
Citation: Jyh-Horng Lin, Shi Chen, Jeng-Yan Tsai. How does soft information about small business lending affect bank efficiency under capital regulation?[J]. Quantitative Finance and Economics, 2019, 3(1): 53-74. doi: 10.3934/QFE.2019.1.53
[1] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[4] | Liju Yu, Jingjun Zhang . Global solution to the complex short pulse equation. Electronic Research Archive, 2024, 32(8): 4809-4827. doi: 10.3934/era.2024220 |
[5] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[6] | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan . On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29(1): 1709-1734. doi: 10.3934/era.2020088 |
[7] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[8] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[9] | Dan-Andrei Geba . Unconditional well-posedness for the periodic Boussinesq and Kawahara equations. Electronic Research Archive, 2024, 32(2): 1067-1081. doi: 10.3934/era.2024052 |
[10] | Malika Amir, Aissa Boukarou, Safa M. Mirgani, M'hamed Kesri, Khaled Zennir, Mdi Begum Jeelani . Well-posedness for a coupled system of gKdV equations in analytic spaces. Electronic Research Archive, 2025, 33(7): 4119-4134. doi: 10.3934/era.2025184 |
Rotating blades (thin-walled beam) are important structures widely used in mechanical and aerospace engineering as aviation engine blades, various cooling fans, windmill blades, helicopter rotor blades, airplane propellers etc. The study of the dynamics of rotating blades is important to design purposes, optimization, and control.
If the shear effect is not considered, the Euler-Bernoulli beam equation is used to model vibration of thin-walled beam. Chen et al.[6] studied the boundary feedback stabilization of a linear Euler-Bernoulli beam equation, they proved that the total energy of the equation decays uniformly and exponentially with
A very extensive work devoted to the longitudinal vibration in two directions were done by Librescu and Song[21,32,33] and their co-workers[25,28]. Under assumption of the cross-section to be rigid in its own plane, they modelled the rotating blades by 1-D linear governing equations. The influence of many factors on rotating blades, such as the anisotropy and heterogeneity of constituent materials, functionally graded materials (FGM), temperature, shear effects, primary and secondary warping phenomena (Vlasov effect), centrifugal and Coriolis forces etc have been taken into account in the 1-D linear governing equations.
Following Librescu's approach, various blades models were derived. Georgiades et al.[11] modelled a rotating blades by means of linear strain-displacement relationships, considering arbitrary pitch (presetting) angle and non-constant rotating speed. Choi et al.[8] studied bending vibration control of the pre-twisted rotating composite blades, who emphasized the important of piezoelectric effect in single cell composite blades. Fazelzadeh et al.[9] considered a thin-walled blades made of FGM which is used in turbomachinery under aerothermodynamics loading. In the paper, quasi-steady aerodynamic pressure loadings was determined by the first-order piston theory, and steady beam surface temperature was obtained from gas dynamics theory. Fazelzadeh et al.[10] studied the governing equations which included the effects of the presetting angle and the rotary inertia. The effects of steady wall temperature and quasi-steady aerodynamic pressure loadings due to flow motion were also taken into account.
The models in Refs.[21,32,33,25,28,11,8,9,10] are linear. When the engine blades rotate at a low speed, the linear approximation can completely meet the needs of practical application. However, when the blade rotate at a high speed, the simple linear approximation can not accurately describe the dynamic behavior of the system. So the non-linear analysis of rotating blades has attracted considerable attention.
The nonlinear governing equations of a rotating blades at constant angular velocity was presented by Anderson[1], and the author linearized the equation under the assumption that a small perturbed motion occurred at an initially stressed equilibrium configuration. Chen et al.[7] considered the effects of geometric non-linearity, shear deformation and rotary inertia. Arvin et al.[2] builded a nonlinear governing equation for rotating blades considering centrifugal forces by means of von-Karmans strain-displacement relationships under assumption of the constant rotation speed and zero pitch (presetting) angle. Yao et al.[39] employed the Hamilton's principle to derive the nonlinear governing equations with periodic rotating speed, arbitrary pitch (presetting) angle and linear pre-twist angle. Under the assumption that the location of shear centre is different from the centre of gravity, Avramov et al.[3] obtained results of the investigations on flexural-flexural-torsional nonlinear vibrations of twisted rotating blades described by the model of three nonlinear integro-differential equations. Other nonlinear models can be found in Refs.[34,29,27,37,15,31,36].
To the best of the author's knowledge, all the above literatures about the longitudinal vibration in two directions skipped the existence proof of solutions to the governing equations, and directly used the finite element method to study the influence of various parameters on blades vibration. To address this situation, we first try to model a governing equations of the blades with arbitrary rotating speed, arbitrary pre-setting angle and pre-twist angle. In the process of building the model, we take into account the free vibration at the right end of the blade and the nonlinear relationship between stress and strain. In the paper we aim to investigate the well-posedness and regularity of the governing equations. The well-posedness of other nonlinear blade vibration models can be found in Refs. [5,38,26,35,16].
Let us consider a slender, straight blades mounted on a rigid hub of radius
To derive the model of the rotating blades, the following kinematic and static assumptions are postulated:
(ⅰ) The blades is perfectly elastic bodies, the blades material is isotropic and is not affected by temperature,
(ⅱ) The cross section of the blades is rectangular and all its geometrical dimensions remain invariant in its plane,
(ⅲ) The ratio of wall thickness
