯ωz)OOdiag(e−ωz,e−¯ωz))(ˆX+(z,κ)OOˆX−(z,κ))=1−κ44⋅(diag(e−ωz,e−¯ωz)ˆX+(z,κ)OOdiag(e−ωz,e−¯ωz)ˆX−(z,κ)). $ |
Thus the lemma follows by Definition 4.3.
By Proposition 4.1, (4.2) and Lemma 4.3, we have
$ Xλ(x)=VT(X+λ(x)OOX−λ(x))V,λ∈C∖{0,1/k}, x∈R. $ | (4.4) |
Lemma 4.4. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $, $ \det \widehat{{\bf{X}}}^\pm(z, \kappa) = \frac {4 \kappa} {1 - \kappa^4} \cdot \delta^\pm(z, \kappa) $.
See Supplementary A for proof of Lemma 4.4.
Proof of Theorem 1. Let $ \lambda \in \mathbb{C} \setminus \{ 0, 1/k \} $ and $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $. By Proposition 2.2 (a), $ \mathcal{K}_{\bf{M}}[u] = \lambda \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ u = {\bf{c}}^T {\bf{y}}_\lambda $ for some $ {\bf{0}} \neq {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that
$ 0=V[G(M){Xλ(−l)−Xλ(l)}−Xλ(l)]c, $ | (4.5) |
since $ {\bf{V}} $ is invertible by (2.3). Thus the first assertion in (a) follows, since (4.5) is equivalent to
$ 0=[VG(M){VT(X+λ(−l)OOX−λ(−l))V−VT(X+λ(l)OOX−λ(l))V}−V⋅VT(X+λ(l)OOX−λ(l))V]c=[F(M)(X+λ(−l)−X+λ(l)OOX−λ(−l)−X−λ(l))−(X+λ(l)OOX−λ(l))]Vc $ |
by (4.4) and Definition 3.3. The second assertion in (a) follows from the first one, since $ \mathcal{F}({\bf{Q}}) = {\bf{V}} \mathcal{G}({\bf{Q}}) {\bf{V}}^T = {\bf{O}} $ by (2.6) and Definition 3.3.
Let $ \kappa = \chi(\lambda) $, $ x \in \mathbb{R} $, and $ z = \alpha x $. By (2.3) and (4.4), we have
$ detXλ(x)=det{VT⋅(X+λ(x)OOX−λ(x))⋅V}=detVT⋅{detX+λ(x)⋅detX−λ(x)}⋅detV=detX+λ(x)⋅detX−λ(x). $ | (4.6) |
By (4.2) and Definition 4.3,
$ detX±λ(x)=detX±(z,κ)=det{1−κ44⋅diag(e−ωz,e−¯ωz)ˆX±(z,κ)}=(1−κ44)2⋅detdiag(e−ωz,e−¯ωz)⋅detˆX±(z,κ), $ |
hence, by (2.5) and Lemma 4.4,
$ \det {\bf{X}}_\lambda^\pm(x) = \frac {\left( 1 - \kappa^4 \right)^2} {16} \cdot e^{-\sqrt{2} z} \cdot \frac {4 \kappa} {1 - \kappa^4} \delta^\pm(z,\kappa) = \frac { e^{-\sqrt{2} z} \kappa \left( 1 - \kappa^4 \right) } {4} \cdot \delta^\pm(z,\kappa). $ |
So by (4.6), we have
$ detXλ(x)=e−√2zκ(1−κ4)4⋅δ+(z,κ)⋅e−√2zκ(1−κ4)4⋅δ−(z,κ)=e−2√2zκ2(1−κ4)216⋅δ+(z,κ)δ−(z,κ). $ |
Thus we showed (b), and the proof is complete.
Definition 5.1. For $ z \in \mathbb{C} $, denote
$ {\bf{P}}(z) = (¯p0(¯z)¯p1(¯z)¯p2(¯z)¯p3(¯z)p0(z)−p1(z)p2(z)−p3(z)¯p0(¯z)−¯p1(¯z)¯p2(¯z)−¯p3(¯z)p0(z)p1(z)p2(z)p3(z)). $ |
Proposition 5.1. $ \rm(a) $ ([2,Eq 7.13]) $ {\bf{X}}_{1/k}(x) = \frac{1}{4} e^{-\mathcal{E} {\bf{\Omega}} z} {\bf{P}}(z) \cdot \operatorname{diag}\left(1, \alpha, \alpha^2, \alpha^3 \right)^{-1} $ for $ x \in \mathbb{R} $, where $ z = \alpha x $.
$ \rm(b) $ ([2,Lemma B1]) For $ z \in \mathbb{C} $, $ {\bf{V}} {\bf{P}}(z) \widehat{{\bf{V}}} = \sqrt{2} (P+(z)OOP−(z)) $.
The result in Proposition 5.1 (b) was for $ z \in \mathbb{R} $ in [2] originally, but it can immediately be extended to $ z \in \mathbb{C} $.
By (2.3), we have
$ ˆVTdiag(1,α−1,α−2,α−3)ˆV=ˆVdiag(1,α−1,α−2,α−3)ˆV=(1000001001000001)(10000α−10000α−20000α−3)(1000001001000001)=(100000α−200α−100000α−3)(1000001001000001)=diag(1,α−2,α−1,α−3)=(diag(1,α−2)OOdiag(α−1,α−3)). $ | (5.1) |
By Proposition 5.1 (a) and (2.3),
$ VX1/k(x)ˆV=V{14e−EΩzP(z)⋅diag(1,α,α2,α3)−1}ˆV=14Ve−EΩzVT⋅VP(z)ˆV⋅ˆVTdiag(1,α−1,α−2,α−3)ˆV, $ |
hence, by (2.4), (5.1) and Proposition 5.1 (b),
$ VX1/k(x)ˆV=14(diag(e−ωz,e−¯ωz)OOdiag(e−ωz,e−¯ωz))⋅√2(P+(z)OOP−(z))⋅(diag(1,α−2)OOdiag(α−1,α−3)). $ |
Thus, by (2.3) and Definition 3.4, we have
$ X1/k(x)=VT(X+1/k(x)OOX−1/k(x))ˆV,x∈R. $ | (5.2) |
By Definition 3.4 and (2.1), we have
$ p0(z)=1,p1(z)=ω+z,p2(z)=ω2+ωz+12z2=i+ωz+12z2,p3(z)=ω3+ω2z+12ωz2+16z3=−¯ω+iz+12ωz2+16z3. $ | (5.3) |
Lemma 5.1. For $ z \in \mathbb{C} $, $ \det {\bf{P}}^+(z) = 2 \mathbb{i} \cdot p^+(z) $ and $ \det {\bf{P}}^-(z) = - 2 \mathbb{i} \cdot p^-(z) $.
