Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article

Impact of artificial intelligence technology innovation on total factor productivity: an empirical study based on provincial panel data in China

  • As the focus of the new round of technological revolution, it is crucial to explore the role of artificial intelligence (AI) technology innovation in improving total factor productivity (TFP). Based on the data from 30 Chinese provinces from 2003 to 2021, this article measured AI innovation using the number of patent applications and empirically investigated the effects of AI technology innovation on TFP. The results demonstrated that AI technology innovation exerts significantly positive influences on the TFP. The mechanism analyses revealed that AI technology innovation improves TFP by upgrading industrial structures and promoting human capital. The subsample results indicated that the promotion effect of AI technology innovation on TFP is significant only in areas with high levels of marketization, financial development, and digital infrastructure. The panel quantile regression results indicated that as the TFP increases, the promoting effect of AI technology innovation on TFP gradually strengthens. This study offers comprehensive empirical evidence for understanding the impacts of AI technology innovation on TFP, giving a reference for further enhancing the level of AI development and promoting a sustainable economic development.

    Citation: Shuang Luo, Wenting Lei, Peng Hou. Impact of artificial intelligence technology innovation on total factor productivity: an empirical study based on provincial panel data in China[J]. National Accounting Review, 2024, 6(2): 172-194. doi: 10.3934/NAR.2024008

    Related Papers:

    [1] Piotr H. Pawłowski . Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host cell. AIMS Biophysics, 2021, 8(1): 111-120. doi: 10.3934/biophy.2021008
    [2] Ibrahim Khater, Aaya Nassar . Looking into mucormycosis coinfections in COVID-19 patients using computational analysis. AIMS Biophysics, 2022, 9(1): 72-85. doi: 10.3934/biophy.2022007
    [3] Ta-Chou Huang, Wolfgang B. Fischer . Sequence–function correlation of the transmembrane domains in NS4B of HCV using a computational approach. AIMS Biophysics, 2021, 8(2): 165-181. doi: 10.3934/biophy.2021013
    [4] Oleksii V. Khorolskyi, Nikolay P. Malomuzh . Macromolecular sizes of serum albumins in its aqueous solutions. AIMS Biophysics, 2020, 7(4): 219-235. doi: 10.3934/biophy.2020017
    [5] Murtala Muhammad, I. Y. Habib, Abdulmumin Yunusa, Tasiu A. Mikail, A. J. ALhassan, Ahed J. Alkhatib, Hamza Sule, Sagir Y. Ismail, Dong Liu . Identification of potential SARS-CoV-2 papain-like protease inhibitors with the ability to interact with the catalytic triad. AIMS Biophysics, 2023, 10(1): 50-66. doi: 10.3934/biophy.2023005
    [6] Thomas Schubert, Gernot Längst . Studying epigenetic interactions using MicroScale Thermophoresis (MST). AIMS Biophysics, 2015, 2(3): 370-380. doi: 10.3934/biophy.2015.3.370
    [7] Piotr H. Pawłowski, Piotr Zielenkiewicz . The role of electric charge in SARS-CoV-2 and other viral infections. AIMS Biophysics, 2024, 11(2): 166-188. doi: 10.3934/biophy.2024011
    [8] David E. Shoup . Diffusion-controlled reaction rates for clusters of binding sites on a cell. AIMS Biophysics, 2016, 3(4): 522-528. doi: 10.3934/biophy.2016.4.522
    [9] Alyssa D. Lokits, Julia Koehler Leman, Kristina E. Kitko, Nathan S. Alexander, Heidi E. Hamm, Jens Meiler . A survey of conformational and energetic changes in G protein signaling. AIMS Biophysics, 2015, 2(4): 630-648. doi: 10.3934/biophy.2015.4.630
    [10] Auwal Muhammad, Kanikar Muangchoo, Ibrahim A. Muhammad, Ya'u S. Ajingi, Aliyu M. Bello, Ibrahim Y. Muhammad, Tasi'u A. Mika'il, Rakiya Aliyu . A molecular modeling study of novel aldose reductase (AR) inhibitors. AIMS Biophysics, 2020, 7(4): 380-392. doi: 10.3934/biophy.2020026
  • As the focus of the new round of technological revolution, it is crucial to explore the role of artificial intelligence (AI) technology innovation in improving total factor productivity (TFP). Based on the data from 30 Chinese provinces from 2003 to 2021, this article measured AI innovation using the number of patent applications and empirically investigated the effects of AI technology innovation on TFP. The results demonstrated that AI technology innovation exerts significantly positive influences on the TFP. The mechanism analyses revealed that AI technology innovation improves TFP by upgrading industrial structures and promoting human capital. The subsample results indicated that the promotion effect of AI technology innovation on TFP is significant only in areas with high levels of marketization, financial development, and digital infrastructure. The panel quantile regression results indicated that as the TFP increases, the promoting effect of AI technology innovation on TFP gradually strengthens. This study offers comprehensive empirical evidence for understanding the impacts of AI technology innovation on TFP, giving a reference for further enhancing the level of AI development and promoting a sustainable economic development.



    Complex dynamical networks (CDNs) refer to systems composed of interconnected nodes or entities, where the relationships between nodes are not trivial and often exhibit nontrivial patterns or structures, e.g., transport networks and 5G communication networks, social networks and Covid-19 epidemic networks. The study of complex networks has become a significant interdisciplinary field, drawing insights and methodologies from mathematics, computer science, physics, biology, sociology, and other disciplines [1,2,3]. Complex networks have found applications in diverse fields, including biology (e.g., gene regulatory networks, protein-protein interaction networks), social sciences (e.g., social networks, collaboration networks), transportation (road networks, air traffic networks), and information systems (e.g., the World Wide Web, citation networks); see papers [4,5,6]. Researchers in this field often use tools from graph theory, statistical physics, and machine learning to analyze and model the intricate structures and behaviors of complex systems (see refs. [7,8,9]).

    A system composed of nonidentical networks may refer to a heterogeneous network. It consists of different types of nodes or entities with diverse characteristics, and the connections between them can vary in nature. Examples include multiplex networks, where nodes can have different types of relationships in different layers, and interdependent networks, where the failure of nodes in one network can affect nodes in another. The synchronization of nonidentical networks is a complex and interdisciplinary topic that spans various fields, including physics, engineering, and network science. In the context of nonidentical networks, achieving synchronization implies that nodes with different dynamics or characteristics become correlated or coordinated in their behavior. A common approach is to consider a drive network influencing the behavior of a response network. The drive network might have more influence or a different role compared to the response network, and achieving synchronization involves aligning the dynamics of the two networks. For the synchronization issues of nonidentical CDNs, the readers could refer to the literatures [10,11,12,13,14].

    Anti-synchronization of networks involves achieving a specific type of coordination or correlation between nodes in a network. In synchronization, nodes in a network tend to evolve in a coordinated manner. In contrast, anti-synchronization is a state where the nodes exhibit an antiphase relationship, meaning that their dynamics are such that when one node is in a certain state, the other is in the opposite state; see refs. [15,16,17,18,19,20]. Adaptive anti-synchronization involves incorporating mechanisms that allow the network to adapt to changes in its internal or external conditions. These adaptive mechanisms can include adjusting parameters, coupling strengths, or introducing control signals based on feedback from the system or external measurements. Adaptive anti-synchronization has potential applications in various fields, including secure communication systems, networked control systems, and complex systems where maintaining a specific antiphase relationship between components is important, see refs. [18,19,20].

    Stochastic network plays a significant role in the evolution of the network. These uncertainties can arise from various sources, including random events, probabilistic interactions, or dynamic processes. Analyzing and modeling stochastic networks is essential for understanding their behavior and making informed decisions in scenarios where uncertainty is inherent; see refs. [21,22,23,24,25,26]. Uncertain networks refer to network structures where there is uncertainty or variability in the connections between nodes, the strengths of these connections, or other properties of the network. This uncertainty can arise from various sources, including incomplete information, dynamic changes in network topology, or random fluctuations. Understanding and modeling uncertain networks are crucial for various applications, and researchers often employ different approaches to address the challenges associated with uncertainty. Researchers have developed various approaches and methodologies to address these challenges; please see publications [27,28,29,30,31,32].

    Discrete space or discrete time networks, as opposed to continuous space or continuous time networks, have distinct advantages in various applications. For example, discrete time systems are often easier to synchronize and coordinate. Events or updates can be synchronized at specific time intervals, simplifying the management of network-wide activities. Discrete time models are often simpler to develop and analyze. In signal processing applications, discrete time signals are often preferred for digital signal processing. Discrete time allows for the application of powerful digital filtering techniques and efficient algorithms [33]. On the other hand, discretizing space simplifies computations, making it more computationally efficient, especially for systems with a large number of nodes or complex interactions. Nodes in the network are located at specific points in space, simplifying the description of their positions and connections. In certain applications, discretizing space allows for more efficient utilization of resources [34]. To the authors' knowledge, despite numerous reports having focused on the research of discrete-time complex networks [9,15,35,36,37] or continuous-time complex networks with reaction diffusions [5,38,39,40,41,42], the studies of the discrete networks in both time and space are very few; please see ref. [43]. Specifically, almost no paper involves the adaptive anti-synchronization of time-space discrete drive-response nonidentical CDNs.

    Based on the above discussion, the primary purpose of this paper is to study the adaptive anti-synchronization problems of space-time discrete heterogeneous stochastic multilayer CDNs with multiple delays. To achieve this, a space-time discrete Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) method are used to design an adaptive updated law for unknown parameter and feedback controller that incorporates boundary information. In particular, the adaptive parameter in the response networks can achieve the accuracy identification to the unknown information in the drive networks. This document presents key contributions that are distinct from existing works. These contributions are briefly summarized.