(ⅳ) The transverse shear effect of the cross section is neglected,
(ⅴ) The axial displacement
Inertial Cartesian coordinate systems
Rotating coordinate systems
Transformation between
(X,Y,Z)=(x,y,z)+(R0,0,0). | (1) |
Local coordinates systems
(1000cosω−sinω0sinωcosω). |
Local, curvilinear coordinate systems
In order to determine the relationship between the two coordinate systems
r=xi+y(s)j+z(s)k. | (2) |
The position vector
r∗=r+nen, | (3) |
As a result
et=drds=dy(s)dsj+dz(s)dsk, | (4) |
en=et×i=dz(s)dsj−dy(s)dsk. | (5) |
Moreover, in order to avoid confusion, the notation
x∗=x, y∗=r∗⋅j=y+ndzds, z∗=r∗⋅k=z−ndyds. | (6) |
Based on the assumptions (ⅳ) and (ⅴ), the axial displacement
Dx=ϕy(x,t)(z(s)−ndyds)+ϕz(x,t)(y(s)+ndzds),Dy=u,Dz=v. | (7) |
where
ϕy=−vx,ϕz=−ux. | (8) |
where
Based on the assumptions (ⅴ), the displacement-strain relationships is expressed as follows[20]:
εxx=∂Dx∂x+12[(∂Dy∂x)2+(∂Dz∂x)2]. | (9) |
Thanks to (8), we can get
εxx=ˉεxx+ˉˉεxxn, |
where
ˉεxx=12(u2x+v2x)−(uxxy(s)+vxxz(s)), ˉˉεxx=−uxxdzds+vxxdyds. | (10) |
The shear strain
εnx=12(∂Un∂x+∂w∂n), | (11) |
where
Un=(Dx,Dy,Dz)⋅en=udzds−vdyds. | (12) |
Substituting (7) and (12) into (11), we deduce
εsx=12(dydsγxy+dzdsγxz)=0. | (13) |
where
Since these materials are isotropic, the corresponding thermoelastic constitutive law adapted to the case of structures is expressed as
(σssσxxσxnσnsσsx)=(Q11Q12000Q21Q2200000Q4400000Q5500000Q66)(εssεxxεxnεnsεsx), |
Herein, the reduced thermoelastic coefficients are defined as:
Q11=Q22=E1−ν2,Q12=Q21=Eν1−ν2,Q44=Q55=k2E2(1+ν),Q66=E2(1+ν), |
where
According to assumption (ⅱ), the cross section is rigid, then we can derive
(σss,σxx,σxn,σns,σsx)=(0,Eεxx,0,0,0). |
The centrifugal force can be represented as
Fc=∫lxρˉAω2(R0+x)dx=ρˉAω2R(x), |
where
In the paper, we use the first-order piston theory (see Ref.[24]) to evaluate the perturbed gas pressure. The pressure on the principal plane of the blade can be obtained as
Pyp=C∞ρ∞(∂up∂t+Utyp∂up∂x),Pzp=C∞ρ∞(∂vp∂t+Utzp∂vp∂x), | (14) |
where
Utyp=U∞cosθ, Utzp=U∞sinθ, | (15) |
The transformation relationship between
up=ucosθ+vsinθ, vp=−usinθ+vcosθ. | (16) |
Therefore, the external forces per unit axial length in the
py=aPzpsinθ−bPypcosθ, pz=−aPzpcosθ−bPypsinθ. | (17) |
Combining (14), (15), (16),
py=b1ux+b2vx+b3u+b4v+b5ut+b6vt | (18) |
pz=e1ux+e2vx+e3u+e4v+e5ut+e6vt | (19) |
where
b1=−C∞ρ∞U∞(asin3θ+bcos3θ)b2=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)b3=−C∞ρ∞U∞θxsinθcosθ(asinθ−bcosθ)b4=−C∞ρ∞U∞θx(asin3θ+bcos3θ)b5=−C∞ρ∞(asin2θ+bcos2θ)b6=C∞ρ∞sinθcosθ(a−b)e1=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)e2=−C∞ρ∞U∞sinθcosθ(acosθ+bsinθ)e3=C∞ρ∞U∞θxsinθcosθ(asinθ+bcosθ)e4=−C∞ρ∞U∞θxsinθcosθ(−asinθ+bcosθ) |
e5=C∞ρ∞sinθcosθ(a−b)e6=−C∞ρ∞(acos2θ+bsin2θ) |
In order to calculate the kinetic energy, the velocity vector and the acceleration should be given first. Based on the assumption (ⅴ), the position vector
R(X,Y,Z,t)=x∗i+(y∗+u)j+(z∗+v)k+R0i. |
Keep in mind that the rotation takes place solely in the
it=ωj; jt=−ωi; kt=0. |
Then the velocity vector and the acceleration of an arbitrary point
Rt=−ω(y∗+u)i+(ω(R0+x)+ut)j+vtk, | (20) |
Rtt=−[2ωut+ωt(y∗+u)+ω2(R0+x)]i +[utt−ωt(R0+x)−ω2(y∗+u)]j+vttk, | (21) |
where subscript
In order to derive the blades model and the associated boundary conditions, the extended Hamilton's principle is used. This can be formulated as
∫t2t1(δK−δU+δW)dt=0,δu=0,δv=0att=t1,t2. | (22) |
where
Thanks to the cross section of the blades is rectangular, we get
∮y(s)ds=∮z(s)ds=0. | (23) |
Utilizing (23), the kinetic energy is obtained
K=12∫τρR2tdτ=12ρ∫τu2t+v2t+2ω(R0+x)ut +ω2(u2+2(y+ndzds)u+y+ndzds+(R0+x)2)dτ=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut +ω2(u2+2h∮ydsˉAu+h∮ydsˉA+(R0+x)2)dx=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut+ω2(u2+(R0+x)2)dx, |
where
∫t2t1δKdt=−ρˉA∫t2t1∫l0{[utt+ωt(R0+x)−uω2]δu+vttδv}dxdt, | (24) |
Due to the rotating motion of the blades, the total strain energy consists of two parts. The strain energy caused by the centrifugal force can be obtained as
U1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)εxxdςdndsdx | (25) |
where
δU1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δεxxdςdndsdx=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δˉεxxdςdndsdx=ρˉAω2∫l0R(x)(uxδux+vxδvx)dx−ρω2h2∫l0∫lx(R0+ς)(∮y(s)dsδuxx+∮z(s)dsδvxx)dςdx, | (26) |
where
Thanks to (23), the variation of the strain energy caused by the centrifugal force can be rewritten as
δU1=ρˉAω2[R(x)(uxδu+vxδv)]|l0−∫l0(R(x)ux)xδu+(R(x)vx)xδvdx | (27) |
The strain energy induced by the deformation of the rotating blades can be expressed as
U2=12∫l0∮∫h2−h2σxxεxxdndsdx. | (28) |
Substituting the expressions of the stress and strain resultants into (28) yields
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=Eh4∫l0∮(u2x+v2x)δ(u2x+v2x)dsdx−Eh2∫l0∮(u2x+v2x)δ(uxxy(s)+vxxz(s))dsdx−Eh2∫l0∮(uxxy(s)+vxxz(s))δ(u2x+v2x)dsdx+Eh∫l0∮(uxxy(s)+vxxz(s))δ(uxxy(s)+vxxz(s))dsdx+Eh312∫l0∮(−uxxdzds+vxxdyds)δ(−uxxdzds+vxxdyds)dsdx | (29) |
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=ρˉA{∫l0[−a52((u2x+v2x)ux)x+(a6uxx−a3vxx)xx −a12(u2x+v2x)xx+(a1uxx+a2vxx)ux)x]dx}δu+ρˉA{∫l0[−a52((u2x+v2x)vx)x+(a4vxx−a3uxx)xx −a22(u2x+v2x)xx+(a1uxx+a2vxx)vx)x]dx}δv+ρˉA{[(a6uxx−a3vxx)−a12(u2x+v2x)]δux}|l0+ρˉA{[(a4vxx−a3uxx)−a22(u2x+v2x)]δvx}|l0+ρˉA{[a52(u2x+v2x)ux−(a6uxx−a3vxx)x +a12(u2x+v2x)x+a1uxx+a2vxxux]δu}|l0+ρˉA{[a52(u2x+v2x)vx−(a4vxx−a3uxx)x +a22(u2x+v2x)x+a1uxx+a2vxxvx]δv}|l0 | (30) |
where
a1=EhˉAρ∮yds=0;a2=EhˉAρ∮zds=0;a3(x)=EhˉAρ∮h212dydsdzds−yzds;a4(x)=EhˉAρ∮h212(dzds)2+y2ds;a5=Eρa6(x)=EhˉAρ∮h212(dyds)2+z2ds. |
The work of the non-conservative external forces can be obtained as
W=∫l0pyu+pzvdx. | (31) |
Then
∫t2t1δWdt=∫t2t1∫l0˜pyδu+˜pzδvdxdt+∫t2t1{(b1u+e1v)δu+(b2u+e2v)δv}|l0dt. | (32) |
where
˜py=2b3u+(e3+b4)v | (33) |
˜pz=(e3+b4)u+2e4v | (34) |
Inserting variation of potential energy (27) and (30), variation of kinetic energy (24) and variation of external work equation (32) into the extended Hamilton's principle (22), collecting the terms associated with the same variations, invoking the stationarity of the functional within the time interval
utt+(a6uxx−a3vxx)xx−a52((u2x+v2x)ux)x −ω2(R(x)ux)x−ω2u−¯p1+ωt(R0+x)=0, | (35) |
vtt+(a4vxx−a3uxx)xx−a52((u2x+v2x)vx)x−ω2(R(x)vx)x−¯p2=0, | (36) |
where
¯p1=˜pyρˉA, ¯p2=˜pzρˉA. | (37) |
The following two types of boundary conditions are generated due to the different design of engine blades.