Proof. By Definitions 3.4, 3.5, (2.1) and (5.3),
$ detP+(z)=¯p0(¯z)⋅p2(z)−p0(z)⋅¯p2(¯z)=1⋅(i+ωz+12z2)−1⋅(−i+¯ωz+12z2)=2i+√2iz=2i⋅p+(z),detP−(z)=−¯p1(¯z)⋅p3(z)+p1(z)⋅¯p3(¯z)=−(¯ω+z)(−¯ω+iz+12ωz2+16z3)+(ω+z)(−ω−iz+12¯ωz2+16z3)={−i−√2iz−(12+i)z2−(ω2+¯ω6)z3−16z4}+{−i−√2iz+(12−i)z2+(¯ω2+ω6)z3+16z4}=−2i−2√2iz−2iz2−√2i3z3=−2i⋅p−(z). $ |
Proof of Theorem 2. Let $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $. By Proposition 2.2 (a), $ \mathcal{K}_{\bf{M}}[u] = \frac{1}{k} \cdot u $ for some $ 0 \neq u \in L^2[-l, l] $ if and only if $ u = {\bf{c}}^T {\bf{y}}_{1/k} $ for some $ {\bf{c}} \in \operatorname{gl}(4, 1, \mathbb{C}) $ such that
$ 0=V[G(M){X1/k(−l)−X1/k(l)}−X1/k(l)]c, $ | (5.4) |
since $ {\bf{V}} $ is invertible by (2.3). Thus (a) follows, since (5.4) is equivalent to
$ 0=[VG(M){VT(X+1/k(−l)OOX−1/k(−l))ˆV−VT(X+1/k(l)OOX−1/k(l))ˆV}−V⋅VT(X+λ(l)OOX−λ(l))ˆV]c=[F(M)(X+1/k(−l)−X+1/k(l)OOX−1/k(−l)−X−1/k(l))−(X+1/k(l)OOX−1/k(l))]ˆVc $ |
by (5.2) and Definition 3.3.
Let $ x \in \mathbb{R} $ and $ z = \alpha x $. By (2.3) and (5.2),
$ detX1/k(x)=detVT⋅det(X+1/k(x)OOX−1/k(x))⋅detˆV=−detX+1/k(x)⋅detX−1/k(x). $ | (5.5) |
By (2.5), Definition 3.4 and Lemma 5.1,
$ detX+1/k(x)=(12√2)2detdiag(e−ωz,e−¯ωz)⋅detP+(z)⋅detdiag(1,α−2)=18e−√2z⋅{2i⋅p+(z)}⋅α−2=ie−√2z4α2⋅p+(z), $ | (5.6) |
$ detX−1/k(x)=(12√2)2detdiag(e−ωz,e−¯ωz)⋅detP−(z)⋅detdiag(α−1,α−3)=18e−√2z⋅{−2i⋅p−(z)}⋅α−4=−ie−√2z4α4⋅p−(z). $ | (5.7) |
By (5.5), (5.6), (5.7),
$ \det {\bf{X}}_{1/k}(x) = - \frac { \mathbb{i} e^{-\sqrt{2} z} } { 4 \alpha^2 } \cdot p^+(z) \left\{ - \frac { \mathbb{i} e^{-\sqrt{2} z} } { 4 \alpha^4 } \cdot p^-(z) \right\} = - \frac { e^{-2 \sqrt{2} z} } { 16 \alpha^6 } \cdot p^+(z) p^-(z). $ |
It follows that $ \det {\bf{X}}_{1/k}^\pm(x) \neq 0 $ and $ \det {\bf{X}}_{1/k}(x) \neq 0 $ for $ x > 0 $, since $ p^\pm(z) > 0 $ for $ z > 0 $ by Definition 3.5. Thus we showed (b), and the proof is complete.
Denote $ {\bf{R}} = (0110) $. For $ a, b, c, d \in \mathbb{C} $, we have
$ R(abcd)R=(0110)(abcd)(0110)=(dcba). $ | (6.1) |
By Definition 4.3,
$ adjˆX±(z,κ)=(e¯ωκz1−κ±e−¯ωκz1+κ−(e−¯ωκz1−iκ±e¯ωκz1+iκ)−(e−ωκz1+iκ±eωκz1−iκ)eωκz1−κ±e−ωκz1+κ) $ | (6.2) |
for $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $. Note from Definition 4.2 that $ \overline{\kappa} \in \mathbb{D} $ if and only if $ \kappa \in \mathbb{D} $.
Lemma 6.1. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $,
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}2,1=¯{ˆX±(−¯z,¯κ)⋅adjˆX±(¯z,¯κ)}1,2,{ˆX±(−z,κ)⋅adjˆX±(z,κ)}2,2=¯{ˆX±(−¯z,¯κ)⋅adjˆX±(¯z,¯κ)}1,1. $ |
Proof. Let $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $. It can be checked from Definition 4.3 and (6.2) that $ \widehat{{\bf{X}}}^\pm(z, \kappa)_{2, 1} = \overline{ \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa})_{1, 2} } $, $ \widehat{{\bf{X}}}^\pm(z, \kappa)_{2, 2} = \overline{ \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa})_{1, 1} } $, and $ \left\{ \operatorname{adj} \widehat{{\bf{X}}}^\pm(z, \kappa) \right\}_{2, 1} = \overline{ \left\{ \operatorname{adj} \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa}) \right\}_{1, 2} } $, $ \left\{ \operatorname{adj} \widehat{{\bf{X}}}^\pm(z, \kappa) \right\}_{2, 2} = \overline{ \left\{ \operatorname{adj} \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa}) \right\}_{1, 1} } $, which, by (6.1), are equivalent to $ {\bf{R}} \cdot \widehat{{\bf{X}}}^\pm(z, \kappa) \cdot {\bf{R}} = \overline{ \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa}) } $, $ {\bf{R}} \cdot \operatorname{adj} \widehat{{\bf{X}}}^\pm(z, \kappa) \cdot {\bf{R}} = \overline{ \operatorname{adj} \widehat{{\bf{X}}}^\pm(\overline{z}, \overline{\kappa}) } $. So we have
$ R{ˆX±(−z,κ)⋅adjˆX±(z,κ)}R={R⋅ˆX±(−z,κ)⋅R}{R⋅adjˆX±(z,κ)⋅R}=¯ˆX±(−¯z,¯κ)⋅¯adjˆX±(¯z,¯κ)=¯{ˆX±(−¯z,¯κ)⋅adjˆX±(¯z,¯κ)}, $ |
since $ {\bf{R}}^2 = {\bf{I}} $. Thus the result follows by (6.1).
Lemma 6.2. For $ z \in \mathbb{R} $ and $ \kappa \in \mathbb{D} $,
$ \widehat{{\bf{X}}}^\pm(-z,\kappa) \cdot \operatorname{adj} \widehat{{\bf{X}}}^\pm(z,\kappa) = \frac {4 \kappa} {1 - \kappa^4} (δ±(−iz,κ)√2ωs±(zκ)√2¯ωs±(zκ)δ±(iz,κ)), $ |
where $ \operatorname{s}^\pm(\zeta) = \sinh \left(\sqrt{2} \zeta \right) \pm \sin \left(\sqrt{2} \zeta \right) $ for $ \zeta \in \mathbb{C} $.
