Citation: Rui Xie, Yuanyuan Zhao, Liming Chen. Structural path analysis and its applications: literature review[J]. National Accounting Review, 2020, 2(1): 83-94. doi: 10.3934/NAR.2020005
[1] | Abel Cabrera-Martínez, Andrea Conchado Peiró . On the {2}-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599 |
[2] | Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643 |
[3] | Yubin Zhong, Sakander Hayat, Suliman Khan, Vito Napolitano, Mohammed J. F. Alenazi . Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity. AIMS Mathematics, 2025, 10(6): 13343-13364. doi: 10.3934/math.2025599 |
[4] | Shumin Zhang, Tianxia Jia, Minhui Li . Partial domination of network modelling. AIMS Mathematics, 2023, 8(10): 24225-24232. doi: 10.3934/math.20231235 |
[5] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[6] | Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397 |
[7] | Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217 |
[8] | Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707 |
[9] | Huiqin Jiang, Pu Wu, Jingzhong Zhang, Yongsheng Rao . Upper paired domination in graphs. AIMS Mathematics, 2022, 7(1): 1185-1197. doi: 10.3934/math.2022069 |
[10] | Ahlam Almulhim . Signed double Italian domination. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580 |
Multilevel programming deals with decision-making situations in which decision makers are arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming containing three planner, occurs in a variety of applications such as planning [6,7], security and accident management [1,18], supply chain management [14,17], economics, [10] and decentralized inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to optimize his objective function, chooses values for the variables that he controls. Next, the second-level planner in attempting to optimize his objective function while considering the reactions of the third-level planner chooses values for the variables that he controls. Lastly, the third-level planner, with regard to the decisions made by the previous levels, optimizes his own objective function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and have proposed some procedures to solve it. Some algorithms are proposed based on penalty method [16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme points of constraint region [19] to find the exact optimal solution to special classes of trilevel programming problem. In addition, because of the complexity of solving trilevel problems especially for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic approaches [8,15] to find good approximate solutions for these problems. For a good bibliography of the solution approaches to solve trilevel programming problems, the interested reader can refer to [11].
The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP problem have been stated and proven. It ought to be mentioned that despite the similarity of some presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then, a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of objective functions in both the second level and third level which is not considered in the proposed Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm is capable of giving more accurate solutions.
The organization of the paper is as follows. Basic definitions concerning LTLP problem that we shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section 5. Ultimately, the paper is concluded with Section 6.
As it is mentioned before, we consider the linear trilevel programming problem which can be formulated as follows:
minx1∈X1f1(x1,x2,x3)=3∑j=1αT1jxjs.t3∑j=1A1jxj≤b1where x2,x3 solve:minx2∈X2f2(x1,x2,x3)=3∑j=1αT2jxjs.t3∑j=1A2jxj≤b2where x3 solves:minx3∈X3f3(x1,x2,x3)=3∑j=1αT3jxjs.t3∑j=1A3jxj≤b3 | (2.1) |
where
In this section, we state some definitions and notations about the LTLP problem.
● Constraint region:
● Constraint region for middle and bottom level, for fixed
● Feasible set for the level 3, for fixed
● Rational reaction set for level 3, for fixed
● Feasible set for level 2, for fixed
● Rational reaction set for level 2, for fixed
● Inducible region :
In the above definitions, the term
Definition 2.1. A point
Definition 2.2. A feasible point
In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve the following problem:
min{f1(x1,x2,x3):(x1,x2,x3)∈IR}. | (2.2) |
In this section, we will demonstrate some geometric properties of the problem (2.1). Let
Assumption 3.1.
Assumption 3.2.
Assumption 3.3.