u,ux=0,v,vx=0,x=0, | (38) |
u,ux=0,v,vx=0,x=l. | (39) |
and
u,ux=0,v,vx=0,x=0, | (40) |
a6uxx−a3vxx=0,x=l, | (41) |
a4vxx−a3uxx=0,x=l, | (42) |
a52(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l, | (43) |
a52(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l. | (44) |
The conditions (38)-(39) represent C-C boundary condition. The conditions (40)-(44) represent C-F boundary condition. Now we study the well-posedness and regularity of the solution for C-C and C-F blades.
We write
H20={ψ∈H2(Ω)|ψ(x)=0,ψx(x)=0,x∈∂Ω},H2f={ψ∈H2(Ω)|ψ(0)=0,ψx(0)=0,x=0}. |
We list Gagliardo-Nirenberg inequality for bounded domains (see [23]) to be used in the subsequent sections
Lemma 3.1. Let
1p−jn=α(1r−mn)+(1−α)1q,jm≤α≤1 |
Then
‖Djf‖Lp(Ω)≤C1‖Dmf‖αLr(Ω)‖f‖1−αLq(Ω)+C2‖f‖Ls(Ω) |
where
Now, we give the Aubin-Lions Lemma (see [22]).
Lemma 3.2. Suppose
(i)
(ii)
(iii)
then
Without loss of generality, we assume
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0on∂Ω×[0,T],u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (45) |
where
p1=¯p1+ω2u−ωt(R0+x), p2=¯p2. | (46) |
Definition 4.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (45) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0. | (47) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0. | (48) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. | (49) |
Remark 1. From the definition, we know
Remark 2. By the product Minkowshi inequality, we can obtain:
a4a6−a23>0,x∈Ω. | (50) |
Theorem 4.2. (Existence for weak solution of (45)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H20(Ω),u1,v1∈L2(Ω). | (51) |
there exists a weak solution of (45).
We now briefly outline the proof of Theorem 4.2 in the following:
Step 1. employing Galerkin's method to construct solutions of certain finite-dimensional approximations to (45) (correspond to Lemma 6.1 in chapter 6);
Step 2. using the energy method to find the uniform estimates of the finite-dimensional approximations solutions (correspond to Lemma 6.2 in chapter 6);
Step 3. using compactness method to obtain the weak solutions of (45).
Now we give the smoothness of weak solutions of (45).
Theorem 4.3. (Improved regularity) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0∈H20(Ω)∩H4(Ω),v0∈H20(Ω)∩H4(Ω),u1∈H20(Ω),v1∈H20(Ω), | (52) |
the weak solution of (45) satisfies
ut,vt∈L∞(0,T;H20(Ω)),utt,vtt∈L∞(0,T;L2(Ω)). | (53) |
Theorem 4.4. (Interior regularity) Under the condition (52), for any
φuxxx,φvxxx∈L∞(0,T;L2(Ω)). |
Remark 3. Multiplying the first and second equation of (45) by
uxxxx,vxxxx∈L∞(0,T;L2(Ω′)). |
where
If the pre-twist angle
Theorem 4.5. (Improved regularity when
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Now, we study the uniqueness and stability of (45), denote operator
π:{a3,a4,a6,ω,θ,u0,v0,u1,v1}→{u,v}, |
and
W(Q)={ψ|ψ∈L∞(0,T;H20(Ω)),ψt∈L∞(0,T;L2(Ω))} |
with the norm
||ψ||W(Q)=||ψ||L∞(0,T;H20(Ω))+||ψt||L∞(0,T;L2(Ω)). |
Then
Theorem 4.6. Undering the condition (52),
π:{(L∞(Ω))3×W1,1(0,T)∩C1(0,T)×L1(Ω)×(H20(Ω))2×(L2(Ω))2}→(W(Q))2 |
is continuous.
The initial boundary-value problems of C-F blades are rewritten as :
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0,x=0,a6uxx−a3vxx=0,x=l,a4vxx−a3uxx=0,x=l,12(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l,12(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l,u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (54) |
Definition 5.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (54) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)−(b1u(l)+e1v(l))φ(l)=0. | (55) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)−(b2u(l)+e2v(l))φ(l)=0. | (56) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. |
Similar as above, we derive the following conclusion of the initial boundary value problem (54).
Theorem 5.2. (Existence for the weak solutions of (54)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H2f(Ω),u1,v1∈L2(Ω), | (57) |
there exists a weak solution of (54).
Theorem 5.3. (Regularity weak solution of (54)) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0,v0∈H2f(Ω)∩H4(Ω),u1,v1∈H2f(Ω). | (58) |
Then there exists
ut,vt∈L∞(0,T∗;H2f(Ω)),utt,vtt∈L∞(0,T∗;L2(Ω)). | (59) |
Remark 4. If pre-twist angle
u,v∈L∞(0,T∗;H4(Ω)∪H2f(Ω)). | (60) |
where
We construct weak solution of the initial boundary-value problem (45) by first solving a finite dimensional approximation. We thus employ Galerkin's method by selecting smooth functions
{φk}∞k=1is an orthogonal basis ofH20(Ω), | (61) |
and
{φk}∞k=1is an orthonormal basis ofL2(Ω). | (62) |
Fix a positive integer
um=m∑k=1dk0m(t)φk, vm=m∑k=1dk1m(t)φk, | (63) |
where we intend to select the coefficients
dk0m(0)=(u0,φk),dk1m(0)=(v0,φk),k=1,⋯,m, | (64) |
dk0m,t(0)=(u1,φk),dk1m,t(0)=(v1,φk),k=1,⋯,m, | (65) |
and
(um,tt,φk)+(a6um,xx,φk,xx)−(a3vm,xx,φk,xx)+12((u2m,x+v2m,x)um,x,φk,x)+ω2(Rum,x,φk,x)−(p1m,φk)=0, | (66) |
(vm,tt,φk)−(a3um,xx,φk,xx)+(a4vm,xx,φk,xx)+12((u2m,x+v2m,x)vm,x,φk,x)+ω2(Rvm,x,φk,x)−(p2m,φk)=0. | (67) |
where
p1m=1ρˉA(2b3um+(e3+b4)vm)+ω2um−ωt(R0+x),p2m=1ρˉA((e3+b4)um+2e4vm). |
In order to proof Theorem 4.2, we need the following Lemma.