See Supplementary B for proof of Lemma 6.2.
Definition 6.1. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $ such that $ \det {\bf{X}}^\pm(z, \kappa) \neq 0 $, denote $ {\bf{Y}}^\pm(z, \kappa) = {\bf{X}}^\pm(-z, \kappa) \cdot {\bf{X}}^\pm(z, \kappa)^{-1} - {\bf{I}} $.
By Definitions 3.6, 6.1 and (4.2),
$ Y±λ(x)=Y±(z,κ),λ∈C∖{0,1/k}, x∈R, detX±λ(x)≠0, $ | (6.3) |
where $ z = \alpha x $ and $ \kappa = \chi(\lambda) $. Note from (2.1) that, for $ a, b, c, d, \delta \in \mathbb{C} $, $ \delta \neq 0 $,
$ 1δdiag(eωz,e¯ωz)(abcd)diag(eωz,e¯ωz)−I=1δ(e2ωzae√2zbe√2zce2¯ωzd)−I=1δ(e2ωza−δe√2zbe√2zce2¯ωzd−δ). $ | (6.4) |
Lemma 6.3. For $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $ such that $ \det {\bf{X}}^\pm(z, \kappa) \neq 0 $,
$ {\bf{Y}}^\pm(z,\kappa) = \frac {1} { \delta^\pm(z,\kappa) } (e2ωzδ±(−iz,κ)−δ±(z,κ)√2ωe√2zs±(zκ)√2¯ωe√2zs±(zκ)e2¯ωzδ±(iz,κ)−δ±(z,κ)), $ |
where $ \operatorname{s}^\pm(\zeta) = \sinh \left(\sqrt{2} \zeta \right) \pm \sin \left(\sqrt{2} \zeta \right) $ for $ \zeta \in \mathbb{C} $.
Proof. Let $ z \in \mathbb{C} $, $ \kappa \in \mathbb{D} $, and suppose that $ \det {\bf{X}}^\pm(z, \kappa) \neq 0 $. By Definition 4.3,
$ X±(z,κ)−1={1−κ44⋅diag(e−ωz,e−¯ωz)ˆX±(z,κ)}−1=41−κ4⋅ˆX±(z,κ)−1diag(eωz,e¯ωz), $ |
hence, by Definition 6.1,
$ Y±(z,κ)={1−κ44⋅diag(e−ω(−z),e−¯ω(−z))ˆX±(−z,κ)}{41−κ4⋅ˆX±(z,κ)−1diag(eωz,e¯ωz)}−I=diag(eωz,e¯ωz)ˆX±(−z,κ)⋅ˆX±(z,κ)−1diag(eωz,e¯ωz)−I. $ | (6.5) |
By Lemmas 4.4 and 6.2,
$ ˆX±(−z,κ)⋅ˆX±(z,κ)−1=1detˆX±(z,κ)⋅ˆX±(−z,κ)⋅adjˆX±(z,κ)=14κ1−κ4δ±(z,κ)⋅4κ1−κ4(δ±(−iz,κ)√2ωs±(zκ)√2¯ωs±(zκ)δ±(iz,κ)), $ |
hence, by (6.5),
$ Y±(z,κ)=1δ±(z,κ)diag(eωz,e¯ωz)(δ±(−iz,κ)√2ωs±(zκ)√2¯ωs±(zκ)δ±(iz,κ))diag(eωz,e¯ωz)−I. $ |
Thus the lemma follows by (6.4).
By Definition 3.4, we have
$ adjP+(z)=(p2(z)−¯p2(¯z)−p0(z)¯p0(¯z)),adjP−(z)=(p3(z)¯p3(¯z)−p1(z)−¯p1(¯z)),z∈C. $ | (6.6) |
Lemma 6.4. For $ z \in \mathbb{C} $, $ {\bf{P}}^\pm(-z) \cdot \operatorname{adj} {\bf{P}}^\pm(z) = \pm 2 \mathbb{i} (p±(−iz)12∓1ωz2∓112∓1¯ωz2∓1p±(iz)) $.
See Supplementary C for proof of Lemma 6.4.
Lemma 6.5. Let $ x \in \mathbb{R} $, $ z = \alpha x $, and suppose that $ \det{\bf{X}}_{1/k}^\pm(x) \neq 0 $. Then
$ {\bf{Y}}_{1/k}^\pm(x) = \frac {1} { p^\pm(z) } (e2ωzp±(−iz)−p±(z)12∓1ωe√2zz2∓112∓1¯ωe√2zz2∓1e2¯ωzp±(iz)−p±(z)). $ |
Proof. By Definition 3.4,
$ X±1/k(x)−1={12√2diag(e−ωz,e−¯ωz)⋅P±(z)⋅diag(α−1±12,α−5±12)}−1=2√2⋅diag(α−1±12,α−5±12)−1⋅P±(z)−1diag(eωz,e¯ωz). $ |
So by Definitions 3.4 and 3.6,
$ Y±1/k(x)={12√2diag(e−ω(−z),e−¯ω(−z))P±(−z)⋅diag(α−1±12,α−5±12)}⋅{2√2⋅diag(α−1±12,α−5±12)−1⋅P±(z)−1diag(eωz,e¯ωz)}−I=diag(eωz,e¯ωz)P±(−z)P±(z)−1diag(eωz,e¯ωz)−I. $ | (6.7) |
By Lemmas 5.1 and 6.4,
$ P±(−z)⋅P±(z)−1=1detP±(z)⋅P±(−z)⋅adjP±(z)=1±2i⋅p±(z)⋅{±2i(p±(−iz)12∓1ωz2∓112∓1¯ωz2∓1p±(iz))}, $ |
hence, by (6.7),
$ {\bf{Y}}_{1/k}^\pm(x) = \frac{1}{p^\pm( z)} \operatorname{diag} \left( e^{\omega z}, e^{\overline{\omega} z} \right) (p±(−iz)12∓1ωz2∓112∓1¯ωz2∓1p±(iz)) \operatorname{diag} \left( e^{\omega z}, e^{\overline{\omega} z} \right) - {\bf{I}}. $ |
Thus the lemma follows by (6.4).