Note that by Assumption 3.1, we can conclude that
Example 3.1.
maxx1x1+10x2−2x3+x4s.t0≤x1≤1maxx2,x3x2+2x3s.tx2+x3≤x10≤x2,x3≤1x4=0maxx4x4s.tx4≤x3x4≤1−x3 |
In this example, we have
Ψ3(x1,x2,x3)={x3 if 0≤x3≤12,1−x3 if 12≤x3≤1. |
Then,
and
Ψ2(x1)=argmax{x2+2x3:(x2,x3,x4)∈Ω2(x1)} | (3.1) |
It is clear that if
Ψ2(x1)={(x1,0,0) if0≤x1<1(0,1,0) ifx1=1 |
It is evident that
Lemma 3.1. Let
Proof. It follows from
minx2≥03∑j=2αT2jxjs.t3∑j=2A2jxj≤b2−A21ˉx1where x3 solves:minx3≥03∑j=2αT3jxjs.t3∑j=2A3jxj≤b3−A31ˉx1 | (3.2) |
By Theorem 5.2.2 of [3] we conclude that
Since
Thus, it can be concluded that
Corollary 3.1. Let
Proof. The statement is immediately derived from the fact that
Theorem 3.1. Let
Proof. Let
Moreover, we can choose
Besides, for all
Consequently, from Corollary 3.1, it can be concluded that:
In addition,
Eventually,
If we repeat the process, we can construct from
Therefore, we approach point
Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of S that are not necessarily connected.
Corollary 3.3. If
Proof. Notice that the problem (2.2) can be written equivalently as
min{f1(x1,x2,x3):(x1,x2,x3)∈conv IR} | (3.3) |
where conv
Through the above results, it has been demonstrated that there exists at least a vertex of
In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified algorithm takes into account LTLP problems with unbounded middle and bottom level problems. These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:
The Algorithm
Step 1. Initialization: Set
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be
min{f1(x1,x2,x3):(x1,x2,x3)∈S} | (4.1) |
Step 3. Solve the following problem.
min{αT3 3x3:x3∈Ω3(x[k]1,x[k]2)}. | (4.2) |
If the problem (4.2) is unbounded go to step 7, else let
Step 4. If
Step 5. Solve the following problem.
min{αT2 2x2+αT2 3x3:(x2,x3)∈S2(x[k]1),x3=x[k]3}. | (4.3) |
If problem (4.3) is unbounded go to step 7, else let
Step 6. If
Step 7. Set
Step 8. If
Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.
Remark 4.1. It is clear that if
Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.
Proof. Let
It is worth mentioning that, by omitting the examined extreme points from
To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are solved according to the outline indicated in the previous section.
Example 5.1. Consider the following LTLP problem:
minx12x1+2x2+5x3x1≤8x2≤5 where x2,x3 solve:maxx26x1+x2−3x3x1+x2≤8x1+4x2≥87x1−2x2≥0 where x3 solves:minx32x1+x2−2x35x1+5x2+14x3≤40x1,x2,x3≥0 |
In this example, we have
Ψ2(x1)={(72x1,114(40−452x1)):815≤x1≤169}∪{(8−x1,0):169≤x1≤8}. |
It is clear that for
Actually,
which is disconnected. This fact shows that despite the continuity of
By Corollary 3.3, an optimal solution of the above example occurs at the point
To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
4.
Iteration 2
1.
2.
3.
4.
Iteration 3
1.
2.
3.
4. The point
As demonstrated in the solving process of this problem, although the number of iterations and the optimal solution found by the two algorithms are the same, the number of optimization problems needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of computations in each iteration of the modified Kth-Best algorithm is less than that of the corresponding iteration in the Kth-Best algorithm..
The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an erroneous result.
Example 5.2.
minxf1(x,y,z)=−x−4z+2ywhere y, z soleve:s.tminyf2(x,y,z)=3y−2zwhere z solves:s.tminzf3(x,y,z)=2z−ys.tx+y+z≤20≤x,y,z≤1 |
In this example, we have
The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 :
Therefore,
Iteration 2 :
Iteration 7 :
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
Iteration 2
1.
2.
3.
Continuing this method, at iteration 4 we get:
Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for some fixed values of upper and middle-level variables, is not considered as a constraint for the second level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting it in the problem (4.3).