Lemma 6.1. Under the condition (51), for each integer
Proof. Assuming
dk0m,tt+m∑j=1dj0m(a6φj,xx,φk,xx)−m∑j=1dj1m(a3φj,xx,φk,xx)+12m∑j=1dj0m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj0m(Rφj,x,φk,x)−1ρˉA(2b3dk0m+(e3+e4)dk1m)=ω2dk0m−ωt((R0+x),φk), | (68) |
dk1m,tt+m∑j=1dj1m(a4φj,xx,φk,xx)−m∑j=1dj0m(a3φj,xx,φk,xx)+12m∑j=1dj1m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj1m(Rφj,x,φk,x)−1ρˉA((e3+e4)dk0m+2e4dk1m)=0. | (69) |
subject to the initial conditions (64), (65). According to standard theory for ODE, there exists unique
We propose now to send
Lemma 6.2. Undering the condition (51), there exists positive constant
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C | (70) |
for
Proof. Multiplying equality (66) by
(um,tt,um,t)+(a6um,xx,um,txx)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω2(Rum,x,um,tx)−(p1m,um,t)=0 | (71) |
for a.e.
Multiplying equality (67) by
(vm,tt,vm,t)−(a3um,xx,vm,txx)+(a4vm,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω2(Rvm,x,vm,tx)−(p2m,vm,t)=0 | (72) |
for a.e.
To simplify the equation (71) and (72), we can get
12ddt‖um,t‖2L2(Ω)+12ddt‖√a6um,xx‖2L2(Ω)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω22ddt‖√Rum,x‖2L2(Ω)−(p1m,um,t)=0. | (73) |
12ddt‖vm,t‖2L2(Ω)+12ddt‖√a4vm,xx‖2L2(Ω)−(a3um,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω22ddt‖√Rvm,x‖2L2(Ω)−(p2m,vm,t)=0. | (74) |
Summing the equations (73) and (74), we discover
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t). | (75) |
Since
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)≤C(||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H10(Ω)+||vm||2H10(Ω))+C. | (76) |
where we used Young inequality.
Integrating (76) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L1(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+14||u2m,x+v2m,x||2L2(Ω)≤C(Ω,T){||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H2(Ω)+||v0m||2H2(Ω)}+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H10(Ω)+||vm||2H10(Ω)+C. | (77) |
Thanks to (50), there exists a constant
||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L(Ω)≥C(||um||2H20(Ω)+||vm||2H20(Ω)). | (78) |
Substituting (78) into the inequality (77), By using Poincaré inequality, we find
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω) ≤C(||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H20(Ω)+||v0m||2H20(Ω))+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H20(Ω)+||vm||2H20(Ω)+C. | (79) |
Then, by using Gronwall inequality, we obtain
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(0)||2H20(Ω)+||vm(0)||2H20(Ω))+C≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C |
for
Remark 5. From the Energy estimates, we can obtain:
Thanks to Lemma 6.1 and Lemma 6.2, we can obtain the existence for the weak solutions of the initial boundary value problem (45).
Proof. (ⅰ) According to the energy estimates (70), we see that
{um}∞m=1,{vm}∞m=1isboundedinL∞(0,T;H20(Ω)); | (80) |
{um,t}∞m=1,{vm,t}∞m=1isboundedinL∞(0,T;L2(Ω)); | (81) |
{um,tt}∞m=1,{vm,tt}∞m=1isboundedinL∞(0,T;H−2(Ω)). | (82) |
As a consequence there exists subsequence
{uμ→u,vμ→vweakly∗in L∞(0,T;H20(Ω))uμ,t→ut,vμ,t→vtweakly∗in L∞(0,T;L2(Ω))uμ,tt→utt,vμ,tt→vttweakly∗in L∞(0,T;H−2(Ω)). | (83) |
(ⅱ) By Gagliardo-Nirenberg inequality, we can see
||uμ,x||L∞(Q)≤C||uμ,xx||L∞(0,T;L2(Ω))≤C. | (84) |
Otherwise,
||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤||uμ,x||2L∞(0,T;L4(Ω))+||vμ,x||2L∞(0,T;L4(Ω))≤C||uμ||2L∞(0,T;H20(Ω))+c||vμ||2L∞(0,T;H20(Ω))≤C. | (85) |
Combining (84) and (85), we discover
||(u2μ,x+v2μ,x)uμ,x||L∞(0,T;L2(Ω))≤C||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤C. | (86) |
Moreover, there exists a function
(u2μ,x+v2μ,x)uμ,x→χ weakly * in L∞(0,T;L2(Ω)). | (87) |
By Lemma 3.2, we can find
uμ→u,vμ→v strongly in L2(0,T;H10(Ω)). | (88) |
And so
uμ,x→ux,vμ,x→vx strongly in L2(Q), | (89) |
Thus
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux. | (90) |
Combining (87) and (90), we can obtain
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux weakly in L2(Q), | (91) |
where we used the Lemma 1.3 of Chapter 1 in [22]. Furthermore, we have
Meanwhile,
((u2μ,x+v2μ,x)uμ,x,φk,x)→((u2x+v2x)ux,φk,x) weakly * in L∞(0,T). | (92) |
In the same way,
((u2μ,x+v2μ,x)vμ,x,φk,x)→((u2x+v2x)vx,φk,x) weakly * in L∞(0,T). | (93) |
Next fix an integer
(uμ,tt,φk)+(a6uμ,xx,φk,xx)−(a3vμ,xx,φk,xx)+12((u2μ,x+v2μ,x)uμ,x,φk,x)−ω2(Ruμ,x,φk,x)−(p1μ,φk)=0. | (94) |
Thanks to (83), we can get
{(uμ,tt,φk)→(utt,φk)weakly∗inL∞(0,T),(a6uμ,xx,φk,xx)→(a6uxx,φk,xx)weakly∗inL∞(0,T),(a3vμ,xx,φk,xx)→(a3vxx,φk,xx)weakly∗inL∞(0,T),(p1μ,φk)→(p1,φk)weakly∗inL∞(0,T). | (95) |
From (92) and (95), we can discover
+v2x)ux,φk,x)+ω2(Rux,φk,x)−(p1,φk)=0 | (96) |
for all fixed
Note
{φk}∞k=1 isanorthogonalbasisofH20(Ω), |
then,
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0 | (97) |
for arbitrary
In the same way,
(vtt,φ)+(a4vxx,φxx)−(a3uxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0 | (98) |
for arbitrary
Synthesizes the above analysis, there exists
u,v∈L∞(0,T;H20(Ω)),ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)). |
(ⅲ) Now let's prove the initial conditions.