Let $ 0 \neq \lambda \in \mathbb{C} $ and $ x \in \mathbb{R} $. Suppose that $ \det {\bf{X}}_\lambda(x) \neq 0 $, which is equivalent to $ \det {\bf{X}}_\lambda^+(x) \neq 0 $ and $ \det {\bf{X}}_\lambda^-(x) \neq 0 $ by (4.4) and (5.2). Let $ {\bf{A}} = \left\{ VT,if λ≠1/k,ˆV,if λ=1/k. \right. $ Then by Definition 2.5 and (2.3),
$ VYλ(x)VT=V{Xλ(−x)⋅Xλ(x)−1−I}VT=VXλ(−x)A⋅A−1Xλ(x)−1VT−I=VXλ(−x)A⋅{VXλ(x)A}−1−I, $ |
hence, by (2.3), (4.4) and (5.2),
$ VYλ(x)VT=(X+λ(−x)OOX−λ(−x))(X+λ(x)OOX−λ(x))−1−I=(X+λ(−x)OOX−λ(−x))(X+λ(x)−1OOX−λ(x)−1)−(IOOI)=(X+λ(−x)⋅X+λ(x)−1−IOOX−λ(−x)⋅X−λ(x)−1−I). $ |
Thus, by (2.3) and Definition 3.6, we have
$ Yλ(x)=VT(Y+λ(x)OOY−λ(x))V,0≠λ∈C, x∈R, detX±λ(x)≠0. $ | (6.8) |
Proof of Theorem 3. Let $ {\bf{M}} \in \operatorname{wp}(4, 8, \mathbb{C}) $ and $ 0 \neq \lambda \in \mathbb{C} \setminus \operatorname{Spec}\mathcal{K}_{\bf{Q}} $. By Proposition 2.2 (b), $ \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{M}} $ if and only if
$ det[V{G(M)Yλ(l)−I}VT]=0, $ | (6.9) |
since $ {\bf{V}} $ is invertible by (2.3). Thus (a) follows, since (6.9) is equivalent to
$ 0=det{VG(M)⋅VT(Y+λ(l)OOY−λ(l))V⋅VT−V⋅VT}=det{F(M)(Y+λ(l)OOY−λ(l))−I} $ |
by (6.8) and Definition 3.3.
Let $ 0 \neq \lambda \in \mathbb{C} $, $ x \in \mathbb{R} $, and $ z = \alpha x $. Suppose that $ \det {\bf{X}}_\lambda^\pm(x) \neq 0 $. (b) follows from (6.3) and Lemma 6.3 when $ \lambda \neq 1/k $, and from Lemma 6.5 when $ \lambda = 1/k $. Thus the proof is complete.
The boundary conditions usually considered in practice are only a few in number, including clamped, free, or hinged conditions at each end of the beam. An important aspect of our results is that we have obtained explicit and manageable characteristic equations for the whole $ 16 $-dimensional class of integral operators $ \mathcal{K}_{\bf{M}} $ arising from arbitrary well-posed boundary value problem of the Euler–Bernoulli beam equation.
In our characteristic equations in Theorems 1, 2, and 3, the explicit matrices $ {\bf{X}}_\lambda^\pm $ and $ {\bf{Y}}_\lambda^\pm $ are not affected by specific boundary conditions. The effect of the boundary condition $ {\bf{M}} $ is encoded separately in the fundamental boundary matrix $ \mathcal{F}({\bf{M}}) $. The set of equivalent well-posed boundary matrices $ \operatorname{wp}(\mathbb{C}) $, and hence the set of integral operators $ \mathcal{K}_{\bf{M}} $ in (1.1), is in one-to-one correspondence with the $ 16 $-dimensional algebra $ \operatorname{gl}(4, \mathbb{C}) $ via the map $ \mathrm{\Phi} $. $ \mathrm{\Phi} $ and its inverse $ \mathrm{\Phi}^{-1} $ are explicitly computable using the maps $ \mathcal{F} $ and $ \phi $ in Definition 3.3. See Figure 2 in Section 3 for a commutative diagram showing the details.
The $ 2 \times 2 $ matrices $ {\bf{X}}_\lambda^\pm $ and $ {\bf{Y}}_\lambda^\pm $ themselves are pre-calculated in terms of the explicit functions $ \delta^\pm(z, \kappa) $ and $ p^\pm(z) $. Thus our characteristic equations have simple and manageable expressions with the functions $ \delta^\pm(z, \kappa) $ and $ p^\pm(z) $, which are amenable to concrete analysis similar to that in [14].
By inverting the $ 2 \times 2 $ matrices $ {\bf{Y}}_\lambda^\pm(l) $ in Theorem 3, we would have alternate forms of the characteristic equations in Theorem 1 (a) and Theorem 2 (a) with matrix entries also explicitly expressed by $ \delta^\pm(z, \kappa) $ and $ p^\pm(z) $. However, these forms are suppressed in this paper due to the nontrivial problem of identifying the zeros of $ \det{\bf{Y}}_\lambda^\pm(l) $ or $ \det\left\{ {\bf{X}}_\lambda^\pm(-l) - {\bf{X}}_\lambda^\pm(l) \right\} $, which will be dealt in future works.
Although our results are for boundary matrices with complex entries in general, boundary conditions of practical importance are those represented by boundary matrices with real entries. See [2] for the characterization of these real boundary conditions $ {\bf{M}} $ in terms of $ \mathcal{G}({\bf{M}}) $ by using the $ \mathbb{R} $-algebra $ \overline{\pi}(4) \subset \operatorname{gl}(4, \mathbb{C}) $.
An immediate application of our results would be spectral analysis for a few typical boundary conditions encountered frequently in practice. Specifically, concrete spectral analysis for the following combinations of clamped, free, and hinged boundary conditions at each end of the beam are now possible, which will be performed in future works.
$ \bullet $ clamped-clamped or bi-clamped.
$ \bullet $ free-free or bi-free.
$ \bullet $ hinged-hinged or bi-hinged.
$ \bullet $ clamped-free or cantilevered.
$ \bullet $ hinged-free.
$ \bullet $ clamped-hinged.
In fact, it turns out that the fundamental boundary matrices $ \mathcal{F}({\bf{M}}) $ corresponding to the first three symmetric boundary conditions $ {\bf{M}} $ above also have the following block-diagonal form with $ 2 \times 2 $ blocks.
$ \mathcal{F}({\bf{M}}) = (F(M)+OOF(M)−). $ |
In these cases, our characteristic equations in Theorems 1, 2, and 3 are completely separable into $ 2 \times 2 $ blocks, resulting in further simplified forms which involve determinants of $ 2 \times 2 $ matrices only.
The author thanks the anonymous reviewers for their careful and constructive comments which helped to improve the manuscript.
The author declares no conflict of interest in this paper.