Example 5.3.
minx1x1−4x2+2x3−x1−x2≤−3−3x1+2x2−x3≥−10where x2,x3 solve:minx2x1+x2−x3−2x1+x2−2x3≤−12x1+x2+4x3≤14where x3 solves:minx3x1−2x2−2x32x1−x2−x3≤2x1,x2,x3≥0 | (5.1) |
The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 2
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 3
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 4
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 5
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 6
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 7
1.
2. The bottom level problem corresponding to
.
4.
5.
Iteration 8
1.
2. The bottom level problem corresponding to
4.
5. There is no optimal solution.
In the above example, the constraint region is a bounded polyhedron. Let
minx3x1−2x2−2x32x1−x2−x3≤2x1=x∗1 , x2=x∗2 , x3≥0 | (5.2) |
It is easy to see that the problem (5.2) is unbounded. Therefore,
In this study, the linear trilevel programming problem whereby each planner has his (her) own constraints, was considered. Some geometric properties of the inducible region were discussed. Under certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the union of some non-empty faces of the constraint region
The authors declare no conflict of interest in this paper.
[1] |
Acquaye AA, Wiedmann T, Feng K, et al. (2011) Identification of 'carbon hot-spots' and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis. Environ Sci Technol 45: 2471-2478. doi: 10.1021/es103410q
![]() |
[2] |
Aroche-Reyes F (2003) A qualitative input-output method to find basic economic structures. Pap Regional Sci 82: 581-590. doi: 10.1007/s10110-003-0149-z
![]() |
[3] | Castaño A, Lufin M, Atienza M (2019) A structural path analysis of Chilean mining linkages between 1995 and 2011. What are the channels through which extractive activity affects the economy? Resour Policy 60: 106-117. |
[4] |
Defourny J, Thorbecke E (1984) Structural path analysis and multiplier decomposition within a social accounting matrix framework. Econ J 94: 111-136. doi: 10.2307/2232220
![]() |
[5] |
do Amaral JF, Dias J, Lopes JC (2007) Complexity as interdependence in input-output systems. Environ Planning A 39: 1770-1782. doi: 10.1068/a38214
![]() |
[6] |
Gui S, Mu H, Li N (2014) Analysis of impact factors on China's CO2 emissions from the view of supply chain paths. Energy 74: 405-416. doi: 10.1016/j.energy.2014.06.116
![]() |
[7] |
Gunluk-Senesen G, Kaya T, Senesen U (2018) Promoting investment in the Turkish construction sector: a structural path analysis. Econ Syst Res 30:422-438. doi: 10.1080/09535314.2018.1477739
![]() |
[8] |
Hong J, Shen GQ, Li CZ, et al. (2018) An integrated framework for embodied energy quantification of buildings in China: A multi-regional perspective. Resour Conserv Recycl 138: 183-193. doi: 10.1016/j.resconrec.2018.06.016
![]() |
[9] |
Hong J, Shen Q, Xue F (2016) A multi-regional structural path analysis of the energy supply chain in China's construction industry. Energy Policy 92: 56-68. doi: 10.1016/j.enpol.2016.01.017
![]() |
[10] |
Huang YA, Lenzen M, Weber CL, et al. (2009) The role of input-output analysis for the screening of corporate carbon footprints. Econ Syst Res 21: 217-242. doi: 10.1080/09535310903541348
![]() |
[11] |
Itoh H (2016) Understanding of economic spillover mechanism by structural path analysis: a case study of interregional social accounting matrix focused on institutional sectors in Japan. J Econ Struct 5: 22. doi: 10.1186/s40008-016-0052-9
![]() |
[12] |
Kanemoto K, Moran D, Lenzen M, et al. (2014) International trade undermines national emission reduction targets: New evidence from air pollution. Global Environ Change 24: 52-59. doi: 10.1016/j.gloenvcha.2013.09.008