    1) This paper differs from the continuous time networks in [6,7,8,10,11,12,13,14,44,45,46] or reaction-diffusion networks in [5,38,39,40,41,42]; a CDNs in time and space is modeled by a discrete way.

    2) In contrast to the feedback controller in the networks presented in previous reports [9,15,35,36,37], a feedback controller in the boundary is built to discrete space-time CDNs, which is a more effective and low-cost control technique for the networks.

    3) In contrast to previous work on the incomplete synchronization to heterogeneous CDNs, e.g., quasi-synchronization [10,11,12,13,14], the present paper addresses the problem of anti-synchronization to heterogeneous discrete space-time CDNs, which belongs to the category of the complete synchronization.

    4) In order to fill the gap that no report had been published for the adaptive control of discrete space-time CDNs until now, this paper considers the uncertainty in the model of CDNs and designs an adaptive updated rule. The adaptive parameter in the response networks can achieve the accuracy identification to the uncertain factor.

    This article has the following structure. In Section 2, the drive-response discrete space-time heterogeneous CDNs with multiple delays have been established. The adaptive updated law of the unknown parameter and adaptive anti-synchronization of the drive-response heterogeneous CDNs are discussed in Section 3. In Section 4, the theoretical results are confirmed by a numerical example. A brief summary is given in Section 5.

    Notations: Denote R0=[0,+), Z0={0,1,2,}; Z+=Z0{0}. We use symbol to denote the Kronecker product. Define A=max1im,1jn|aij| for A=(aij)m×nRm×n. For any sets I,J, IJ stands for set IJ. I represents some suitable dimensional identical matrix. Also, denote

    Δz[]k=z[]k+1z[]k,Δz[δ]k=z[δ+1]kz[δ]k,Δ2z[δ]k=Δ(Δz[δ]k),

    where z=z[δ]k:Z2RM, (δ,k)Z2, >0.

    In the following model, F,σRM are the activation and noise functions in sequence; ΓlRM×M and Gl=(Gij,l)m×m represent the inner and outer linking matrix in sequence l=1,2,,p, i,j=1,2,,m; wR denotes the Brownian motion on certain probability space. This paper discusses the general CDNs with reaction diffusions, unknown dynamics, and multiple delays, which are constructed by

    dwi(x,t)=[A2wi(x,t)x2+Cwi(x,t)+γ(t)F(wi(x,t))+pl=1mj=1clGij,lΓlwj(x,tτl)]dt+pl=1ˆσ(wi(x,tτl))dw(t)+ζ, (2.1)

    where (x,t)(0,L)×R0 for some L>0, or in a discrete form

    w[δ]i,k+1=eChw[δ]i,k+(eChI)C1[AΔ2w[δ1]i,k+γkF(w[δ]i,k)+pl=1mj=1clGij,lΓlw[δ]j,kτl+pl=1σ(w[δ]i,kτl)Δhwk+ζ], (2.2)

    where (δ,k)(0,L)Z×Z0, L2 is some integer; wi=(wi1,wi2,,wiM)TRM stands for the state of the ith transportation node; γk is adaptive; w[δ]i,k and wk are the simplified forms of wi(δ,kh) and w(kh) in sequence i=1,2,,m; Δhwk=wk+1wkh; and h denote the space and time steps' length, respectively; ARM×M, C is nonsingular M-order square matrix; cl0, ˆσ()=hσ(), τl[1,+)Z is the time delay, l=1,2,,p; ζRM is a corrective vector. Furthermore, CDNs (2.2) possesses the following initial and controlling boundary values:

    {w[δ]i,s=ϕ[δ]i,s,(δ,s)[0,L]Z×[τ,0]Z,Δw[δ]i,k|δ=0=0,Δw[δ]i,k|δ=L1=ξi,k,kZ0,

    where τ:=maxδ=1,2,,pτl<, ξi denotes the boundary input, i=1,2,,m.

    Remark 2.1. CDNs (2.2) is the discrete form of CDNs (2.1) by using the exponential Euler difference (see [33]) for variable t and the central finite difference (see [47,48]) for variable x.

    Remark 2.2. It can be seen from the boundary control described above that, in contrast to the feedback controls (FCs) that are designed within the networks, the boundary control described in this study is only active at the boundary point L1. This control method is a more effective and low-cost technique than the FCs described in the paper [48], which occurs for all values of δ[1,L1]Z.

    Let the matrix G, and the activation and noise functions F,σ meet the following assumptions.

    (c1) Gl=(Gij,l)m×m is irreducible and Gij,l=Gji,l0 for ij, Gii,l=mj=1,jiGij,l, i,j=1,2,,m, l=1,2,,p.

    (c2) F() and σ() are odd, and there exist positive constant F0, and M-order matrices Lf,Lσ0 such that

    F(z)F0,[F(z)F(y)]T[F(z)F(y)](zy)TLf(zy),[σ(z)σ(y)]T[σ(z)σ(y)](zy)TLσ(zy),

    where z,yRM.

    Let us consider the drive CDNs below:

    z[δ]k+1=eChz[δ]k+(eChI)C1[AΔ2z[δ1]k+γF(z[δ]k)+pl=1mj=1clGij,lΓlz[δ]kτl+pl=1σ(z[δ]kτl)Δhwkζ], (2.3)

    where (δ,k)(0,L)Z×Z0; γ is an unknown parameter. The initial and boundary values are described by

    {z[δ]s=ψ[δ]s,(δ,s)[0,L]Z×[τ,0]Z,Δz[δ]k|δ=0=0=Δz[δ]k|δ=L1,kZ0.

    CDNs (2.2) can be regarded as the response networks of the drive networks (2.3). Let the anti-synchronous error between the drive-response networks (2.3) and (2.2) be represented by ei=wi+z for i=1,2,,m. From CDNs (2.3) and (2.2), it follows

    e[δ]i,k+1=eChe[δ]i,k+(eChI)C1[AΔ2e[δ1]i,k+γ˜F(e[δ]i,k)+(γkγ)F(w[δ]i,k)+pl=1mj=1clGij,lΓle[δ]j,kτl+pl=1˜σ(e[δ]i,kτl)Δhwk],

    where i=1,2,,m, or in a compact form

    ˉe[δ]k+1=(eCh)mˉe[δ]k+(C)m[(A)mΔ2ˉe[δ1]k+γ˜F(ˉe[δ]k)+(γkγ)F(w[δ]k)+pl=1cl(Γl)Glˉe[δ]kτl+pl=1˜σw(ˉe[δ]kτl)], (2.4)

    where (δ,k)(0,L)Z×Z0, ˉe=(eT1,,eTm)T, C=(eChI)C1,

    ˜F(ei)=F(wi)+F(z),˜σ(ei)=σ(wi)+σ(z),i=1,2,,m,˜F(ˉe)=(˜F(e1),,˜F(em))T,F(w)=(F(w1),,F(wm))T,˜σ(ˉe)=(˜σ(e1),,˜σ(em))T,˜σw(ˉe)=(˜σ(e1),,˜σ(em))TΔhw.

    In the model above, (A)m:=ImA and (A)B:=BA for suitable dimensional matrices A,B and the m-order identical matrix Im.

    According to the initial and boundary values in CDNs (2.2) and (2.3), the error system (2.4) possesses the initial and controlling boundary conditions

    {ˉe[δ]s=φ[δ]s,(δ,s)[0,L]Z×[τ,0]Z,Δˉe[δ]k|δ=0=0,Δˉe[δ]k|δ=L1=ˉξk,kZ0, (2.5)

    where φ=(ϕ1+ψ,,ϕm+ψ)T, ˉξ=(ξ1,,ξm)T.

    The framework of the drive-response-error CDNs (2.2)–(2.4) is figured as that in Figure 1.

    Figure 1.  Framework of the drive-response-error boundary controlling CDNs.

    Remark 2.3. In [43], Zhang and Li discussed a class of discrete space-time CDNs and the issue of switching clusters' synchronization had been addressed perfectly in this article. Compared with the work above, this paper possesses some merits below. First, CDNs (2.2) of this paper is involved with the stochastic disturbances. Second, the drive-response networks (2.2) and (2.3) are heterogeneous, but the CDNs in [43] were homogeneous. Finally, it exists the uncertainty in CDNs (2.2), which extensively increases the researching difficulty and the applicable categories of the networks.

    Remark 2.4. Literatures [44,45,46] used adaptive methods to identify and estimate unknown parameters of continuous time transportation networks without spatial variables. However, identifying uncertain parameters in spatiotemporal discrete heterogeneous networks presents two challenges that must be overcome. In the first, the introduction of spatial diffusion will complicate the research of this topic. Additionally, based on the applicant's recent research experience in [43], the calculation of the time discrete Lyapunov function is more complex than that of the continuous time Lyapunov function. You can see this point in Eq (3.6), where the term \mathtt{£}_{k} exists, but remember that there is no \mathtt{£}_{k} in the continuous case.

    Definition 2.1 ([49]). The drive-response networks (2.3) and (2.2) are said to be mean squared asymptotic anti-synchronization (MSAAS) via boundary control \bar{\xi}_{k} in (2.5) if

    \lim\limits_{k\rightarrow \infty}\sum\limits_{i = 1}^{m}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbb{E}\| \mathbf{e}_{i, k}^{[\delta] }\|^2 = \lim\limits_{k\rightarrow \infty}\sum\limits_{i = 1}^{m}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbb{E}\big\| \mathbf{w}_{i, k}^{[\delta]}+ \mathbf{z}_k^{[\delta]}\big\|^2 = 0, \quad \forall k\in\mathbb{Z}_0.