By Definition 4.3 and (2.1),
$ detˆX±(z,κ)=ˆX±(z,κ)1,1⋅ˆX±(z,κ)2,2−ˆX±(z,κ)2,1⋅ˆX±(z,κ)1,2=(eωκz1−κ±e−ωκz1+κ)(e¯ωκz1−κ±e−¯ωκz1+κ)−(e−ωκz1+iκ±eωκz1−iκ)(e−¯ωκz1−iκ±e¯ωκz1+iκ)=e√2κz(1−κ)2+e−√2κz(1+κ)2±ei√2κz1−κ2±e−i√2κz1−κ2−e√2κz1+κ2−e−√2κz1+κ2∓ei√2κz(1−iκ)2∓e−i√2κz(1+iκ)2={1(1−κ)2−11+κ2}e√2κz+{1(1+κ)2−11+κ2}e−√2κz±{11−κ2−1(1−iκ)2}ei√2κz±{11−κ2−1(1+iκ)2}e−i√2κz=2κ(1−κ)2(1+κ2)e√2κz−2κ(1+κ)2(1+κ2)e−√2κz∓2iκ(1−κ2)(1−iκ)2ei√2κz±2iκ(1−κ2)(1+iκ)2e−i√2κz=2κ(1−κ2)2(1+κ2){(1+κ)2e√2κz−(1−κ)2e−√2κz}∓2iκ(1−κ2)(1+κ2)2{(1+iκ)2ei√2κz−(1−iκ)2e−i√2κz}=2κ(1−κ4)(1−κ2){2(1+κ2)sinh(√2κz)+4κcosh(√2κz)}∓2iκ(1−κ4)(1+κ2){2i(1−κ2)sin(√2κz)+4iκcos(√2κz)}=4κ1−κ4{1+κ21−κ2sinh(√2κz)+2κ1−κ2cosh(√2κz)}±4κ1−κ4{1−κ21+κ2sin(√2κz)+2κ1+κ2cos(√2κz)}. $ |
Thus, by Definition 3.2,
$ detˆX±(z,κ)=4κ1−κ4{sinh(√2κz)coshβ(κ)+cosh(√2κz)sinhβ(κ)}±4κ1−κ4{sin(√2κz)cosγ(κ)+cos(√2κz)sinγ(κ)}=4κ1−κ4{sinh(√2κz+β(κ))±sin(√2κz+γ(κ))}=4κ1−κ4⋅δ±(z,κ). $ |
Let $ z \in \mathbb{C} $ and $ \kappa \in \mathbb{D} $. By Definition 4.3, (2.1) and (6.2),
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}1,1=ˆX±(−z,κ)1,1⋅{adjˆX±(z,κ)}1,1+ˆX±(−z,κ)1,2⋅{adjˆX±(z,κ)}2,1=(eωκ(−z)1−κ±e−ωκ(−z)1+κ)(e¯ωκz1−κ±e−¯ωκz1+κ)−(e−¯ωκ(−z)1−iκ±e¯ωκ(−z)1+iκ)(e−ωκz1+iκ±eωκz1−iκ)=ei√2κz(1+κ)2+e−i√2κz(1−κ)2±e√2κz1−κ2±e−√2κz1−κ2−ei√2κz1+κ2−e−i√2κz1+κ2∓e√2κz(1−iκ)2∓e−√2κz(1+iκ)2={1(1+κ)2−11+κ2}ei√2κz+{1(1−κ)2−11+κ2}e−i√2κz∓{1(1−iκ)2−11−κ2}e√2κz∓{1(1+iκ)2−11−κ2}e−√2κz=−2κ(1+κ)2(1+κ2)ei√2κz+2κ(1−κ)2(1+κ2)e−i√2κz∓2iκ(1−iκ)2(1−κ2)e√2κz±2iκ(1+iκ)2(1−κ2)e−√2κz=−2κ(1−κ2)2(1+κ2){(1−κ)2ei√2κz−(1+κ)2e−i√2κz}∓2iκ(1+κ2)2(1−κ2){(1+iκ)2e√2κz−(1−iκ)2e−√2κz}=−2κ(1−κ4)(1−κ2){2i(1+κ2)sin(√2κz)−4κcos(√2κz)}∓2iκ(1−κ4)(1+κ2){2(1−κ2)sinh(√2κz)+4iκcosh(√2κz)}=−4κ1−κ4{1+κ21−κ2sinh(i√2κz)−2κ1−κ2cosh(i√2κz)}∓4κ1−κ4{1−κ21+κ2sin(i√2κz)−2κ1+κ2cos(i√2κz)}, $ |
hence, by Definition 3.2,
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}1,1=−4κ1−κ4{−sinh(−i√2κz)coshβ(κ)−cosh(−i√2κz)sinhβ(κ)}∓4κ1−κ4{−sin(−i√2κz)cosγ(κ)−cos(−i√2κz)sinγ(κ)}=4κ1−κ4{sinh(−i√2κz+β(κ))±sin(−i√2κz+γ(κ))}=4κ1−κ4⋅δ±(−iz,κ). $ | (B.1) |
By Definition 4.3, (2.1) and (6.2),
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}1,2=ˆX±(−z,κ)1,1⋅{adjˆX±(z,κ)}1,2+ˆX±(−z,κ)1,2⋅{adjˆX±(z,κ)}2,2=−(eωκ(−z)1−κ±e−ωκ(−z)1+κ)(e−¯ωκz1−iκ±e¯ωκz1+iκ)+(e−¯ωκ(−z)1−iκ±e¯ωκ(−z)1+iκ)(eωκz1−κ±e−ωκz1+κ)=−e√2κz(1+κ)(1+iκ)−e−√2κz(1−κ)(1−iκ)∓ei√2κz(1+κ)(1−iκ)∓e−i√2κz(1−κ)(1+iκ)+e√2κz(1−κ)(1−iκ)+e−√2κz(1+κ)(1+iκ)±ei√2κz(1−κ)(1+iκ)±e−i√2κz(1+κ)(1−iκ)={1(1−κ)(1−iκ)−1(1+κ)(1+iκ)}(e√2κz−e−√2κz)±{1(1−κ)(1+iκ)−1(1+κ)(1−iκ)}(ei√2κz−e−i√2κz)=(1+κ)(1+iκ)−(1−κ)(1−iκ)1−κ4⋅2sinh(√2κz)±(1+κ)(1−iκ)−(1−κ)(1+iκ)1−κ4⋅2isin(√2κz)=2(1+i)κ1−κ4⋅2sinh(√2κz)±2(1−i)κ1−κ4⋅2isinh(√2κz)=√2ω⋅4κ1−κ4{sinh(√2κz)±sin(√2κz)}=4κ1−κ4⋅√2ωs±(zκ). $ | (B.2) |
By Lemma 6.1, (B.1), (B.2) and Definition 3.2,
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}2,1=¯{4¯κ1−¯κ4⋅√2ωs±(¯zκ)}=4κ1−κ4⋅√2¯ωs±(zκ), $ | (B.3) |
$ {ˆX±(−z,κ)⋅adjˆX±(z,κ)}2,2=¯{4¯κ1−¯κ4⋅δ±(−i¯z,¯κ)}=4κ1−κ4⋅δ±(iz,κ). $ | (B.4) |
Thus the lemma follows from (B.1), (B.2), (B.3), (B.4).