![]() |
[13] |
Lenzen M (2002) A guide for compiling inventories in hybrid life-cycle assessments: some Australian results. J Cleaner Prod 10: 545-572. doi: 10.1016/S0959-6526(02)00007-0
![]() |
[14] |
Lenzen M (2003) Environmentally important paths, linkages and key sectors in the Australian economy. Struct Change Econ Dyn 14: 1-34. doi: 10.1016/S0954-349X(02)00025-5
![]() |
[15] |
Lenzen M (2007) Structural path analysis of ecosystem networks. Ecol Model 200: 334-342. doi: 10.1016/j.ecolmodel.2006.07.041
![]() |
[16] |
Lenzen M, Murray J (2010) Conceptualising environmental responsibility. Ecol Econ 70: 261-270. doi: 10.1016/j.ecolecon.2010.04.005
![]() |
[17] |
Li Y, Su B, Dasgupta S (2018) Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks. Energy Econ 76: 457-469. doi: 10.1016/j.eneco.2018.10.029
![]() |
[18] |
Liang S, Qu S, Xu M (2016) Betweenness-based method to identify critical transmission sectors for supply chain environmental pressure mitigation. Environ Sci Technol 50: 1330-1337. doi: 10.1021/acs.est.5b04855
![]() |
[19] |
Liang S, Wang Y, Zhang T, et al. (2017) Structural analysis of material flows in China based on physical and monetary input-output models. J Cleaner Prod 158: 209-217. doi: 10.1016/j.jclepro.2017.04.171
![]() |
[20] |
Llop M, Ponce-Alifonso X (2015) Identifying the role of final consumption in structural path analysis: an application to water uses. Ecol Econ 109: 203-210. doi: 10.1016/j.ecolecon.2014.11.011
![]() |
[21] | Mattila T (2012) Any sustainable decoupling in the Finnish economy? A comparison of the pathways and sensitivities of GDP and ecological footprint 2002-2005. Ecol Indic 16: 128-134. |
[22] | Meng J, Liu J, Xu Y, et al. (2015) Tracing Primary PM2.5 emissions via Chinese supply chains. Environ Res Lett 10: 054005. |
[23] |
Mo W, Zhang Q, Mihelcic JR, et al. (2011) Embodied energy comparison of surface water and groundwater supply options. Water Res 45: 5577-5586. doi: 10.1016/j.watres.2011.08.016
![]() |
[24] |
Muñiz ASG (2013) Input-output research in structural equivalence: Extracting paths and similarities. Econ Model 31: 796-803. doi: 10.1016/j.econmod.2013.01.016
![]() |
[25] | Ngandu S, Garcia AF, Arndt C (2010) The economic influence of infrastructural expenditure in South Africa: A multiplier and structural path analysis. |
[26] |
Oshita Y (2012) Identifying critical supply chain paths that drive changes in CO2 emissions. Energy Econ 34: 1041-1050. doi: 10.1016/j.eneco.2011.08.013
![]() |
[27] | Oshita Y, Kikuchi Y, OSHITA Y (2014) Flow analysis on products of agriculture, forestry, fisheries industry using structural path analysis. In Proc. 22nd Int. Input-Output Conference. |
[28] |
Owen A, Scott K, Barrett J (2018) Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Appl Energy 210: 632-642. doi: 10.1016/j.apenergy.2017.09.069
![]() |
[29] |
Owen A, Wood R, Barrett J, et al. (2016) Explaining value chain differences in MRIO databases through structural path decomposition. Econ Syst Res 28: 243-272. doi: 10.1080/09535314.2015.1135309
![]() |
[30] |
Peng J, Xie R, Lai M (2018) Energy-related CO2 emissions in the China's iron and steel industry: a global supply chain analysis. Resour Conserv Recycl 129: 392-401. doi: 10.1016/j.resconrec.2016.09.019
![]() |
[31] |
Peters GP, Hertwich EG (2006) Structural analysis of international trade: Environmental impacts of Norway. Econ Syst Res 18: 155-181. doi: 10.1080/09535310600653008
![]() |
[32] | Qu X, Meng J, Sun X, et al. (2017) Demand-driven primary energy requirements by Chinese economy 2012. In 8th International conference on applied energy (ICAE2016), Elsevier, 105: 3132-3137. |
[33] |