    Remark 2.5. In the existing publications, papers [9,15,35,36,37] investigated single discrete-time CDNs and reports [5,38,39,40,41,42] considered the continuous-time CDNs with reaction diffusions. The drive-response CDNs (2.3) and (2.2) are distinct with them by discussing both time and space discretizations in the model of CDNs. Although the time-space discrete CDNs has been considered in our work in literature [43], it has some clear distinctions. The biggest difference is that the drive-response CDNs in literature [43] are identical, but drive-response CDNs (2.3) and (2.2) are nonidentical. Besides, this paper considers MSAAS with adaptive updated rule, which is different from the synchronization in literature [43].

    Throughout this article, suppose that

    \sum\limits_{i = 1}^{m}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\phi_{i, s}^{[\delta]}\|^2 < \infty, \quad \sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\psi_{s}^{[\delta]}\|^2 < \infty,

    where s\in[-\tau_\infty, 0]_{\mathbb{Z}} . By right of initial values (2.5), it has

    \begin{equation} \sum\limits_{\delta = 1}^{\mathcal{L}-1}\mathbb{E}\|\bar{ \mathbf{e}}_{s}^{[\delta]}\|^2 < \infty, \quad \forall s\in[-\tau_\infty, 0]_{\mathbb{Z}}. \end{equation} (2.6)

    In view of Corollary 3.1 of [50], Subsection 2.3, and Inequalities 3.2.1 and 3.2.3 of [51], one has the following lemma.

    Lemma 2.1. ([50,51]). The inequalities below are valid for m -dimensional vector \mathbf{z} and m -order positive definitive matrix G .

    (i) \sum\limits_{\delta = 0}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]} \leq \frac{\mu_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 0}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]} when \mathbf{z}_{0} = 0 , where \mu_{\mathcal{L}} = 4\cos^2\frac{\pi}{2\mathcal{L}+1} .

    (ii) \sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]}\geq \frac{\chi_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 1}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]} -\frac{1}{\hbar^2}(\mathbf{z}_{1}+ \mathbf{z}_{\mathcal{L}})^TG(\mathbf{z}_{1}+ \mathbf{z}_{\mathcal{L}}), where \chi_{\mathcal{L}} = 4\sin^2\frac{\pi}{2\mathcal{L}} .

    (iii) \sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar \mathbf{z}^{[\delta]T}G\Delta_\hbar \mathbf{z}^{[\delta]}+ \frac{1}{\hbar^2}\big[\mathbf{z}_{1}+(-1)^{\mathcal{L}} \mathbf{z}_{\mathcal{L}}\big]^TG\big[\mathbf{z}_{1}+(-1)^{\mathcal{L}} \mathbf{z}_{\mathcal{L}}\big] \leq \frac{4-\chi_{\mathcal{L}}}{\hbar^2}\sum\limits_{\delta = 1}^{\mathcal{L}} \mathbf{z}^{[\delta]T}G \mathbf{z}^{[\delta]}.

    This section constructs the space-time discrete stochastic Lyapunov-Krasovskii functional to the error CDNs (2.4). Subsequently, an adaptive update law of uncertain parameter {\boldsymbol\gamma} is designed. Further, boundary input and controlling gain are designed to perform mean squared asymptotic anti-synchronization of the drive-response networks (2.3) and (2.2), i.e., some asymptotical stability criterions in mean squared sense are established to the error CDNs (2.4). Meanwhile, it achieves the identification of the uncertain parameter.

    In accordance with the error CDNs (2.4), a space-time discrete Lyapunov-Krasovskii functional candidate is constructed by

    V_k = V_{0, k}+V_{1, k}+V_{2, k},

    where

    \begin{array}{c} V_{0, k} = \frac{1}{\alpha}({\boldsymbol\gamma}_{k}-\gamma)^2, \quad V_{1, k} = {}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bar{ \mathbf{e}}_{k}^{[\delta] T} (P)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \\ V_{2, k} = \sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\sum\limits_{q = k-\tau_{l}}^{k-1}\Big[d_2p \bar{ \mathbf{e}}^{[\delta]T}_{q} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{q}^{[\delta]} +d_3p c_l^2 \bar{ \mathbf{e}}^{[\delta]T}_{q} (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{q}^{[\delta]} \Big], \end{array}

    where P > 0 is an M -order matrix, and d_2, d_3, \alpha are some positive constants.

    The chief research scheme of this paper can be summarized in the flowchart described by Figure 2.

    Figure 2.  The flowchart of the chief research scheme.

    Set \eta_{k}^{[\delta]} = \bar{\mathbf{e}}_{k+1}^{[\delta]}-\bar{\mathbf{e}}_{k}^{[\delta]} , \forall(\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0. We design the adaptive updated law for unknown parameter {\boldsymbol\gamma}_{k} as below:

    \begin{equation} {\boldsymbol\gamma}_{k+1} = {\boldsymbol\gamma}_{k}-\Upsilon_{k}, \quad \Upsilon_{k} = \alpha\sum\limits_{\delta = 1}^{\mathcal{L}-1}\big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} +\eta_{k}^{[\delta]T}(QC_*)_{\otimes m}\big]\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \end{equation} (3.1)

    where k\in\mathbb{Z}_0. Hereby, Q is a positive definitive M -order matrix, which will be calculated by some LMIs later. Remarkably, it follows from ( c_2 ) that

    \begin{equation} ( \mathbf{u}^TH \mathbf{v})^2\leq M^3\|H\|_{\infty}^2\| \mathbf{v}\|_{\infty}^2\| \mathbf{u}\|^2, \quad \|\mathbf{F}_{\otimes}( \mathbf{w})\|_{\infty}\leq \mathbf{F}_0, \end{equation} (3.2)

    where \mathbf{u}, \mathbf{v}\in\mathbb{R}^{M}, \mathbf{w}\in\mathbb{R}^{mM}, H\in\mathbb{R}^{M\times M}. So, it implies

    \begin{aligned} \mathbb{{E}}\Upsilon^{2}_{k}&\leq 2\alpha^{2}\mathcal{L} \mathbb{{E}}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bigg\{\Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\Big]^{2} +\Big[\eta_{k}^{[\delta]T}(QC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\Big]^{2}\bigg\} \\ &\leq 2\alpha^{2}(mM)^3\mathcal{L}\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[ \|PC_*\|^{2}_{\infty}\|\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\|^{2}_{\infty} \bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\|QC_*\|^{2}_{\infty}\|\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})\|^{2}_{\infty} \eta_{k}^{[\delta]T}\eta_{k}^{[\delta]}\Big]\\ &\leq 2\alpha^{2}(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\}\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\eta_{k}^{[\delta]T}\eta_{k}^{[\delta]} \Big], \end{aligned} (3.3)

    for all k\in\mathbb{Z}_0. Suppose that

    ( c_3 ) Constants \alpha, \alpha_* satisfy 0 < 2\alpha(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\} < \alpha_*.

    According to (3.3) and assumption ( c_3 ), it yields

    \begin{aligned} \mathbb{E}\big[\Delta V_{0, k}\big] & = \frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k+1}-\gamma)^{2} -\frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k}-\gamma)^{2}\\ & = \frac{1}{\alpha}\mathbb{{E}}({\boldsymbol\gamma}_{k+1}-{\boldsymbol\gamma}_{k}) ({\boldsymbol\gamma}_{k+1}+{\boldsymbol\gamma}_{k}-2\gamma)\\ & = \frac{1}{\alpha}\mathbb{{E}}\Upsilon^{2}_{k}- \frac{2}{\alpha}\mathbb{{E}}\big[({\boldsymbol\gamma}_{k}-\gamma)\Upsilon_{k}\big]\\ &\leq \alpha_*\mathbb{{E}} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \Big[\bar{ \mathbf{e}}_{k}^{[\delta]T}\bar{ \mathbf{e}}_{k}^{[\delta]} +\eta_{k}^{[\delta]T}\eta_{k}^{[\delta]} \Big]-2\mathbb{{E}}\sum\limits_{\delta = 1}^{\mathcal{L}-1}({\boldsymbol\gamma}_{k}-\gamma) \big[\bar{ \mathbf{e}}_{k}^{[\delta]T}(PC_*)_{\otimes m} \\ &\;\;\;\;+\eta_{k}^{[\delta]T}(QC_*)_{\otimes m}\big]\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.4)

    Remark 3.1. In the designation of adaptive updated law (3.1), it is dependent of the value of \eta_{k}^{[\delta]} = \bar{\mathbf{e}}_{k+1}^{[\delta]}-\bar{\mathbf{e}}_{k}^{[\delta]} , namely, the value of \bar{\mathbf{e}} at time k+1 . If the current time is k , by the iterative relationship (3.1), the states' values of the response network (2.2) at time k+1 can be determined by the whole relative values at time k or before the time k , and so are the states' values of the response network (2.3).

    Remark 3.2. In the construction of adaptation rules for continuous CDNs ([44,45,46]), it was observed that all of them were not involved with the term \eta_{k}^{[\delta]} . In other words, it was ascertained that the second term on the righthand side of \Upsilon_{k} in (3.1) does not exist. Why? The rationale will be expounded in the ensuing discourse on heterogeneous anti-synchronization. The calculations of inequalities (3.3) and (3.4) demonstrate that the presence of term \eta_{k}^{[\delta]} greatly increases the complexity and difficulty of the current research.

    Remark 3.3. In the studies of nonidentical CDNs [10,11,12,13,14], nobody designs the adaptive updated rule such as Eq (3.1), so the concept of quasi-synchronization was proposed and researched. In this article, an adaptive parameter with updated rule Eq (3.1) has been designed to perform the complete MSAAS for the drive-response CDNs (2.3) and (2.2).

    The boundary controlling input is designed by

    \begin{equation} \bar{\xi}_{k} = -\sum\limits_{\delta = 1}^{\mathcal{L}-1}(\Pi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0, \end{equation} (3.5)

    where \Pi\in\mathbb{R}^{M\times M} represents the controlling gain.