Let $ z \in \mathbb{C} $. By Definition 3.4 and (6.6), we have
$ P+(−z)⋅adjP+(z)=(¯p0(¯−z)¯p2(¯−z)p0(−z)p2(−z))(p2(z)−¯p2(¯z)−p0(z)¯p0(¯z))=(¯p0(−¯z)p2(z)−p0(z)¯p2(−¯z)−¯p0(−¯z)¯p2(¯z)+¯p0(¯z)¯p2(−¯z)p0(−z)p2(z)−p0(z)p2(−z)−p0(−z)¯p2(¯z)+¯p0(¯z)p2(−z)), $ | (C.1) |
$ P−(−z)⋅adjP−(z)=(−¯p1(¯−z)−¯p3(¯−z)p1(−z)p3(−z))(p3(z)¯p3(¯z)−p1(z)−¯p1(¯z))=(−¯p1(−¯z)p3(z)+p1(z)¯p3(−¯z)−¯p1(−¯z)¯p3(¯z)+¯p1(¯z)¯p3(−¯z)p1(−z)p3(z)−p1(z)p3(−z)p1(−z)¯p3(¯z)−¯p1(¯z)p3(−z)). $ | (C.2) |
So, by (2.1), (5.3) and Definition 3.5,
$ {P+(−z)⋅adjP+(z)}1,1=¯p0(−¯z)p2(z)−p0(z)¯p2(−¯z)=1⋅(i+ωz+12z2)−1⋅¯(i−ω¯z+12¯z2)=2i+√2z=2i{1+(−iz)√2}=2i⋅p+(−iz), $ | (C.3) |
$ {P+(−z)⋅adjP+(z)}2,1=p0(−z)p2(z)−p0(z)p2(−z)=1⋅(i+ωz+12z2)−1⋅(i−ωz+12z2)=2ωz, $ | (C.4) |
$ {P−(−z)⋅adjP−(z)}1,1=−¯p1(−¯z)p3(z)+p1(z)¯p3(−¯z)=−¯(ω−¯z)(−¯ω+iz+12ωz2+16z3)+(ω+z)¯(−¯ω−i¯z+12ω¯z2−16¯z3)={−i−√2z+(−12+i)z2+(ω2−¯ω6)z3+16z4}+{−i−√2z+(12+i)z2+(¯ω2−ω6)z3−16z4}=2(−i−√2z+iz2+13√2z3)=−2i{1+√2(−iz)+(−iz)2+13√2(−iz)3}=−2i⋅p−(−iz), $ | (C.5) |
$ {P−(−z)⋅adjP−(z)}2,1=p1(−z)p3(z)−p1(z)p3(−z)=(ω−z)(−¯ω+iz+12ωz2+16z3)−(ω+z)(−¯ω−iz+12ωz2−16z3)=(−1−i2z2−ω3z3−16z4)+(1+i2z2−ω3z3+16z4)=−2ω3z3. $ | (C.6) |
Note from (C.1) and (C.2) that
$ {P±(−z)⋅adjP±(z)}1,2=−¯{P±(−¯z)⋅adjP±(¯z)}2,1,{P±(−z)⋅adjP±(z)}2,2=−¯{P±(−¯z)⋅adjP±(¯z)}1,1. $ |
So by (C.3), (C.4), (C.5), (C.6),
$ {P+(−z)⋅adjP+(z)}1,2=−¯{P+(−¯z)⋅adjP+(¯z)}2,1=−¯(2ω¯z)=−2¯ωz, $ | (C.7) |
$ {P+(−z)⋅adjP+(z)}2,2=−¯{P+(−¯z)⋅adjP+(¯z)}1,1=−¯{2i⋅p+(−i¯z)}=2i⋅p+(iz), $ | (C.8) |
$ {P−(−z)⋅adjP−(z)}1,2=−¯{P−(−¯z)⋅adjP−(¯z)}2,1=−¯(−2ω3¯z3)=2¯ω3z3, $ | (C.9) |
$ {P−(−z)⋅adjP−(z)}2,2=−¯{P−(−¯z)⋅adjP−(¯z)}1,1=−¯{−2i⋅p−(−i¯z)}=−2i⋅p−(iz). $ | (C.10) |
Thus, by (C.3), (C.4), (C.5), (C.6), (C.7), (C.8), (C.9), (C.10), we have
$ P+(−z)⋅adjP+(z)=(2ip+(−iz)−2¯ωz2ωz2ip+(iz))=2i(p+(−iz)ωz¯ωzp+(iz)),P−(−z)⋅adjP−(z)=(−2ip−(−iz)2¯ω3z3−2ω3z3−2ip−(iz))=−2i(p−(−iz)ω3z3¯ω3z3p−(iz)), $ |
and the proof is complete.
We start with some exotic definitions in [14]. For $ \kappa \geq 0 $, let
$ p(κ)=1−√2κ+κ21+√2κ+κ2,φ±(κ)=eLκ⋅1±sinh(κ)cosh(κ). $ | (D.1) |
Here, $ L = 2 l \alpha $ is the intrinsic length of the beam and
$ h(κ)=Lκ−ˆh(κ), $ | (D.2) |
where $ \hat{h} : [0, \infty) \to \mathbb{R} $ is defined by
$ ˆh(κ)={arctan{2√2κ(κ2−1)κ4−4κ2+1},if 0≤κ<√3−1√2,−π2,if κ=√3−1√2,−π+arctan{2√2κ(κ2−1)κ4−4κ2+1},if √3−1√2≤κ≤√3+1√2,−3π2,if κ=√3+1√2,−2π+arctan{2√2κ(κ2−1)κ4−4κ2+1},if κ>√3+1√2. $ | (D.3) |
The branch of $ \arctan $ here is taken such that $ \arctan{0} = 0 $. $ \hat{h} $ is a strictly decreasing real-analytic function with $ \hat{h}(0) = 0 $ and $ \lim_{\kappa \to \infty} \hat{h}(\kappa) = -2 \pi $, hence $ h : [0, \infty) \to \mathbb{R} $ is a strictly increasing real-analytic function with $ h(0) = 0 $ and $ \lim_{\kappa \to \infty} h(\kappa) = \infty $.
Proposition D.1. ([14,Eqs 8 and 25]) $ \lambda \in \mathbb{C} $ is an eigenvalue of $ \mathcal{K}_{\bf{Q}} = \mathcal{K}_{l, \alpha, k} $ if and only if $ \lambda = \frac{1}{k} \cdot \frac {1} {1 + \kappa^4} $ for $ \kappa > 0 $ such that $ \varphi^+(\kappa) = p(\kappa) $ or $ \varphi^-(\kappa) = p(\kappa) $.
Now we demonstrate how the seemingly ad hoc and complex conditions $ \varphi^\pm(\kappa) = p(\kappa) $ in Proposition D.1, which were practically unobtainable without help of computer algebra systems as indicated in [14], can be derived so naturally and elegantly from our holomorphic functions $ \delta^\pm(z, \kappa) $.
By Definition 3.2,
$ eiγ(κ)=cosγ(κ)+isinγ(κ)=1−κ21+κ2+i2κ1+κ2=(1+iκ)21+κ2=1+iκ1−iκ,κ∈D, $ | (D.4) |
where $ \mathbb{D} = \mathbb{C} \setminus \{ 0, 1, -1, \mathbb{i}, -\mathbb{i} \} $ by Definition 4.2.