Seung CK (2016) Identifying channels of economic impacts: An inter-regional structural path analysis for Alaska fisheries. Marine Policy 66: 39-49. doi: 10.1016/j.marpol.2016.01.015
![]() |
[34] |
Shao L, Li Y, Feng K, et al. (2018) Carbon emission imbalances and the structural paths of Chinese regions. Appl Energy 215: 396-404. doi: 10.1016/j.apenergy.2018.01.090
![]() |
[35] |
Sonis M, Hewings GJ (1998) Economic complexity as network complication: Multiregional input-output structural path analysis. Ann Reg Sci 32: 407-436. doi: 10.1007/s001680050081
![]() |
[36] |
Sonis M, Hewings GJ, Sulistyowati S (1997) Block structural path analysis: applications to structural changes in the Indonesian economy. Econ Syst Res 9: 265-280. doi: 10.1080/09535319700000020
![]() |
[37] | Thorbecke E (2017) Social accounting matrices and social accounting analysis, In Methods interregional and regional analysis, Routledge, 281-332. |
[38] |
Tian Y, Xiong S, Ma X, et al. (2018) Structural path decomposition of carbon emission: A study of China's manufacturing industry. J Cleaner Prod 193: 563-574. doi: 10.1016/j.jclepro.2018.05.047
![]() |
[39] |
Treloar GJ (1997) Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method. Econ Syst Res 9: 375-391. doi: 10.1080/09535319700000032
![]() |
[40] |
Wang J, Du T, Wang H, et al. (2019) Identifying critical sectors and supply chain paths for the consumption of domestic resource extraction in China. Jo Cleaner Prod 208: 1577-1586. doi: 10.1016/j.jclepro.2018.10.151
![]() |
[41] |
Wang Z, Cui C, Peng S (2018) Critical sectors and paths for climate change mitigation within supply chain networks. J Environ Manage 226: 30-36. doi: 10.1016/j.jenvman.2018.08.018
![]() |
[42] |
Wang Z, Wei L, Niu B, et al. (2017) Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach. Appl Energy 206: 1544-1551. doi: 10.1016/j.apenergy.2017.09.108
![]() |
[43] |
Wilting HC, van Oorschot MM (2017) Quantifying biodiversity footprints of Dutch economic sectors: A global supply-chain analysis. J Cleaner Prod 156: 194-202. doi: 10.1016/j.jclepro.2017.04.066
![]() |
[44] | Wood R (2008) Spatial structural path analysis: Analysing the greenhouse impacts of trade substitution. In International Input-Output Meeting on Managing the Environment, 9-11. |
[45] |
Wood R, Lenzen M (2003) An application of a modified ecological footprint method and structural path analysis in a comparative institutional study. Local Environ 8: 365-386. doi: 10.1080/13549830306670
![]() |
[46] |
Wood R, Lenzen M (2009) Structural path decomposition. Energy Econ 31: 335-341. doi: 10.1016/j.eneco.2008.11.003
![]() |
[47] |
Wu F, Sun Z, Wang F, et al. (2018) Identification of the critical transmission sectors and typology of industrial water use for supply-chain water pressure mitigation. Resour Conserv Recycl 131: 305-312. doi: 10.1016/j.resconrec.2017.10.024
![]() |
[48] |
Yang X, Zhang W, Fan J, et al. (2018) The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002-2012. Environ Pollut 241: 172-181. doi: 10.1016/j.envpol.2018.05.052
![]() |
[49] |
Yang Z, Dong W, Xiu J, et al. (2015) Structural path analysis of fossil fuel based CO2 emissions: a case study for China. PloS one 10: e0135727. doi: 10.1371/journal.pone.0135727
![]() |
[50] |
Zhang B, Guan S, Wu X, et al. (2018) Tracing natural resource uses via China's supply chains. J Cleaner Product 196: 880-888. doi: 10.1016/j.jclepro.2018.06.109
![]() |
[51] |
Zhang B, Qu X, Meng J, et al. (2017) Identifying primary energy requirements in structural path analysis: a case study of China 2012. Appl Energy 191: 425-435. doi: 10.1016/j.apenergy.2017.01.066
![]() |
1. | Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663 |