    Theorem 3.1. Let assumptions (c_1) (c_3) hold, \mathrm{det}(A)\neq0 , \mathrm{det}(C)\neq0 , \varepsilon\in(0, 1) , and the updated law for adaptive parameter {\boldsymbol\gamma} and the boundary controlling input be designed as those in (3.1) and (3.5), respectively. Suppose further that

    ( c_4 ) \mathbb{E}{\boldsymbol\gamma}_0^2 < \infty and |\gamma|\leq \gamma_* , where \gamma_* is a known constant.

    ( c_5 ) There exist matrices P > 0 , Q > 0 , R > 0 , \Phi > 0 , \mho > 0 and positive numbers \alpha_*, d_1, d_2, d_3 so that

    \begin{array}{c} -2{P}C_*A+\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mho+\frac{\mu_{\mathcal{L}-1}}{\hbar^2} R < 0, \\ \Omega_{}: = \begin{bmatrix} \Omega_{11}^{}&\Omega_{12}^{}&0&({Q}C_*A)_{\otimes m}&0&0&({Q}C_*)_{\otimes m}\\[0.25cm] *&\Omega_{22}^{}&-\frac{1}{\hbar}(\Phi)_{\otimes m}&0&0&0&(PC_*)_{\otimes m}\\[0.25cm] *&*&-(\mho)_{\otimes m}&0&0&0&0\\[0.25cm] *&*&*&-(R)_{\otimes m}&0&0&0\\[0.25cm] *&*&*&*&\Omega_{55}^{}&0&0\\[0.25cm] *&*&*&*&*&\Omega_{66}^{}&0\\[0.25cm] *&*&*&*&*&*&-(d_3I)_{\otimes m} \end{bmatrix} < 0, \end{array}

    where

    \begin{array}{c} \Omega_{11}^{} = (\alpha_*I)_{\otimes m}-(2-\varepsilon-\varepsilon\gamma_*^2)({Q})_{\otimes m} +(P)_{\otimes m}, \quad \Omega_{12} = [{Q}(e^{Ch}-I)]_{\otimes m}, \\ \Omega_{22} = (\alpha_*I)_{\otimes m}-\frac{2}{\hbar}(\Phi)_{\otimes m}+\varepsilon\gamma_*^2 (P)_{\otimes m}+d_1(L_f)_{\otimes m} \\ +2\Big[P(e^{Ch}-I)\Big]_{\otimes m} +d_2p^2(L_\sigma)_{\otimes m} +d_3p\sum\limits_{l = 1}^pc_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}}, \\ \Omega_{55} = -(d_1I)_{\otimes m}+\frac{1}{\varepsilon} (C_*^TPC_*)_{\otimes m}+\frac{1}{\varepsilon} (C_*^TQC_*)_{\otimes m}, \\ \Omega_{66} = -(d_2I)_{\otimes m}+\frac{1}{\varepsilon} (C_*^T{Q}C_*)_{\otimes m}. \end{array}

    Then, the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3) in the mean squared sense, and \mathbb{E}|{\boldsymbol\gamma}_k-\gamma|^2\rightarrow0 as k\rightarrow \infty . Moreover, the controlling gain \Pi = \big[{P}C_*A\big]^{-1}\Phi.

    Proof. Taking \alpha fulfills assumption ( c_3 ). Based on the Lyapunov-Krasovskii functional as before and the error networks (2.4), it attains

    \begin{aligned} \mathbb{E}[\Delta V_{1, k}]& = \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k+1}^{[\delta]T} (P)_{\otimes m} \bar{\mathbf{e}}_{k+1}^{[\delta]}-\mathbb{E}[V_{1, k}]\nonumber\\ & = \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} (\eta_{k}^{[\delta]T}+\bar{\mathbf{e}}_{k}^{[\delta]T}) (P)_{\otimes m}(\eta_{k}^{[\delta]}+\bar{\mathbf{e}}_{k}^{[\delta]}) -\mathbb{E}[V_{1, k}]\nonumber\\ & = \underbrace{\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]}}_{\mathtt{£}_{k}} +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]} }_{\Lambda_{1, k}}, \end{aligned} (3.6)

    where

    \begin{aligned}\Lambda_{1, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} {} \bar{\mathbf{e}}_{k}^{[\delta]T}(P)_{\otimes m}\eta_{k}^{[\delta]}\nonumber\\ & = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} \Big[P(e^{Ch}-I)\Big]_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}{} \bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]}}_{\Lambda_{2, k}} \nonumber\\ &+\underbrace{2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \gamma\bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})}_{\Theta_{1, k}} \nonumber\\ &+2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} \nonumber\\ &+2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\delta]T} ({\boldsymbol\gamma}_{k}-\gamma)(PC_*)_{\otimes m} \mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}), \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.7)

    Via the discrete formula of integration by parts and boundary values in (2.5), it computes

    \begin{aligned} \Lambda_{2, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]} \nonumber\\ & = \frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta-1]}\bigg|_{1}^{\mathcal{L}} -2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}{}\Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]} \nonumber\\ & = \underbrace{\frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A)_{\otimes m} \bar{\xi}_{k}}_{\aleph_k} -2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} ({P}C_*A)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]}, \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.8)

    Define \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} = \bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[\delta]} , \forall (\delta, k)\in [0, \mathcal{L}]_{\mathbb{Z}}\times \mathbb{Z}_0 . It should be noted that

    \hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]} = 0, \quad \hat{\bar{\mathbf{e}}}_{k}^{[1]} = \bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[1]}, \quad \forall k\in\mathbb{Z}_0.

    Together with the discrete Wirtinger's inequalities in item (ii) of Lemma 2.1, it results in

    \begin{aligned} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]} & = \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\hat{\bar{\mathbf{e}}}_{k}^{[\delta]} \nonumber\\ &\geq \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\frac{1}{\hbar^2}\mathbb{E} (\hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]T}+\hat{\bar{\mathbf{e}}}_{k}^{[1]T}) (\mho)_{\otimes m} (\hat{\bar{\mathbf{e}}}_{k}^{[\mathcal{L}]}+\hat{\bar{\mathbf{e}}}_{k}^{[1]}) \nonumber\\ & = \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\frac{1}{\hbar^2}\mathbb{E} (\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T}-\bar{\mathbf{e}}_{k}^{[1]T}) (\mho)_{\otimes m} (\bar{\mathbf{e}}_{k}^{[\mathcal{L}]}-\bar{\mathbf{e}}_{k}^{[1]}) \nonumber\\ & = \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -\mathbb{E} \left(\sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T}\right) (\mho)_{\otimes m} \left(\sum\limits_{\delta = 1}^{\mathcal{L}-1}\Delta_{\hbar}{\bar{\mathbf{e}}}_{k}^{[\delta]}\right) \nonumber\\ &\geq \frac{\chi_\mathcal{L}}{\hbar^2} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} -(\mathcal{L}-1) \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}{\bar{\mathbf{e}}}_{k}^{[\delta]}, \end{aligned}

    which indicates

    \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]T} (\mho)_{\otimes m} \hat{\bar{\mathbf{e}}}_{k}^{[\delta]} \leq\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_\hbar\bar{\mathbf{e}}_{k}^{[\delta]T} (\mho)_{\otimes m} \Delta_{\hbar}\bar{\mathbf{e}}_{k}^{[\delta]}, \quad \forall k\in\mathbb{Z}_0. (3.9)

    According to the error CDNs (2.4), it gets

    \begin{aligned} \eta_{k}^{[\delta]} = &(e^{Ch}-I)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} +(C_*)_{\otimes m} \bigg[(A)_{\otimes m}\Delta_{\hbar}^{2}\bar{ \mathbf{e}}_{k}^{[\delta-1]} \\ &+\gamma\tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) +({\boldsymbol\gamma}_k-\gamma)\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]}) +\sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} +\sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\bigg], \end{aligned} (3.10)

    where (\delta, k)\in(0, \mathcal{L})\times\mathbb{Z}_0 . It induces from (3.10) that

    \begin{aligned} 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} = &2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} [{Q}(e^{Ch}-I)]_{\otimes m} \bar{\mathbf{e}}_{k}^{[\delta]} \nonumber \\& +2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*A)_{\otimes m} \Delta_{\hbar}^2\bar{\mathbf{e}}_{k}^{[\delta-1]} \nonumber \\& +\underbrace{ 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\gamma \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})}_{\Theta_{2, k}} \nonumber\\ & +2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^pc_l(\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}({\boldsymbol\gamma}_k-\gamma) \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m}\mathbf{F}_{\otimes}( \mathbf{w}_{k}^{[\delta]})}_{¶_{k}} \nonumber\\ & +\underbrace{2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)}_{\Lambda_{4, k}}, \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.11)

    According to the elementary inequality in Lemma 1.13 of [52], i.e., 2X^TY\leq \varepsilon X^TX+\frac{1}{\varepsilon}Y^TY for any X, Y\in\mathbb{R}^{mM} and \varepsilon > 0 , it generates

    \begin{aligned} \Theta_{1, k}& = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \gamma\bar{\mathbf{e}}_{k}^{[\delta]T} (PC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})\\ &\leq \varepsilon\gamma_*^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{\mathbf{e}}_{k}^{[\delta]T} (P)_{\otimes m}\bar{\mathbf{e}}_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) (C_*^TPC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \end{aligned} (3.12)

    and, similarly,

    \begin{aligned} \Theta_{2, k}& = 2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\gamma \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]})\\ &\leq \varepsilon\gamma_*^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} (Q)_{\otimes m}\eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) (C_*^TQC_*)_{\otimes m} \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \quad \forall k\in\mathbb{Z}_0. \end{aligned} (3.13)

    From (3.11), we have

    \begin{aligned} \Lambda_{4, k}& = 2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \nonumber\\ &\leq \varepsilon \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\big[\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\big]^T (C_*^T{Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \nonumber\\ & = \varepsilon\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \eta_{k}^{[\delta]T} ({Q})_{\otimes m} \eta_{k}^{[\delta]} +\frac{1}{\varepsilon}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^T\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) (C_*^T{Q}C_*)_{\otimes m} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big), \end{aligned} (3.14)

    where k\in\mathbb{Z}_0 . In (3.14), note that \Delta_hw_{k} is independent of \bar{ \mathbf{e}}_{s}^{[\cdot]} for all s\leq k , and we use the fact of \mathbb{E}(\Delta_hw_{\cdot})^2 = 1 .