Lemma D.1. For $ \kappa \geq 0 $, $ p(\kappa) = e^{ \mathbb{i} \left\{ \gamma \left(\omega \kappa \right) - \gamma \left(\overline{\omega} \kappa \right) \right\} } $ and $ e^{-\mathbb{i} \hat{h}(\kappa)} = e^{ \mathbb{i} \left\{ \gamma \left(\omega \kappa \right) + \gamma \left(\overline{\omega} \kappa \right) \right\} } $.
Proof. By (2.1), (D.1), (D.4),
$ ei{γ(ωκ)−γ(¯ωκ)}=eiγ(ωκ)e−iγ(¯ωκ)=1+iωκ1−iωκ⋅1−i¯ωκ1+i¯ωκ=1−¯ωκ1+¯ωκ⋅1−ωκ1+ωκ=1−√2κ+κ21+√2κ+κ2=p(κ). $ |
By (2.1) and (D.4),
$ ei{γ(ωκ)+γ(¯ωκ)}=eiγ(ωκ)eiγ(¯ωκ)=1+iωκ1−iωκ⋅1+i¯ωκ1−i¯ωκ=1−¯ωκ1+¯ωκ⋅1+ωκ1−ωκ=1+i√2κ−κ21−i√2κ−κ2=(1+i√2κ−κ2)2(1−i√2κ−κ2)(1+i√2κ−κ2)=(1−4κ2+κ4)+i⋅2√2κ(1−κ2)(1−κ2)2+2κ2. $ |
So we have
$ \cos \left\{ \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\} = \frac {1 - 4 \kappa^2 + \kappa^4} {1 + \kappa^4}, \quad \sin \left\{ \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\} = \frac { 2 \sqrt{2} \kappa \left( 1 - \kappa^2 \right) } {1 + \kappa^4}, $ |
hence
$ \tan \left\{ \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\} = \frac {2 \sqrt{2} \kappa \left( 1 - \kappa^2 \right)} {\kappa^4 - 4 \kappa^2 + 1}. $ |
Thus, by (D.3),
$ \tan \left\{ - \hat{h}(\kappa) \right\} = - \tan{\hat{h}(\kappa)} = \frac {2 \sqrt{2} \kappa \left( 1 - \kappa^2 \right)} {\kappa^4 - 4 \kappa^2 + 1} = \tan \left\{ \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\}. $ |
It follows that $ e^{-\mathbb{i} \hat{h}(\kappa)} = e^{ \mathbb{i} \left\{ \gamma \left(\omega \kappa \right) + \gamma \left(\overline{\omega} \kappa \right) \right\} } $, and the proof is complete.
By (D.2) and Lemma D.1,
$ e^{ \mathbb{i} h(\kappa) } = e^{ \mathbb{i} \left\{ L \kappa - \hat{h}(\kappa) \right\} } = e^{ \mathbb{i} L \kappa } e^{ - \mathbb{i} \hat{h}(\kappa) } = e^{ \mathbb{i} L \kappa } e^{ \mathbb{i} \left\{ \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\} } = e^{ \mathbb{i} \left\{ L \kappa + \gamma \left( \omega \kappa \right) + \gamma \left( \overline{\omega} \kappa \right) \right\} }. $ |
So we have $ \cos h(\kappa) = \cos \left\{ L \kappa + \gamma \left(\omega \kappa \right) + \gamma \left(\overline{\omega} \kappa \right) \right\} $, $ \sin h(\kappa) = \sin \left\{ L \kappa + \gamma \left(\omega \kappa \right) + \gamma \left(\overline{\omega} \kappa \right) \right\} $, hence, by (D.1),
$ φ±(κ)=eLκ⋅1±sin{Lκ+γ(ωκ)+γ(¯ωκ)}cos{Lκ+γ(ωκ)+γ(¯ωκ)}. $ | (D.5) |
By Definition 3.2,
$ eβ(κ)=coshβ(κ)+sinhβ(κ)=1+κ21−κ2+2κ1−κ2=(1+κ)21−κ2=1+κ1−κ,κ∈D. $ | (D.6) |
Comparing (D.4) and (D.6), we have $ e^{\mathbb{i} \gamma(\kappa)} = e^{\beta(\mathbb{i} \kappa)} $ for $ \kappa \in \mathbb{D} $, hence
$ eβ(ωκ)=eβ(i⋅(−iωκ))=eiγ(¯ωκ),κ∈D, $ | (D.7) |
since $ - \mathbb{i} \omega = \overline{\omega} $ by (2.1).
Now let $ \lambda = \frac{1}{k} \cdot \frac {1} {1 + \kappa^4} $ for $ \kappa > 0 $, and let $ z = l \alpha $ so that
$ 2κz=Lκ. $ | (D.8) |
By Definitions 2.1 and 2.4,
$ \chi(\lambda) = \sqrt[4]{ 1 - \frac {1} { \left( \frac{1}{k} \cdot \frac {1} {1 + \kappa^4} \right) \cdot k } } = \sqrt[4]{ - \kappa^4 } = \omega \kappa, $ |
hence $ \delta^\pm \left(l \alpha, \chi(\lambda) \right) = \delta^\pm(z, \omega \kappa) $. So by Corollary 1, $ \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ if and only if $ \delta^+ \left(z, \omega \kappa \right) = 0 $ or $ \delta^- \left(z, \omega \kappa \right) = 0 $. By Definition 1, $ \sqrt{2} \omega = 1 + \mathbb{i}, $ hence, by Definition 3.2 and (D.7),
$ 2δ±(z,ωκ)={e√2ωκzeβ(ωκ)−e−√2ωκze−β(ωκ)}∓i{ei√2ωκzeiγ(ωκ)−e−i√2ωκze−iγ(ωκ)}={eκzeiκzeiγ(¯ωκ)−e−κze−iκze−iγ(¯ωκ)}∓i{e−κzeiκzeiγ(ωκ)−eκze−iκze−iγ(ωκ)}=eκz{eiκzeiγ(¯ωκ)±ie−iκze−iγ(ωκ)}−e−κz{e−iκze−iγ(¯ωκ)±ieiκzeiγ(ωκ)}. $ |
So $ \delta^\pm(z, \omega \kappa) = 0 $ if and only if
$ e−2κz=eiκzeiγ(¯ωκ)±ie−iκze−iγ(ωκ)e−iκze−iγ(¯ωκ)±ieiκzeiγ(ωκ)=eiκzeiγ(¯ωκ)±ie−iκze−iγ(ωκ)e−iκze−iγ(¯ωκ)±ieiκzeiγ(ωκ)⋅e−iκze−iγ(¯ωκ)∓ieiκzeiγ(ωκ)e−iκze−iγ(¯ωκ)∓ieiκzeiγ(ωκ)=2∓ie2iκzei{γ(ωκ)+γ(¯ωκ)}±ie−2iκze−i{γ(ωκ)+γ(¯ωκ)}e2iκzei2γ(ωκ)+e−2iκze−i2γ(¯ω)=2∓i{e2iκzei{γ(ωκ)+γ(¯ωκ)}−e−2iκze−i{γ(ωκ)+γ(¯ωκ)}}ei{γ(ωκ)−γ(¯ωκ)}{e2iκzei{γ(ωκ)+γ(¯ωκ)}+e−2iκze−i{γ(ωκ)+γ(¯ωκ)}}=e−i{γ(ωκ)−γ(¯ωκ)}⋅1±sin{2κz+γ(ωκ)+γ(¯ωκ)}cos{2κz+γ(ωκ)+γ(¯ωκ)}, $ |
which is equivalent to $ p(\kappa) = \varphi^\pm(\kappa) $ by Lemma D.1, (D.5) and (D.8). Thus we conclude that $ \lambda \in \operatorname{Spec}\mathcal{K}_{\bf{Q}} $ if and only if $ p(\kappa) = \varphi^+(\kappa) $ or $ p(\kappa) = \varphi^-(\kappa) $, which is exactly the condition in Proposition D.1.