Since,
uμ(x,0)→u(x,0) weakly inL2(Ω). | (99) |
Otherwise,
um(x,0)→u0(x) in H20(Ω). | (100) |
Combining identities (99) and (100), we can get
u(x,0)=u0(x). |
Next, according to (83), we can obtain
(uμ,t,φk)→(ut,φk) weakly * in L∞(0,T), |
(uμ,tt,φk)→(utt,φk) weakly * in L∞(0,T). |
Then, we can discover
(uμ,t(x,0),φk)→(ut,φk)|t=0=(ut(x,0),φk). | (101) |
Otherwise,
(um,t(x,0),φk)→(u1(x),φk), | (102) |
Comparing identities (101) and (102), we can get
(ut(x,0),φk)=(u1(x),φk), for arbitrary k. |
So
ut(x,0)=u1(x). |
In the same way, we can obtain
v(x,0)=v0(x),vt(x,0)=v1(x). |
Proof. Differentiating the first equation of (45) with respect to
(uttt,utt)+((a6utxx)xx,utt)−((a3vtxx)xx,utt)−12(((u2x+v2x)utx)x,utt)−((u2xutx)x,utt)−((uxvxvtx)x,utt)−2ωωt((Rux)x,utt)−ω2((Rutx)x,utt)−(p1,t,utt)=0. | (103) |
Differentiating the second equation of (45) with respect to
(vttt,vtt)+((a4vtxx)xx,vtt)−((a3utxx)xx,vtt)−12(((u2x+v2x)vtx)x,vtt)−((v2xvtx)x,vtt)−((uxvxutx)x,vtt)−2ωωt((Rvx)x,vtt)−ω2((Rvtx)x,vtt)−(p2,t,vtt)=0. | (104) |
Summing the equation (103) and (104), we discover after integrating by parts:
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L1(Ω)+ω22ddt||√R(x)utx||2L2(Ω)+ω22ddt||√R(x)vtx||2L2(Ω)=12((u2x+v2x)utxx,utt)+(u2xutxx,utt)+(uxvxvtxx,utt)+12((u2x+v2x)vtxx,vtt)+(v2xvtxx,vtt)+(uxvxutxx,vtt)+3(uxuxxutx,utt)+(vxvxxutx,utt)+(uxxvxvtx,utt)+(uxvxxvtx,utt)+(uxuxxvtx,vtt)+3(vxvxxvtx,vtt)+(uxxvxutx,vtt)+(uxvxxutx,vtt)+2ωωt((Rxux,utt)+(Ruxx,utt)+(Rxvx,vtt)+(Rvxx,vtt))+(p1,t,utt)+(p2,t,vtt). | (105) |
Obviously, by Young inequality and Hölder inequality, we have
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L(Ω)+ddt[ω22(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))]≤C(||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)+1). | (106) |
Next integrate (106) with respect to
||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))≤C∫t0||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)dt+||utt(x,0)||2L2(Ω)+||utx(x,0)||2L2(Ω)+||utxx(x,0)||2L2(Ω)+||vtt(x,0)||2L2(Ω)+||vtx(x,0)||2L2(Ω)+||vtxx(x,0)||2L2(Ω)+C. | (107) |
Since
||utxx(x,0)||L2(Ω),||vtxx(x,0)||L2(Ω),||utx(x,0)||L2(Ω),||vtx(x,0)||L2(Ω), | (108) |
are bounded. On the other hand, multiplying the first equation and second equation of (45) by
||utt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C, |
||vtt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C. |
where the condition (52), Young inequality and Poincaré inequality are used.
As before, we have
||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω)≤C∫t0(||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω))dt+C. | (109) |
Applying the Gronwall inequality to (109) gives
ut,vt is bounded in L∞(0,T;H20(Ω)),utt,vtt is bounded in L∞(0,T;L2(Ω)). | (110) |
Moreover, the weak solutions of (45) satisfies
ut∈L∞(0,T;H20(Ω)), |
vt∈L∞(0,T;H20(Ω)), |
utt∈L∞(0,T;L2(Ω)), |
vtt∈L∞(0,T;L2(Ω)). |
Proof. Multiplying the first equation and the second equation of (45) by
(utt,−φ2utxx)+(vtt,−φ2vtxx)+((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)−ω2((Rux)x,−φ2utxx)−ω2((Rvx)x,−φ2vtxx)−(p1,−φ2utxx)−(p2,−φ2vtxx)=0. | (111) |
Thanks to integration by parts and the properties of
I1+I2+I3+I4+I5=0. | (112) |
where
I1=(utt,−φ2utxx)+(vtt,−φ2vtxx)I2=((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)I3=−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)I4=−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)I5=−(p1,−φ2utxx)−(p2,−φ2vtxx). |
To conclude, we need to estimate each of
I1=12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))+2(φφxutt,utx)+2(φφxvtt,vtx)≥12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))−C | (113) |
For
I2=12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))+(a6,xuxx,φ2utxxx)+(a4,xvxx,φ2vtxxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)+2(a6,xuxx,φφxutxx)+2(a4,xvxx,φφxvtxx)≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−(a6,xuxxx,φ2utxx)−(a4,xvxxx,φ2vtxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)−C≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (114) |
where Lemma 3.1 and (52) are used. Similarly from (114), we deduce
I3=−(a3vxxx,φ2utxxx)−(a3uxxx,φ2vtxxx)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)+(a3,xxvxx,φ2utxx)+(a3,xxuxx,φ2vtxx)+(a3,xvxxx,φφxutxx)+(a3,xuxxx,φφxvtxx)+2(a3,xvxx,φφxutxx)+2(a3,xuxx,φφxvtxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)≥−ddt||a3φ2uxxxvxxx||L1(Ω)−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (115) |
By using Lemma 3.1 and (52), we find
I4=−C||utxx||2L2(Ω)−C||vtxx||2L2(Ω)−C||uxx||2L2(Ω)−c||vxx||2L2(Ω)≥−C | (116) |
I5=−C(||ut||2H20(Ω)+||vt|2H20(Ω)+||u||2H20(Ω)+||v||2H20(Ω))−C≥−C | (117) |
Putting (113)-(117) into (112), this yields
12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω) −2||a3φ2uxxxvxxx||L1(Ω))≤C(||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω))+C | (118) |
Integrating with respect to
||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω) |
≤C∫t0||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)dt+C(||u1||2H1(Ω)+||v1||2H1(Ω)+||u0||2H3(Ω)+||v0||2H3(Ω))+C | (119) |
Thanks to the Gronwall inequality, we deduce
||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)≤C | (120) |
Proof. Utilizing to the first and second equations of (45), we can deduce
((a6a4−a23)uxxxx,uxxxx)=(−a4utt−a3vtt+ω2(R(a4ux+a3vx))x,uxxxx)+12(((u2x+v2x)(a4ux+a3vx))x,uxxxx)+((a4p1+a3p2),uxxxx). | (121) |
Thanks to (50) and Hölder inequality, we see that
||uxxxx||L2(Ω)≤C(||utt+vtt+ut+vt||L2(Ω)+||u+v||H20(Ω))≤C. | (122) |
Furthermore,
||uxxx||L2(Ω)≤C||uxxxx||47L2(Ω)||u||37L2(Ω)+C||u||L2(Ω)≤C, | (123) |
where Gagliardo-Nirenberg inequality for bounded domains is used. Similarly, we deduce
||vxxx||L2(Ω)≤C,||vxxxx||L2(Ω)≤C. | (124) |
Combining with the conclusions in Theorem (4.2) and Theorem (4.3), we can find that
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Proof. Denote
{˜u,˜v}=π({˜a3,˜a4,˜a6,˜ω,˜θ,˜u0,˜v0,˜u1,˜v1}), |
η=u−˜u, ζ=v−˜v. |
Then
12ddt(||ηt||2L2(Ω)+||ζt||2L2(Ω)+||√a6ηxx||2L2(Ω) +||√a4ζxx||2L2(Ω)−2||a3ηxxζxx||L(Ω))=12(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)+12(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)+ω2(((R(x)ηx)x,ηt)+((R(x)ζx)x,ζt))+ω2(η,ηt)+(¯p1,ηt)+(¯p2,ζt) |
−((a6−˜a6)˜uxx,ηtxx)−((a4−˜a4)˜vxx,ζtxx)+((a3−˜a3)˜vxx,ηtxx)+((a3−˜a3)˜uxx,ζtxx)−(ω2−˜ω2)(R˜ux,ηtx)−(ω2−˜ω2)(R˜vx,ζtx)+(ω2−˜ω2)(˜u,ηt)+(ωt−˜ωt)(R0+x,ηt). | (125) |
In equation (125), the nonlinear term satisfies
((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x=((u2x+v2x)ηx)x+((u2x+v2x−˜u2x−˜v2x)˜ux)x=((u2x+v2x)ηx)x+(((ux+˜ux)ηx+(vx+˜vx)ζx)˜ux)x=2(uxuxx+vxvxx)ηx+(u2x+v2x)ηxx+((ux+˜ux)ηxx+(vx+˜vx)ζxx)˜ux+((uxx+˜uxx)ηx+(vxx+˜vxx)ζx)˜ux+((ux+˜ux)ηx+(vx+˜vx)ζx)˜uxx. | (126) |
By Hölder inequality and Sobolev inequality, we can obtain
(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)≤C||uxx+vxx||L2(Ω)||ηx||L∞(Ω)||ηt||L2(Ω)+C||ηxx||L2(Ω)||ηt||L2(Ω)+||ηxx+(||uxx+˜uxx||L2(Ω)||ηx||L∞(Ω)+||vxx+˜vxx||L2(Ω)||ζx||L∞(Ω))||ηt||L2(Ω)+(|ηx||L∞(Ω)+||ζx||L∞(Ω))||˜uxx||L2(Ω)||ηt||L2(Ω)+ζxx||L2(Ω)||ηt||L2(Ω)≤C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||ζ||H20(Ω)||ηt||L2(Ω)≤C(||ηt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (127) |
In the same way, we have
(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)≤C(||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (128) |
On the other hand, we easily have
(¯p1,ηt)+(¯p2,ζt)≤C(||θ−˜θ||L1(Ω)+||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H10(Ω)+||ζ||2H10(Ω)). | (129) |
Substituting (127)-(129) into (125), we deduce
||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)≤C∫t0||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)dt+||u1−˜u1||2L2(Ω)+||v1−˜v1||2L2(Ω)+||u0−˜u0||2H20(Ω)+||v0−˜v0||2H20(Ω)+C(5∑i=3||ai−˜ai||L∞(Ω)+||θ−˜θ||L1(Ω)+||ω−˜ω||W1,1(0,T)). | (130) |
where we used the inequalities
||˜u||L∞(Q)≤C,||˜ux||L∞(Q)≤C,||˜v||L∞(Q)≤C,||˜vx||L∞(Q)≤C,||˜uxx||L∞(0,T,L2(Ω))≤C,||˜vxx||L∞(0,T,L2(Ω))≤C,||ηtx||L∞(Q)≤C,||ζtx||L∞(Q)≤C, |
which are deduced from Theorem 4.2 and Theorem 4.3.
Proof. Assume
{˜φk}∞k=1is an orthogonal basis ofH2f(Ω), | (131) |
and
{˜φk}∞k=1is an orthonormal basis ofL2(Ω). | (132) |
Fix a positive integer
um=m∑k=1˜dk0m(t)˜φk, vm=m∑k=1˜dk1m(t)˜φk, | (133) |
where we intend to select the coefficients
˜dk0m(0)=(u0,˜φk),˜dk1m(0)=(v0,˜φk),k=1,⋯,m, | (134) |
˜dk0m,t(0)=(u1,˜φk),˜dk1m,t(0)=(v1,˜φk),k=1,⋯,m, | (135) |
and
(um,tt,˜φk)+(a6um,xx,˜φk,xx)−(a3vm,xx,˜φk,xx)+12((u2m,x+v2m,x)um,x,˜φk,x)+ω2(Rum,x,˜φk,x)−(p1m,˜φk)−(b1um(l)+e1vm(l))˜φ(l)=0, | (136) |
(vm,tt,˜φk)−(a3um,xx,˜φk,xx)+(a4vm,xx,˜φk,xx)+12((u2m,x+v2m,x)vm,x,˜φk,x)+ω2(Rvm,x,˜φk,x)−(p2m,˜φk)−(b2um(l)+e2vm(l))˜φ(l)=0. | (137) |
As in earlier treatments of C-C boundary condition, we can conclude the following two conclude without difficulty.
(ⅰ) For each integer
(ⅱ)
Then, we proof the following estimate
‖um,t‖2L2(Ω)+‖vm,t‖2L2(Ω)+‖um‖2H2f(Ω)+‖vm‖2H2f(Ω)≤C(‖u1‖2L2(Ω)+‖v1‖2L2(Ω)+‖u0‖2H2f(Ω)+‖v0‖2H2f(Ω))+C | (138) |
Similarly from (75), we can deduce
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)−12ddt{b1u2m(l)+e2v2m(l)+2e1um(l)vm(l)}=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t), | (139) |
where
Then we integrate (139) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H2f(Ω)+||vm||2H2f(Ω)−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(t)||2H2f(Ω)+||vm(t)||2H2f(Ω))−b1u20m(l)−e2v20m(l)−2e1u0m(l)v0m(l)+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H2f(Ω)+||vm||2H2f(Ω)+C. | (140) |
By simple calculation, we deduce
−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≥0. | (141) |
where
On the other hand, according to
u0m(x),v0m(x)∈C(¯Ω). |
Thus,
u0m(l),v0m(l)≤C. | (142) |
Substituting (141) and (142) into (140), applying Gronwall inequality, we can deduce (138).
Now we pass to limits in our Galerkin approximations, applying estimate (138), we can discover (92), (93), (95). In order to complete the proof of the theorem, we just have to proof
uμ(l)→u(l),vμ(l)→v(l), strongly in L∞(0,T). | (143) |
where
To verify this, recalling (138), we observe that
uμ→u,vμ→v strongly in C(0,T;H1f(Ω)) | (144) |
where the Corollary 4 of Chapter 8 in [30] is used.
Furthermore, thanks to the conditions
||uμ(l)−u(l)||L∞(0,T)=||(uμ(l)−u(l))−(uμ(0)−u(0))||L∞(0,T)=||∫l0(uμ(x)−u(x))xdx||L∞(0,T)≤√l||(uμ(x)−u(x))x||L∞(0,T;L2(Ω))≤√l||uμ(x)−u(x)||L∞(0,T;H1f(Ω)) | (145) |
Thanks to (144), we can deduce
uμ(l)→u(l) strongly in L∞(0,T), |
Similarly, we have
vμ(l)→v(l) strongly in L∞(0,T). |
Proof. Similarly as (105), we can get
12ddtE+12P1+P2=P3. | (146) |
where
E=||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2||√R(x)utx||2L2(Ω)+ω2||√R(x)vtx||2L2(Ω) |
P1=(((u2x+v2x)ux)t,uttx)+(((u2x+v2x)vx)t,vttx)P2=−(b1u(l)+e1v(l))tutt(l)−(b2u(l)+e2v(l))tvtt(l)P3=2ωωt(((Rux)x,utt)+((Rvx)x,vtt))+||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))+(p1,t,utt)+(p2,t,vtt) |
By calculation, we can deduce
P1=12ddt{||√u2x+v2xutx||2L2(Ω)+||√u2x+v2xvtx||2L2(Ω)+2||uxutx||2L2(Ω) +2||vxvtx||2L2(Ω)+4||uxvxutxvtx||L1(Ω)} −3∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdx | (147) |
P2=−12ddt{b1u2t(l)+e2v2t(l)+2e1ut(l)vt(l)} | (148) |
P3≤||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω) +||utx||2L2(Ω)+||vtx||2L2(Ω) | (149) |
Substituting (147), (148) and (149) into (146), we get
12ddt{E+||√u2x+v2xutx||2L2(Ω)+||√u2x+v2xvtx||2L2(Ω)+2||uxutx||2L2(Ω) +2||vxvtx||2L2(Ω)+4||uxvxutxvtx||L1(Ω) −(b1u2t(l)+e2v2t(l)+2e1ut(l)vt(l))}≤||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω)+||utx||2L2(Ω)+||vtx||2L2(Ω) +3∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdx | (150) |
Then integrate (150) with respect to
E≤∫t0||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H2f(Ω)+||v||2H2f(Ω) +||utx||2L2(Ω)+||vtx||2L2(Ω)dt +3∫t0∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdxdt +||utt(x,0)||2L2(Ω)+||u1||2H2f(Ω)+||vtt(x,0)||2L2(Ω)+||v1||2H2f(Ω). |
where
−b1u2t(l)−e2v2t(l)−2e1ut(l)vt(l)≥0 |
and
||uxutx||2L2(Ω)+||vxvtx||2L2(Ω)+2||uxvxutxvtx||L1(Ω)≥0. |
are used.
Similarly as (108), we discover
||utt(x,0)||L2(Ω),||vtt(x,0)||L2(Ω)≤c. | (151) |
According to (151), we get
E≤c∫t0||utt||2L2(Ω)+||vtt||2L2(Ω)+||utxx||2L2(Ω)+||vtxx||2L2(Ω)dt+3∫t0∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdxdt+c. |
By Hölder inequality and Sobolev inequality, we have
E≤c∫t0{||utt||2L2(Ω)+||utxx||2L2(Ω)+||utxx||3L2(Ω)+||utxx||4L2(Ω)||vtt||2L2(Ω)+||vtxx||2L2(Ω)+||vtxx||3L2(Ω)+||vtxx||4L2(Ω)}dt+c. | (152) |
Then, we obtain Theorem 5.3 by Gronwall inequality.
[1] | Acharya VV, Mehran H, Schuermann T, et al. (2012) Robust capital regulation. Curr Issues Econ Financ, 18. |
[2] | Acharya VV, Mora N (2015) A crisis of banks as liquidity providers. J Financ 70: 1–43. |
[3] |
Agarwal S, Hauswald R (2010) Distance and private information in lending. Rev Financ Stud 23: 2757–2788. doi: 10.1093/rfs/hhq001
![]() |
[4] |
Aiyar S, Calomiris CW, Wieladek T (2014) Does macro-prudential regulation leak? evidence from a UK policy experiment. J Money Credit Bank 46: 181–214. doi: 10.1111/jmcb.12086
![]() |
[5] |
Allee KD, Yohn TL (2009) The demand for financial statements in an unregulated environment: an examination of the production and use of financial statements by privately held small businesses. Account Rev 84: 1–25. doi: 10.2308/accr.2009.84.1.1
![]() |
[6] |
Allen F, Carletti E, Marquez R (2011) Credit market competition and capital regulation. Rev Financ Stu 24: 983–1018. doi: 10.1093/rfs/hhp089
![]() |
[7] |
Angbazo L (1997) Commercial bank net interest margins, default risk, interest-rate risk, and off-balance sheet banking. J Bank Financ 21: 55–87. doi: 10.1016/S0378-4266(96)00025-8
![]() |
[8] |
Berger AN, Bouwman CH (2013) How does capital affect bank performance during financial crises? J Financ Econ 109: 146–176. doi: 10.1016/j.jfineco.2013.02.008
![]() |
[9] |
Berger PG, Minnis M, Sutherland A (2017) Commercial lending concentration and bank expertise: evidence from borrower financial statements. J Account Econ 64: 253–277. doi: 10.1016/j.jacceco.2017.06.005
![]() |
[10] |
Berger AN, Udell GF (2002) Small business credit availability and relationship lending: the importance of bank organizational structure. Econ J 112: F32–F53. doi: 10.1111/1468-0297.00682
![]() |
[11] |
Berlin M, Mester LJ (1998) On the profitability and cost of relationship lending. J Bank Financ 22: 873–897. doi: 10.1016/S0378-4266(98)00033-8
![]() |
[12] |
Black F, Cox JC (1976) Valuing corporate securities: some effects of bond indenture provisions. J Financ 31: 351–367. doi: 10.1111/j.1540-6261.1976.tb01891.x
![]() |
[13] |
Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81: 637–654. doi: 10.1086/260062
![]() |
[14] |
Boot AWA (2000) Relationship banking: what do we know? J Financ Intermed 9: 7–25. doi: 10.1006/jfin.2000.0282
![]() |
[15] |
Brockman P, Turtle HJ (2003) A barrier option framework for corporate security valuation. J Financ Econ 67: 511–529. doi: 10.1016/S0304-405X(02)00260-X
![]() |
[16] |
Calem PS, LaCour-Little M (2004) Risk-based capital requirements for mortgage loans. J Bank Financ 28: 647–672. doi: 10.1016/S0378-4266(03)00039-6
![]() |
[17] |
Calem PS, Rob R (1999) The impact of capital-based regulation on bank risk taking. J Financ Intermed 8: 317–352. doi: 10.1006/jfin.1999.0276
![]() |
[18] |
Carlson M, Shan H, Warusawitharana M (2013) Capital ratios and bank lending: a matched bank approach. J Financ Intermed 22: 663–687. doi: 10.1016/j.jfi.2013.06.003
![]() |
[19] |
Chen Y, Huang RJ, Tsai J, et al. (2015) Soft information and small business lending. J Financ Serv Res 47: 115–133. doi: 10.1007/s10693-013-0187-x
![]() |
[20] |
Cole RA, Goldberg LG, White LJ (2004) Cookie-cutter versus character: the micro structure of small business lending by large and small banks. J Financ Quant Anal 39: 227–251. doi: 10.1017/S0022109000003057
![]() |
[21] |
Crook J, Bellotti T (2010) Time varying and dynamic models for default risk in consumer loans. J R Stat Soc 173: 283–305. doi: 10.1111/j.1467-985X.2009.00617.x
![]() |
[22] |
Crouhy M, Galai D (1991) A contingent claim analysis of a regulated depository institution. J Bank Financ 15: 73–90. doi: 10.1016/0378-4266(91)90038-N
![]() |
[23] |
Dermine J, Lajeri F (2001) Credit risk and the deposit insurance premium: a note. J Econ Bus 53: 497–508. doi: 10.1016/S0148-6195(01)00045-5
![]() |
[24] |
Diamond DW, Rajan RG (2001) Liquidity risk, liquidity creation, and financial fragility: a theory of banking. J Polit Econ 109: 287–327. doi: 10.1086/319552
![]() |
[25] |
Elsas R (2005) Empirical determinants of relationship lending. J Financ Intermed 14: 32–57. doi: 10.1016/j.jfi.2003.11.004
![]() |
[26] |
Episcopos A (2008) Bank capital regulation in a barrier option framework. J Bank Financ 32: 1677–1686. doi: 10.1016/j.jbankfin.2007.11.018
![]() |
[27] |
Ergungor OE (2005) The profitability of bank-borrower relationships. J Financ Intermed 14: 485–512. doi: 10.1016/j.jfi.2004.09.002
![]() |
[28] | Finn WT, Frederick JB (1992). Managing the margin. ABA Bank J 84: 50–54. |
[29] | Godbillon-Camus B, Godlewski CJ (2005) Credit risk management in banks: hard information, soft information and manipulation. Working Paper. |
[30] |
Grunert J, Norden L, Weber M (2005) The role of non-financial factors in internal credit ratings. J Bank Financ 29: 509–531. doi: 10.1016/j.jbankfin.2004.05.017
![]() |
[31] | Hart OD, Zingales L (2011) Inefficient provision of liquidity. NBER Working Paper No. 17299. |
[32] |
Ho TSY, Saunders A (1981) The determinants of bank interest margins: theory and empirical evidence. J Financ Quant Anal 16: 581–600. doi: 10.2307/2330377
![]() |
[33] | Huang FW, Chen S, Tsai JY (2018) Optimal bank interest margin under capital regulation: bank as a liquidity provider. J Finan Econ Policy 27: 143–149. |
[34] |
Jiménez G, Ongena S, Peydró JL, et al. (2017) Macroprudential policy, countercyclical bank capital buffers, and credit supply: evidence from the Spanish dynamic provisioning experiments. J Polit Econ 125: 2126–2177. doi: 10.1086/694289
![]() |
[35] | Karapetyan A, Stacescu B (2013) Information sharing and information acquisition in credit markets. Rev Financ 18: 1583–1615. |
[36] | Kashyap AK, Rajan RG, Stein JC (2008) Rethinking capital regulation. Maintaining Stability Changing Financ System, 431–471. |
[37] |
Kasman A, Tunc G, Vardar G, et al. (2010) Consolidation and commercial bank net interest margins: evidence form the old and new European Union members and candidate countries. Econ Model 27: 648–655. doi: 10.1016/j.econmod.2010.01.004
![]() |
[38] |
Maudos J, De Guevara JF (2004) Factors explaining the interest margin in the banking sectors of the European Union. J Bank Financ 28: 2259–2281. doi: 10.1016/j.jbankfin.2003.09.004
![]() |
[39] |
McCann F, McIndoe-Calder T (2015) Firm size, credit scoring accuracy and banks' production of soft information. Appl Econ 47: 3594–3611. doi: 10.1080/00036846.2015.1019034
![]() |
[40] |
McMillan DG, McMillan FJ (2016) US bank market structure: evolving nature and implications. J Financ Serv Res 50: 187–210. doi: 10.1007/s10693-015-0225-y
![]() |
[41] | Merton RC (1974) On the pricing of corporate debt: the risk structure of interest rates. J Financ 29: 449–470. |
[42] |
Myers SC, Majluf NS (1984) Corporate financing and investment decisions when firms have information that investors do not have. J Financ Econ 13: 187–221. doi: 10.1016/0304-405X(84)90023-0
![]() |
[43] |
Ogura Y, Uchida H (2014) Bank consolidation and soft information acquisition in small business lending. J Financ Serv Res 45: 173–200. doi: 10.1007/s10693-013-0163-5
![]() |
[44] |
Osborne M, Fuertes AM, Milne A (2017) In good times and in bad: bank capital ratios and lending rates. Int Rev Financ Anal 51: 102–112. doi: 10.1016/j.irfa.2016.02.005
![]() |
[45] | Petersen MA (2004) Information: hard and soft. Working Paper. |
[46] |
Saunders A, Schumacher L (2000) The determinants of bank interest rate margins: an international study. J Int Money Financ 19: 813–832. doi: 10.1016/S0261-5606(00)00033-4
![]() |
[47] | Stein JC (2002) Information production and capital allocation: decentralized vs. hierarchical firms. J Financ 57: 1891–1921. |
[48] | Sutherland A (2018) Does credit reporting lead to a decline in relationship lending? evidence from information sharing technology. J Account Res 66: 123–141. |
[49] |
Uchida H, Udell GF, Yamori N (2012) Loan officers and relationship lending to SMEs. J Financ Intermed 21: 97–122. doi: 10.1016/j.jfi.2011.06.002
![]() |
[50] |
Van Hoose D (2007) Theories of bank behavior under capital regulation. J Bank Financ 31: 3680–3697. doi: 10.1016/j.jbankfin.2007.01.015
![]() |
[51] | Wang Q (2012) Trade-off between hard and soft information in bank lending. The University of North Carolina at Chapel Hill. |
[52] |
Wong KP (1997) On the determinants of bank interest margins under credit and interest rate risks. J Bank Financ 21: 251–271. doi: 10.1016/S0378-4266(96)00037-4
![]() |
[53] |
Wong KP (2011) Regret theory and the banking firm: the optimal bank interest margin. Econ Model 28: 2483–2487. doi: 10.1016/j.econmod.2011.07.007
![]() |
[54] |
Wu X, Au Yeung CK (2012) Firm growth type and capital structure persistence. J Bank Financ 36: 3427–3443. doi: 10.1016/j.jbankfin.2012.08.008
![]() |
[55] |
Wu X, Wang Z (2005) Equity financing in a Myers-Majluf framework with private benefits of control. J Corp Financ 11: 915–945. doi: 10.1016/j.jcorpfin.2004.04.001
![]() |
[56] |
Zarruk ER, Madura J (1992) Optimal bank interest margin under capital regulation and deposit insurance. J Financ Quant Anal 27: 143–149. doi: 10.2307/2331303
![]() |
1. | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen, Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients, 2021, 29, 2688-1594, 3581, 10.3934/era.2021052 | |
2. | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, 2021, 29, 2688-1594, 1709, 10.3934/era.2020088 | |
3. | Guillaume Castera, Juliette Chabassier, Linearly implicit time integration scheme of Lagrangian systems via quadratization of a nonlinear kinetic energy. Application to a rotating flexible piano hammer shank, 2024, 58, 2822-7840, 1881, 10.1051/m2an/2024049 |