    In terms of assumption ( c_2 ), it deduces

    \begin{equation} d_1\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \tilde{\mathbf{F}}_{\otimes}^T(\bar{ \mathbf{e}}_{k}^{[\delta]}) \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) \leq\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k} d_1(L_f)_{\otimes m} \bar{ \mathbf{e}}_{k}^{[\delta]}, \end{equation} (3.15)
    \begin{equation} d_2\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^T\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big) \leq d_2p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{equation} (3.16)
    \begin{aligned} &d_3\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \sum\limits_{l = 1}^p\Big[c_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}\big]^T \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}\\ \leq&d_3p\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}}c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{aligned} (3.17)

    where k\in\mathbb{Z}_0. Based on the definition of V_{2, k} , we have

    \begin{aligned} \mathbb{E}[\Delta V_{2, k}]& = \mathbb{E}V_{2, k+1}-\mathbb{E}V_{2, k} \nonumber\\ & = d_2p^2\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k}^{[\delta]} \\&\;\;\;\;+d_3p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}^{[\delta]T}_{k}\sum\limits_{l = 1}^p c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k}^{[\delta]} \nonumber\\ &\;\;\;\;-d_2p\mathbb{E} \sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}} (L_\sigma)_{\otimes m} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]} \\&\;\;\;\;-d_3p\mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\sum\limits_{l = 1}^p \bar{ \mathbf{e}}^{[\delta]T}_{k-\tau_{l}}c_l^2 (\mathbf{\Gamma}_l^T)_{\otimes G_{l}^T}(\mathbf{\Gamma}_l)_{\otimes G_{l}} \bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}, \end{aligned} (3.18)

    where k\in\mathbb{Z}_0 .

    From Lemma 2.1, we have

    \begin{aligned} \mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[l-1]T} (R)_{\otimes m} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta-1]} &\leq \mathbb{E}{}\sum\limits_{\delta = 0}^{\mathcal{L}-2} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta]T} (R)_{\otimes m} \Delta_{\hbar}^2\bar{{ \mathbf{e}}}_{k}^{[\delta]} \nonumber\\ &\leq\frac{\mu_{\mathcal{L}-1}}{\hbar^2}\mathbb{E}{}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \Delta_{\hbar}\bar{{ \mathbf{e}}}_{k}^{[\delta]T} (R)_{\otimes m} \Delta_{\hbar}\bar{{ \mathbf{e}}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.19)

    In view of (3.8) and by boundary input (3.5), it has

    \begin{aligned} \aleph_{k} & = \frac{2}{\hbar}\mathbb{E}\bar{\mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A)_{\otimes m} \bar{\xi}_{k}\\ & = -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\mathcal{L}]T} ({P}C_*A\Pi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}\\ & = -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \hat{\bar{ \mathbf{e}}}_{k}^{[\delta]T} (\Phi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} -\frac{2}{\hbar} \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{k}^{[\delta]T} (\Phi)_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0. \end{aligned} (3.20)

    Set

    \tilde{\Omega} = \left[ \begin{array}{cc} \Omega & 0 \\ 0 & -2{P}C_*A+\frac{\mathcal{L}\hbar^2}{\chi_{\mathcal{L}}} \mho+\frac{\mu_{\mathcal{L}-1}}{\hbar^2} R \\ \end{array} \right].

    On the grounds of (3.4), (3.6)–(3.20), and assumption ( c_5 ), it induces \tilde{\Omega} < 0 and

    \mathbb{E}[\Delta V_{k}]\leq\mathbb{E} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \mathcal{H}_{k}^{[\delta]T} \tilde{\Omega} \mathcal{H}_{k}^{[\delta]}, \quad\forall k\in\mathbb{Z}_0,

    where

    \mathcal{H}_{k}^{[\delta]} = \bigg[ \eta_{k}^{[\delta]}, \bar{ \mathbf{e}}_{k}^{[\delta]}, \hat{\bar{ \mathbf{e}}}_{k}^{[\delta]}, \Delta^2_\hbar\bar{ \mathbf{e}}_{k}^{[\delta-1]}, \tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}), \sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big), \sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]}, \Delta_\hbar\bar{ \mathbf{e}}_{k}^{[\delta]}\bigg]^T

    for any (\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0. Obviously,

    \begin{array}{c} \sum\limits_{j = 0}^{k-1}\mathbb{E}[\Delta V_{j}]\leq \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \mathcal{H}_{j}^{[\delta]T} \Omega \mathcal{H}_{j}^{[\delta]} \leq \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \Omega \bar{ \mathbf{e}}_{j}^{[\delta]} \leq \lambda_\Omega^+\mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \bar{ \mathbf{e}}_{j}^{[\delta]}\\ \Rightarrow \mathbb{E}\sum\limits_{j = 0}^{k-1} \sum\limits_{\delta = 1}^{\mathcal{L}-1} \bar{ \mathbf{e}}_{j}^{[\delta]T} \bar{ \mathbf{e}}_{j}^{[\delta]} \leq \frac{1}{\lambda_\Omega^+}\sum\limits_{j = 0}^{k-1}\mathbb{E}[\Delta V_{j}] \leq -\frac{1}{\lambda_\Omega^+}\mathbb{E}V_0 < \infty, \end{array}

    which implies

    \mathbb{E}\sum\limits_{\delta = 1}^{\mathcal{L}-1}\bar{ \mathbf{e}}_{k}^{[\delta] T} \bar{ \mathbf{e}}_{k}^{[\delta]}\rightarrow0,

    as k\rightarrow \infty. Hereby, \lambda_\Omega^+ denotes the maximum eigenvalue of \Omega . According to boundary information in (3.5), it exists constant M_1 > 0 so that

    \begin{equation} \|\bar{ \mathbf{e}}_{k}^{[\mathcal{L}]}\|^2 \leq M_1\sum\limits_{\delta = 1}^{\mathcal{L}-1}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2, \quad\forall k\in\mathbb{Z}_0. \end{equation} (3.21)

    Additionally,

    \begin{equation} \|\bar{ \mathbf{e}}_{k}^{[0]}\|^2 = \|\bar{ \mathbf{e}}_{k}^{[1]}\|^2 \leq \sum\limits_{\delta = 1}^{\mathcal{L}-1}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2, \quad\forall k\in\mathbb{Z}_0. \end{equation} (3.22)

    Together with (3.21) and (3.22), it causes

    \sum\limits_{\delta = 0}^{\mathcal{L}}\|\bar{ \mathbf{e}}_{k}^{[\delta]}\|^2 \rightarrow0, \text{ as}\; k\rightarrow \infty.

    Videlicet, the error CDNs (2.4) achieves global asymptotic stability in the mean squared sense. To wit, the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3). Based on the error CDNs (2.4) and the same discussions in [52, Theorem 4.20], it directly gains {\boldsymbol\gamma}_k\rightarrow \gamma, as k\rightarrow \infty. This achieves the proof.

    If {\boldsymbol\gamma}_k\equiv\gamma for all k\in\mathbb{Z}_0 , then the error CDNs (2.4) is transformed into

    \begin{aligned} \bar{ \mathbf{e}}_{k+1}^{[\delta]}& = (e^{Ch})_{\otimes m}\bar{ \mathbf{e}}_{k}^{[\delta]} +\big[(e^{Ch}-I)C^{-1}\big]_{\otimes m} \bigg[(A)_{\otimes m}\Delta_{\hbar}^{2}\bar{ \mathbf{e}}_{k}^{[\delta-1]} \\ &\;\;\;\;+\gamma\tilde{\mathbf{F}}_{\otimes}(\bar{ \mathbf{e}}_{k}^{[\delta]}) +\sum\limits_{l = 1}^pc_l (\mathbf{\Gamma}_l)_{\otimes G_{l}}\bar{ \mathbf{e}}_{k-\tau_l}^{[\delta]} +\sum\limits_{l = 1}^p\tilde{\sigma}_{\otimes}^w\big(\bar{ \mathbf{e}}_{k-\tau_{l}}^{[\delta]}\big)\bigg], \end{aligned} (3.23)

    where (\delta, k)\in(0, \mathcal{L})_{\mathbb{Z}}\times\mathbb{Z}_0.

    By a similar proof to Theorem 3.1, we can gain the corollary below.

    Corollary 3.1. Let assumptions (c_1) (c_3) hold, \mathrm{det}(A)\neq0 , \mathrm{det}(C)\neq0 , \varepsilon\in(0, 1) , and the boundary input be designed as that in (3.5). Assume that

    ( c_6 ) {\boldsymbol\gamma}_k\equiv\gamma for all k\in\mathbb{Z}_0 .

    ( c_7 ) Assumption ( c_5 ) is valid with \alpha_* = 0 .

    Furthermore, the controlling gain is designed as before. Then, the response CDNs (2.2) asymptotically anti-synchronizes the drive CDNs (2.3) in the mean squared sense.