[1] | McFarlane J, Robinson S (2007) Survey of Alternative Feedstocks for Commodity Chemical Manufacturing. Available from: http://infoornlgov/sites/publications/files/Pub8760pdf. |
[2] |
Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-89. doi: 10.1038/nature06450
![]() |
[3] |
Causey TB, Zhou S, Shanmugam KT, et al. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100: 825-832. doi: 10.1073/pnas.0337684100
![]() |
[4] | Pfeifer BA, Admiraal SJ, Gramajo H, et al. (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291: 1790-1792. |
[5] |
Steen EJ, Kang Y, Bokinsky G, et al. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559-562. doi: 10.1038/nature08721
![]() |
[6] |
Yan Y, Chemler J, Huang L, et al. (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71: 3617-3623. doi: 10.1128/AEM.71.7.3617-3623.2005
![]() |
[7] |
Zha W, Shao Z, Frost JW, et al. (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. J Am Chem Soc 126: 4534-4535. doi: 10.1021/ja0317271
![]() |
[8] |
Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing Escherichia coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23: 612-616. doi: 10.1038/nbt1083
![]() |
[9] |
Bastian S, Liu X, Meyerowitz JT, et al. (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13: 345-352. doi: 10.1016/j.ymben.2011.02.004
![]() |
[10] |
Park JH, Lee KH, Kim TY, et al. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104: 7797. doi: 10.1073/pnas.0702609104
![]() |
[11] |
Zhang K, Woodruff AP, Xiong M, et al. (2011) A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4: 1068-1070. doi: 10.1002/cssc.201100045
![]() |
[12] | Godshall MA Value-Added Products for a Sustainable Sugar Industry. Sustainability of the Sugar and Sugar-Ethanol Industries: Eggleston, G.; ACS Symposium Series 1058; American Chemical Society: Washington, DC, 2010 1253-1268. |
[13] | Screening Information Data Set (SIDS) for High Production Volume Chemicals, Organization for Economic Cooperation and Development. (2005) Available from: http://wwwinchemorg/documents/sids/sids/25265774pdf. |
[14] |
Lee IY, Hong WK, Hwang YB, et al. (1996) Production of D-β-hydroxyisobutyric acid from isobutyric acid by Candida rugosa. J Ferment Bioeng 81: 79-82. doi: 10.1016/0922-338X(96)83126-6
![]() |
[15] |
Millet JMM (1998) FePO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid. Catal Rev Sci Eng 40: 1-38. doi: 10.1080/01614949808007104
![]() |
[16] | Marx A, Poetter M, Buchholz S, et al. (2007) Microbiological Production of 3-Hydroxyisobutyric Acid. US Patent App 20: 773. |
[17] |
Nagai K (2001) New developments in the production of methyl methacrylate. Appl Catal A-Gen 221: 367-377. doi: 10.1016/S0926-860X(01)00810-9
![]() |
[18] |
Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6
![]() |
[19] | Baba T, Ara T, Hasegawa M, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 10.1038. |
[20] |
Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6
![]() |
[21] |
Atsumi S, Wu T-Y, Eckl E-M, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6
![]() |
[22] | Kallio P, Pásztor A, Thiel K, et al. (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5. |
[23] |
Rodriguez GM, Atsumi S (2012) Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact 11: 90. doi: 10.1186/1475-2859-11-90
![]() |
[24] |
Åkesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73: 223-230. doi: 10.1002/bit.1054
![]() |
[25] |
Thompson BG, Kole M, Gerson DF (1985) Control of ammonium concentration in Escherichia coli fermentations. Biotechnol Bioeng 27: 818-824. doi: 10.1002/bit.260270610
![]() |
[26] | Riesenberg D, Menzel K, Schulz V, et al. (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Environ Microbiol 34: 77-82. |
[27] |
Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24: 530-536. doi: 10.1016/j.tibtech.2006.09.001
![]() |
[28] |
Koh BT, Nakashimada U, Pfeiffer M, et al. (1992) Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol Lett 14: 1115-1118. doi: 10.1007/BF01027012
![]() |
[29] |
Zhu Y, Eiteman M, DeWitt K, et al. (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73: 456-464. doi: 10.1128/AEM.02022-06
![]() |
[30] | Stephanopoulos G, Aristidou AA, Nielsen JH, et al. (1998) Metabolic engineering: principles and methodologies: Academic Press. |
[31] |
Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4: 25. doi: 10.1186/1475-2859-4-25
![]() |
[32] |
Yim H, Haselbeck R, Niu W, et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7: 445-452. doi: 10.1038/nchembio.580
![]() |
[33] |
Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108: 93-103. doi: 10.1002/bit.22918
![]() |
[34] |
Moon TS, Dueber JE, Shiue E, et al. (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12: 298-305. doi: 10.1016/j.ymben.2010.01.003
![]() |
[35] |
Dellomonaco C, Clomburg JM, Miller EN, et al. (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476: 355-359. doi: 10.1038/nature10333
![]() |
[36] |
McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13: 544-554. doi: 10.1016/j.ymben.2011.06.005
![]() |
[37] |
Xiong M, Schneiderman DK, Bates FS, et al. (2014) Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci U S A 111: 8357-8362. doi: 10.1073/pnas.1404596111
![]() |
[38] |
Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies a review. J Chem Technol Biotechnol 81: 1119-1129. doi: 10.1002/jctb.1486
![]() |
[39] |
Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7: 116-127. doi: 10.1016/j.ymben.2004.10.003
![]() |
1. | Sung Woo Choi, Fundamental boundary matrices for 36 elementary boundary value problems of finite beam deflection on elastic foundation, 2023, 20, 1551-0018, 13704, 10.3934/mbe.2023611 |