    According to Theorem 3.1, a realizable algorithm for adaptive anti-synchronization of the drive-response CDNs (2.2) and (2.3) is designed as follows.

    Remark 3.4. Discrete-time CDNs have been the focus of the authors' previous works [9,15,35,36,37]. This article deals with discrete-time CDNs with discrete spatial diffusion. The associated calculations, such as the Lyapunov-Krasovskii functional, are more complex than the case of a single time-variable. In this paper, we present a boundary feedback controller for discrete-time and spatial CDNs, whereas previous reports [9,15,35,36,37] have used a traditional feedback controller for CDNs. Previous studies [9,15,35,36,37] have focused on homogeneous CDNs, whereas this article examines heterogeneous CDNs.

    Remark 3.5. Previous publications [10,11,12,13,14] have examined continuous-time heterogeneous networks. In contrast, this article addresses the following aspects: 1) The paper considers the issue of discrete space transportation networks, taking into account their heterogeneity. 2) It achieves mean squared asymptotic anti-synchronization for the networks, which differs significantly from the quasi-synchronization discussed in previous publications [10,11,12,13,14]. 3) The response networks in these publications [10,11,12,13,14] have a predetermined heterogeneous coefficient. We have designed an adaptive parameter in the response networks that tends to drive-response CDNs homogeneously by continuously adjusting it according to the updated law. At this moment, the adaptive parameter in the response CDNs can perfectly identify the unknown parameter in the drive CDNs according to the updated law.

    Supposing the drive CDNs are expressed by

    \begin{aligned} \mathbf{z}_{k+1}^{[\delta]}& = e^{Ch} \mathbf{z}_{k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{z}_{k}^{[\delta-1]} +\gamma\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{z}_{1, k}^{[\delta]}) \\ \sin( \mathbf{z}_{2, k}^{[\delta]})\\ \end{array} \right] \\ &\;\;\;\;+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{z}_{1, k-1}^{[\delta]}}{1+| \mathbf{z}_{2, k-1}^{[\delta]}|} \\ \frac{ \mathbf{z}_{2, k-2}^{[\delta]}}{1+| \mathbf{z}_{1, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} -\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \quad\forall (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0, \end{aligned} (4.1)

    where \mathbf{z} = \left[\begin{array}{c} \mathbf{z}_1 \\ \mathbf{z}_2 \\ \end{array} \right], C = -\left[\begin{array}{cc} 8 & 0 \\ 8 & 24 \\ \end{array} \right], h = 0.01, \hbar = 0.25 , \gamma = 0.1 . The boundary values of the drive CDNs (4.1) are given by \Delta_{\hbar} \mathbf{z}_{k}^{[0]} = \Delta_{\hbar} \mathbf{z}_{k}^{[5]} = 0, \forall k\in\mathbb{Z}_0. The response CDNs of the drive CDNs (4.1) are described as

    \begin{equation} \left\{ \begin{array}{lll} \mathbf{w}_{1, k+1}^{[\delta]}& = &e^{Ch} \mathbf{w}_{1, k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{w}_{1, k}^{[\delta-1]} +\tilde{\gamma}_k\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \end{array} \right] \\ && -0.5 \mathbf{\Gamma}_1 \mathbf{w}_{1, k-1}^{[\delta]}+0.5 \mathbf{\Gamma}_1 \mathbf{w}_{2, k-1}^{[\delta]} -0.8 \mathbf{\Gamma}_2 \mathbf{w}_{1, k-2}^{[\delta]}+0.8 \mathbf{\Gamma}_2 \mathbf{w}_{2, k-2}^{[\delta]} \\ &&+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{w}_{11, k-1}^{[\delta]}}{1+| \mathbf{w}_{12, k-1}^{[\delta]}|} \\ \frac{ \mathbf{w}_{12, k-2}^{[\delta]}}{1+| \mathbf{w}_{11, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} +\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \\[0.8em] \mathbf{w}_{2, k+1}^{[\delta]}& = &e^{Ch} \mathbf{w}_{2, k}^{[\delta]}+ (e^{Ch}-I)C^{-1} \Bigg\{0.1\Delta^{2}_{\hbar} \mathbf{w}_{2, k}^{[\delta-1]} +\tilde{\gamma}_k\left[ \begin{array}{cc} 0.3 & 0 \\ 0 & 0.1 \\ \end{array} \right]\left[ \begin{array}{c} \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right] \\ && -0.5 \mathbf{\Gamma}_1 \mathbf{w}_{1, k-1}^{[\delta]}+0.5 \mathbf{\Gamma}_1 \mathbf{w}_{2, k-1}^{[\delta]} -0.8 \mathbf{\Gamma}_2 \mathbf{w}_{1, k-2}^{[\delta]}+0.8 \mathbf{\Gamma}_2 \mathbf{w}_{2, k-2}^{[\delta]} \\ &&+\left[ \begin{array}{cc} 0.1 & 0.1 \\ 0.5 & 0.5 \\ \end{array} \right] \left[ \begin{array}{c} \frac{ \mathbf{w}_{21, k-1}^{[\delta]}}{1+| \mathbf{w}_{22, k-1}^{[\delta]}|} \\ \frac{ \mathbf{w}_{22, k-2}^{[\delta]}}{1+| \mathbf{w}_{21, k-2}^{[\delta]}|} \\ \end{array} \right]\Delta_hw_{k} +\left[ \begin{array}{c} 5.2027 \\ 5.6240 \\ \end{array} \right] \Bigg\}, \end{array} \right. \end{equation} (4.2)

    where (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0, \tilde{\gamma}_0 = 0 ,

    \mathbf{w}_1 = \left[ \begin{array}{c} \mathbf{w}_{11} \\ \mathbf{w}_{12} \\ \end{array} \right], \quad \mathbf{w}_2 = \left[ \begin{array}{c} \mathbf{w}_{21} \\ \mathbf{w}_{22} \\ \end{array} \right], \quad \mathbf{\Gamma}_1 = \left[ \begin{array}{cc} 0 & -0.2 \\ 0.7 & 0 \\ \end{array} \right], \quad \mathbf{\Gamma}_2 = \left[ \begin{array}{cc} 0 & 0.5 \\ -0.3 & 0 \\ \end{array} \right].

    The boundary values of the response CDNs (4.2) are given by \Delta_{\delta} \mathbf{w}_{1, k}^{[0]} = \Delta_{\delta} \mathbf{w}_{2, k}^{[0]} = 0 , \Delta_{\delta} \mathbf{w}_{1, k}^{[5]} = \xi_{1, k} , \Delta_{\delta} \mathbf{w}_{2, k}^{[5]} = \xi_{2, k} , \forall k\in\mathbb{Z}_0.

    According to the information above and Algorithm 1, a flow diagram of achieving the adaptive anti-synchronization of the drive-response CDNs (4.1) and (4.2) is drawn in Figure 3.

    Algorithm 1 Adaptive anti-synchronization of the drive-response CDNs (2.2) and (2.3)
    ( a_1 ) Initialing the values of the coefficients to the drive-response CDNs (2.2) and (2.3) and the value of parameter \varepsilon\in(0, 1).
    ( a_2 ) Computing LMIs in Theorem 3.1. If it is unviable, modify the values of in step ( a_1 ); otherwise, switch to next step.
    ( a_3 ) Receiving the values of \alpha_* and m-order matrices in assumption ( c_5 ). Calculating the controlling gain defined in ( c_5 ) and determining the boundary input in (3.5).
    ( a_4 ) Take \alpha to satisfy 0 < 2\alpha(mM)^3\mathbf{F}_0^2\mathcal{L}\max\{\|PC_*\|^{2}_{\infty}, \|QC_*\|^{2}_{\infty}\} < \alpha_* and calculate the updated law (3.1) of the unknown parameter \gamma.
    ( a_5 ) Write the iterative program based on the drive-response CDNs (2.2) and (2.3) and plot the response trajectories.

    Figure 3.  Flow diagram of achieving the adaptive anti-synchronization.

    Obviously, ( c_1 )–( c_2 ) in Theorem 3.1 hold. Taking \varepsilon = 0.5 , \gamma_* = 0.2 and computing the LMIs in Theorem 3.1, the LMIs in ( c_5 ) are valid for \alpha_* = 1.5763 , d_1 = 29.0039 , d_2 = 9.1156 , d_3 = 10.6818 ,

    \begin{array}{c} P = \left[ \begin{array}{cc} 1229.1121& 33.1733\\ 33.1733 &603.1577 \\ \end{array} \right], \quad Q = \left[ \begin{array}{cc} 1149.4085 &38.0849\\ 38.0849& 655.5776\\ \end{array} \right], \\ R = \left[ \begin{array}{cc} 0.0204& 0.0006\\ 0.0006 &0.0103\\ \end{array} \right], \quad \Phi = \left[ \begin{array}{cc} 0.3385& 0.0492\\ 0.0492 &0.2912\\ \end{array} \right], \quad \mho = \left[ \begin{array}{cc} 0.6374 &-0.0027\\ -0.0027& 0.2390\\ \end{array} \right]. \end{array}

    Further, taking \alpha in ( c_3 ) small enough, it is easy to ensure that ( c_3 ) is satisfied.

    So, the gain and controller are determined as

    \begin{array}{c} \Pi = \left[ \begin{array}{cc} 0.2847 & 0.0281\\ 0.0863 & 0.5425\\ \end{array} \right], \\ \left[ \begin{array}{c} \xi_{1, k} \\ \xi_{2, k} \\ \end{array} \right] = -\sum\limits_{\delta = 1}^{5}\left[ \begin{array}{cccc} 0.2847 & 0.0281&0&0\\ 0.0863 & 0.5425&0&0\\ 0 & 0&0.2847&0.0281\\ 0 & 0&0.0863&0.5425\\ \end{array} \right]\left[ \begin{array}{c} \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right], \end{array}

    where \mathbf{e}_{11, k}^{[\delta]} = \mathbf{w}_{11, k}^{[\delta]}+ \mathbf{z}_{1, k}^{[\delta]} , \mathbf{e}_{12, k}^{[\delta]} = \mathbf{w}_{12, k}^{[\delta]}+ \mathbf{z}_{2, k}^{[\delta]} , \mathbf{e}_{21, k}^{[\delta]} = \mathbf{w}_{21, k}^{[\delta]}+ \mathbf{z}_{1, k}^{[\delta]} , \mathbf{e}_{22, k}^{[\delta]} = \mathbf{w}_{22, k}^{[\delta]}+ \mathbf{z}_{2, k}^{[\delta]} , (\delta, k)\in(0, 6)_{\mathbb{Z}}\times\mathbb{Z}_0. The update law for the adaptive parameter \tilde{\gamma}_k is outlined as

    \begin{aligned} \tilde{\gamma}_{k+1}& = \tilde{\gamma}_k -0.01 \sum\limits_{\delta = 1}^{5}\left[ \begin{array}{c} \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right]^T \left[ \begin{array}{cccc} 11.8004 & 0.2949&0&0\\ 0.1017 & 5.3624&0&0\\ 0 & 0&11.8004 & 0.2949\\ 0 & 0&0.1017 & 5.3624\\ \end{array} \right] \left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right] \\&\;\;\;-0.01 \sum\limits_{\delta = 1}^{5}\left[ \begin{array}{c} \mathbf{e}_{11, k+1}^{[\delta]}- \mathbf{e}_{11, k}^{[\delta]} \\ \mathbf{e}_{12, k+1}^{[\delta]}- \mathbf{e}_{12, k}^{[\delta]} \\ \mathbf{e}_{21, k+1}^{[\delta]}- \mathbf{e}_{21, k}^{[\delta]} \\ \mathbf{e}_{22, k+1}^{[\delta]}- \mathbf{e}_{22, k}^{[\delta]} \\ \end{array} \right]^T \left[ \begin{array}{cccc} 11.0326 & 0.3386&0&0\\ 0.1300 & 5.8284&0&0\\ 0 & 0&11.0326 & 0.3386\\ 0 & 0&0.1300 & 5.8284\\ \end{array} \right] \left[ \begin{array}{c} \sin( \mathbf{w}_{11, k}^{[\delta]}) \\ \sin( \mathbf{w}_{12, k}^{[\delta]})\\ \sin( \mathbf{w}_{21, k}^{[\delta]}) \\ \sin( \mathbf{w}_{22, k}^{[\delta]})\\ \end{array} \right], \end{aligned} (4.3)

    where the initial value is \tilde{\gamma}_{0} = 0 , k\in\mathbb{Z}_+ . Apparently, ( c_4 ) holds. In sum, all assumptions in Theorem 3.1 are valid. By Theorem 3.1, the response CDNs (4.2) asymptotically inversely synchronizes the drive CDNs (4.1); please see Figures 419.

    Figure 4.  3D anti-synchronization of states \mathbf{w}_{11} and \mathbf{z}_{1} .
    Figure 5.  The error of states {\mathbf {w}}_{11} and {\mathbf {z}}_{1} in 3D space.
    Figure 6.  3D anti-synchronization of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} .
    Figure 7.  The error of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} in 3D space.
    Figure 8.  3D anti-synchronization of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} .
    Figure 9.  The error of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} in 3D space.
    Figure 10.  3D asymptotical anti-synchronization of states {\mathbf {w}}_{22} and {\mathbf {z}}_{2} .
    Figure 11.  The error of states \mathbf{w}_{22} and \mathbf{z}_{2} in 3D space.
    Figure 12.  2D anti-synchronization of states \mathbf{w}_{11} and \mathbf{z}_{1} .
    Figure 13.  The error of states {\mathbf {w}}_{11} and {\mathbf {z}}_{1} in 2D space.
    Figure 14.  2D anti-synchronization of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} .
    Figure 15.  The error of states {\mathbf {w}}_{12} and {\mathbf {z}}_{2} in 2D space.
    Figure 16.  2D anti-synchronization of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} .
    Figure 17.  The error of states {\mathbf {w}}_{21} and {\mathbf {z}}_{1} in 2D space.
    Figure 18.  2D anti-synchronization of states {\mathbf {w}}_{22} and {\mathbf {z}}_{2} .
    Figure 19.  The error of states \mathbf{w}_{22} and \mathbf{z}_{2} in 2D space.

    In Figures 411, we picture the 3-dimensional asymptotical anti-synchronization of the drive-response CDNs (4.1) and (4.2). Specifically, by taking the space variable \delta = 3 , we also show the trajectories of the errors between the drive-response CDNs (4.1) and (4.2) in the 2-dimensional space; see Figures 1219. Finally, based upon the update law (4.3) for adaptive parameter \tilde{\gamma}_k , we give a variational curve in Figure 20, which tends to \gamma = 0.1 over time.

    Figure 20.  The variation of adaptive parameter \tilde{\gamma} .

    In the first place, by using mixed approaches of Euler time-difference and finite central space-difference, we consider a delayed multivariable discrete stochastic transportation networks with unknown parameter. In the second place, based on the theory of matrix, the compact drive-response nonidentical stochastic transportation networks with the adaptive parameter are built. Via the method of the Lyapunov-Krasovskii functional and the designation of the update law for the unknown parameter in the response networks, the article performs the mean squared asymptotic anti-synchronization for the drive-response nonidentical stochastic transportation networks. Besides, by designing an adaptive parameter updated rule, the adaptive parameter in the response networks can achieve the accuracy identification to the unknown information in the drive networks. The current work establishes a theory of the problem of asymptotic anti-synchronization for the drive-response nonidentical stochastic transportation networks under the framework of space-time discrete schemes.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Scientific Research Funds of Educational Department of Yunnan Province under Grant No. 2024J1169.

    The authors declare there is no conflicts of interest.



    [1] Acemoglu D, Autor D, Dorn D, et al. (2014) Return of the solow paradox? It, productivity, and employment in US Manufacturing. Am Econ Rev 104: 394–399. https://doi.org/10.1257/aer.104.5.394 doi: 10.1257/aer.104.5.394
    [2] Acemoglu D, Restrepo P (2019) Artificial intelligence, automation and work. In: Agrawal, A., Gans, J., Goldfarb, A., (eds), The Economics of Artificial Intelligence: An Agenda, University of Chicago Press, 197–236. https://doi.org/10.7208/chicago/9780226613475.003.0008
    [3] Acemoglu D, Restrepo P (2018) The race between man and machine: implications of technology for growth, factor shares, and employment. Am Econ Rev 108: 1488–1542. https://doi.org/10.1257/aer.20160696 doi: 10.1257/aer.20160696
    [4] Aghion P, Blundell RW, Griffith R, et al. (2009) The effects of entry on incumbent innovation and productivity. Rev Econ Stat 91: 20–32. https://doi.org/10.1162/rest.91.1.20 doi: 10.1162/rest.91.1.20
    [5] Aghion P, Howitt P (1992) A model of growth through creative destruction. Econometrica 60: 323–351.
    [6] Alrowwad A, Abualooush SH, Masa'Deh R (2020) Innovation and intellectual capital as intermediary variables among transformational leadership, transactional leadership, and organizational performance. J Manag Dev 39: 196–222. https://doi.org/10.1108/JMD-02-2019-0062 doi: 10.1108/JMD-02-2019-0062
    [7] Brynjolfsson E, Rock D, Syverson C (2019) Artificial intelligence and the modern productivity paradox: a clash of expectations and statistics. In: Agrawal, A., Gans, J., Goldfarb, A., (eds), The Economics of Artificial Intelligence: An Agenda, University of Chicago Press, 23–60. https://doi.org/10.7208/chicago/9780226613475.003.0001
    [8] Cao J, Law SH, Samad ARBA, et al. (2022) Effect of financial development and technological innovation on green growth-analysis based on spatial durbin model. J Clean Prod 365. https://doi.org/10.1016/j.jclepro.2022.132865 doi: 10.1016/j.jclepro.2022.132865
    [9] Chang L, Taghizadeh-Hesary F, Mohsin M (2023) Role of artificial intelligence on green economic development: joint determinates of natural resources and green total factor productivity. Resour Policy 82. https://doi.org/10.1016/j.resourpol.2023.103508 doi: 10.1016/j.resourpol.2023.103508
    [10] Dong F, Hu MY, Gao YJ, et al. (2022) How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci Total Environ 852. https://doi.org/10.1016/j.scitotenv.2022.158401 doi: 10.1016/j.scitotenv.2022.158401
    [11] Galor O, Moav O (2002) Natural selection and the origin of economic growth. Q J Econ 117: 1133–1191. https://doi.org/10.1162/003355302320935007 doi: 10.1162/003355302320935007
    [12] Ge P, Liu T, Huang X (2023) The effects and drivers of green financial reform in promoting environmentally-biased technological progress. J Environ Manage 339. https://doi.org/10.1016/j.jenvman.2023.117915. doi: 10.1016/j.jenvman.2023.117915
    [13] Graetz G, Michaels G (2015) Robots at work: the impact on productivity and jobs. Centre for Economic Performance, LSE.
    [14] Hopenhayn HA (2014) Firms, misallocation, and aggregate productivity: a review. Annu Rev Econom 6: 735–770. https://doi.org/10.1146/annurev-economics-082912-110223 doi: 10.1146/annurev-economics-082912-110223
    [15] Jiang J, Su P, Ge Z (2021) The high-and new-technology enterprise identification, marketization process and the total factor productivity of enterprise. Kybernetes 50: 528–549. https://doi.org/10.1108/K-11-2019-0743 doi: 10.1108/K-11-2019-0743
    [16] Jiang W, Li P (2022) Ai and tfp: "technology dividend" or "technology gap". J Stat Inform 37:26–35.
    [17] Kijek A, Kijek T (2020) Nonlinear effects of human capital and r & d on tfp: evidence from european regions. Sustainability 12. https://doi.org/10.3390/su12051808 doi: 10.3390/su12051808
    [18] Lee H, Yang SA, Kim K (2019) The role of fintech in mitigating information friction in supply chain finance. Asian Development Bank Economics Working Paper Series. http://dx.doi.org/10.22617/WPS190574-2 doi: 10.22617/WPS190574-2
    [19] Lei Z, Wang D (2023) Digital transformation and total factor productivity: empirical evidence from china. Plos One 18. https://doi.org/10.1371/journal.pone.0292972 doi: 10.1371/journal.pone.0292972
    [20] Lewbel A (1997) Constructing instruments for regressions with measurement error when no additional data are available, with an application to patents and r & d. Econometrica, 1201–1213.
    [21] Liang S, Dong Q (2023) Management's macroeconomic cognition and corporate default risk. J Quant Technol Econ 40:200–220.
    [22] Lin B, Zhu J (2019) The role of renewable energy technological innovation on climate change: empirical evidence from china. Sci Total Environ 659: 1505–1512. https://doi.org/10.1016/j.scitotenv.2018.12.449 doi: 10.1016/j.scitotenv.2018.12.449
    [23] Liu J, Chang H, Forrest JY, et al. (2020) Influence of artificial intelligence on technological innovation: evidence from the panel data of china's manufacturing sectors. Technol Forecast Soc 158. https://doi.org/10.1016/j.techfore.2020.120142 doi: 10.1016/j.techfore.2020.120142
    [24] Meng T, Yu D, Ye L, et al. (2023) Impact of digital city competitiveness on total factor productivity in the commercial circulation industry: evidence from china's emerging first-tier cities. Humanit Soc Sci Commun 10. https://doi.org/10.1057/s41599-023-02390-7 doi: 10.1057/s41599-023-02390-7
    [25] Nordhaus WD (2021) Are we approaching an economic singularity? Information technology and the future of economic growth. Am Econ J Macroecon 13: 299–332. https://doi.org/10.1257/mac.20170105 doi: 10.1257/mac.20170105
    [26] Pan W, He Z, Pan H (2021) Research on spatiotemporal evolution and distribution dynamics of digital economy development in china. China Soft Sci 10: 137–147.
    [27] Pan X, Chu J, Tian M, et al. (2022) Non-linear effects of outward foreign direct investment on total factor energy efficiency in china. Energy 239. https://doi.org/10.1016/j.energy.2021.122293 doi: 10.1016/j.energy.2021.122293
    [28] Ren XH, Zeng GD, Gozgor G (2023) How does digital finance affect industrial structure upgrading? Evidence from chinese prefecture-level cities. J Environ Manage 330. https://doi.org/10.1016/j.jenvman.2022.117125 doi: 10.1016/j.jenvman.2022.117125
    [29] Ren Y, Liu Y, Li H (2023) Artificial intelligence technology innovationand enterprise total factor productivity. Bus Manag J 45: 50–60.
    [30] Song W, Mao H, Han X (2021) The two-sided effects of foreign direct investment on carbon emissions performance in china. Sci Total Environ 791. https://doi.org/10.1016/j.scitotenv.2021.148331 doi: 10.1016/j.scitotenv.2021.148331
    [31] Tang C, Xu YY, Hao Y, et al. (2021) What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for china. Energ Econ 103. https://doi.org/10.1016/j.eneco.2021.105576 doi: 10.1016/j.eneco.2021.105576
    [32] Tang S, Lai X, Huang R (2019) How can fintech innovation affect tfp: facilitating or inhibiting? theoretical analysis framework and regional practice. China Soft Sci 7: 134–144.
    [33] Tang S, Wu X, Zhu J (2020) Digital Finance and Enterprise Technology Innovation: Structural Feature, Mechanism Identification and Effect Difference under Financial Supervision. Manag World 36: 52–66.
    [34] Valli V, Saccone D (2009) Structural change and economic development in china and india. Eur J Comp Econ 6
    [35] Wang CG, Liu TS, Zhu Y, et al. (2022) Digital economy, environmental regulation and corporate green technology innovation: evidence from china. Int J Env Res Pub He 19. https://doi.org/10.3390/ijerph192114084. doi: 10.3390/ijerph192114084
    [36] Wang KL, Sun TT, Xu RY, et al. (2023) The impact of artificial intelligence on total factor productivity: empirical evidence from china's manufacturing enterprises. Econ Change Restruct 56: 1113–1146. https://doi.org/10.1007/s10644-022-09467-4 doi: 10.1007/s10644-022-09467-4
    [37] Wang X, Fan G (2000) Sustainability of china's economic growth. Economic Science Press, Shanghai.
    [38] Wang X, Hu L, Fan G (2021) Marketization index of china's provinces:neri report 2021. Social Sciences Academic Press (China).
    [39] Wang Z, Han C, Zhu W (2022) Research on the impact of digital finance development on complexity of export technology. World Econ Stud 8: 26–42.
    [40] Xiong J, Chen L (2022) Dialect diversity and total factor productivity: evidence from chinese listed companies. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1017397 doi: 10.3389/fpsyg.2022.1017397
    [41] Yan Z, Zou B, Du K, Li K (2020) Do renewable energy technology innovations promote china's green productivity growth? Fresh evidence from partially linear functional-coefficient models. Energ Econ 90. https://doi.org/10.1016/j.eneco.2020.104842 doi: 10.1016/j.eneco.2020.104842
    [42] Yao S, Zhang S, Zhang X (2019) Renewable energy, carbon emission and economic growth: a revised environmental kuznets curve perspective. J Clean Prod 235: 1338–1352. https://doi.org/10.1016/j.jclepro.2019.07.069 doi: 10.1016/j.jclepro.2019.07.069
    [43] You J, Xiao H (2022) Can fdi facilitate green total factor productivity in china? Evidence from regional diversity. Environ Sci Pollut R 29: 49309–49321. https://doi.org/10.1007/s11356-021-18059-0 doi: 10.1007/s11356-021-18059-0
    [44] Zeng S, Shu X, Ye W (2022) Total factor productivity and high-quality economic development: a theoretical and empirical analysis of the yangtze river economic belt, china. Int J Env Res Pub He 19. https://doi.org/10.3390/ijerph19052783 doi: 10.3390/ijerph19052783
    [45] Zhai S, Liu Z (2023) Artificial intelligence technology innovation and firm productivity: evidence from china. Financ Res Lett 58. https://doi.org/10.1016/j.frl.2023.104437 doi: 10.1016/j.frl.2023.104437
    [46] Zhang B, Sun X (2015) Total factor productivity of economic growth. Journal of Ocean University of China (Social Sciences), 73–78.
    [47] Zhang J, Wu G, Peng J (2004) The estimation of china's provincial capital stock: 1952–2000. Economic Research Journal, 33–44.
    [48] Zheng W, Walsh PP (2019) Economic growth, urbanization and energy consumption - a provincial level analysis of china. Energ Econ 80: 153–162. https://doi.org/10.1016/j.eneco.2019.01.004 doi: 10.1016/j.eneco.2019.01.004
    [49] Zhou C, Sun Z, Qi S, et al. (2023) Green credit guideline and enterprise export green-sophistication. J Environ Manage 336. https://doi.org/10.1016/j.jenvman.2023.117648 doi: 10.1016/j.jenvman.2023.117648
    [50] Zou S, Liao Z, Fan X (2024) The impact of the digital economy on urban total factor productivity: mechanisms and spatial spillover effects. Sci Rep-Uk 14: 396. https://doi.org/10.1038/s41598-023-49915-3 doi: 10.1038/s41598-023-49915-3
  • This article has been cited by:

    1. Attilio Cavezzi, Roberto Menicagli, Emidio Troiani, Salvatore Corrao, COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis, 2022, 11, 2046-1402, 102, 10.12688/f1000research.108667.1
    2. Attilio Cavezzi, Roberto Menicagli, Emidio Troiani, Salvatore Corrao, COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis, 2022, 11, 2046-1402, 102, 10.12688/f1000research.108667.2
    3. Lisa Oh, Ajit Varki, Xi Chen, Lee-Ping Wang, SARS-CoV-2 and MERS-CoV Spike Protein Binding Studies Support Stable Mimic of Bound 9-O-Acetylated Sialic Acids, 2022, 27, 1420-3049, 5322, 10.3390/molecules27165322
    4. Tanushree Das, Chaitali Mukhopadhyay, Comparison and Possible Binding Orientations of SARS-CoV-2 Spike N-Terminal Domain for Gangliosides GM3 and GM1, 2023, 127, 1520-6106, 6940, 10.1021/acs.jpcb.3c02286
    5. Wen-Yu Hsieh, Chu-Nien Yu, Chang-Chang Chen, Chun-Tang Chiou, Brian D. Green, Oscar K. Lee, Chia-Chune Wu, Ly Hien Doan, Chi-Ying F. Huang, Cheng Huang, Chien-Ju Liu, Yu-Hsin Chen, Jing-Jy Cheng, Heng-Chih Pan, Hui-Kang Liu, Evaluating the antiviral efficacy and specificity of chlorogenic acid and related herbal extracts against SARS-CoV-2 variants via spike protein binding intervention, 2024, 22254110, 10.1016/j.jtcme.2024.11.009
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2916) PDF downloads(207) Cited by(4)

Figures and Tables

Figures(1)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog