
AIMS Public Health , 2020, 7(2): 306318. doi: 10.3934/publichealth.2020026
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID19) in Algeria
1 Department of Mathematics and Informatics, University center of Ain Temouchent, Algeria
2 Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, University of Tlemcen, Tlemcen 13000, Algeria
3 Graduate School of System Informatics, Kobe University, 11 Rokkodaicho, Nadaku, Kobe 6578501, Japan
Received: , Accepted: , Published:
Special Issues: Coronavirus disease 2019: Modeling, Control and Prediction
References
1. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc London Ser A 115: 700–721.
2. Bentout S, Touaoula TM (2016) Global analysis of an infection age model with a class of nonlinear incidence rates. J Math Anal Appl 434: 1211–1239.
3. Chekroun A, Frioui MN, Kuniya T, et al. (2020) Mathematical analysis of an age structured heroincocaine epidemic model. Discrete Contin Dyn Syst Ser B 25: 1–13.
4. Diekmann O, Heesterbeek J (2000) Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation. Wiley, New York.
5. Hattaf K, Yang Y (2018) Global dynamics of an agestructured viral infection model with general incidence function and absorption. Int J Biomath 11: 1–18.
6. Liu L, Wanga J, Liu X (2015) Global stability of an SEIR epidemic model with agedependent latency and relapse. Nonlinear Anal Real World Appl 24: 18–35.
7. Magal P, McCluskey CC, Webb GF (2010) Lyapunov functional and global asymptotic stability for an infectionage model. Appl Anal 89: 1109–1140.
8. Korobeinikov A (2004) Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math Med Biol 21: 75–83.
9. Korobeinikov A, Maini PK (2004) A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math Biosci Eng 1: 57–60.
10. Li MY, Graef JR, Wang L, et al. (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160: 191–213.
11. Li G, Jin Z (2005) Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period. Chaos Solitons Fractals 25: 1177–1184.
12. Li MY, Muldowney JS (1995) Global stability for the SEIR model in epidemiology. Math Biosci 12: 155–164.
13. Zhang J, Ma Z (2003) Global dynamics of an SEIR epidemic model with saturating contact rate. Math Biosci 185: 15–32.
14. WHO (2020) Coronavirus disease (COVID2019) situation reports. Available from: https://www.who.int/emergencies/diseases/novelcoronavirus2019/situationreports.
15. Rothe C, Schunk M, Sothmann P, et al. (2020) Transmission of 2019nCoV Infection from an Asymptomatic Contact in Germany. New Eng J 382: 970–971.
16. African Future (2020) Algerian health minister confirms first COVID19 case. Available from: https://africatimes.com/2020/02/25/algerianhealthministerconfirmsfirstcovid19case/.
17. COVID19 pandemic in Algeria (2020). Available from: https://fr.wikipedia.org/wiki/Pand%C3%A9mie_de_Covid19_en_Alg%C3%A9rie.
18. Epidemiological map (in Arabic and French) (2020) COVID19 Alg ´ erie  Evolution de la situation(in Arabic and French). Available from: http://covid19.sante.gov.dz/carte/.
19. Jia J, Ding J, Liu S, et al. (2020) Modeling the Control of COVID19: Impact of Policy Interventions and Meteorological Factors. Electron J Differ Equations 23: 1–24.
20. Kuniya T (2020) Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020. J Clin Med 9: 1–7.
21. Liu Y, Gayle A, Wilder Smith A, et al. (2020) The reproductive number of COVID19 is higher compared to SARS coronavirus. J Travel Med 27: 1–4.
22. Liu Z, Magal P, Seydi O, et al. (2020) Understanding Unreported Cases in the COVID19 Epidemic Outbreak in Wuhan, China, and the Importance of Major Public Health Interventions. Biology 9: 1–22.
23. Volpert V, Banerjee M, Petrovskii S (2020) On a quarantine model of coronavirus infection and data analysis. Math Model Nat Phenom 15: 1–6.
24. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382.
25. Van den Driessche P, Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48.
26. Sanche S, Lin YT, Xu C, et al. (2020) High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Diseases 26: 1–4.
27. Liu Y, Gayle AA, WilderSmith A, et al. (2020) The reproductive number of COVID19 is higher compared to SARS coronavirus. J Travel Med 27: 1–4.
28. Anderson RM, Heesterbeek H, Klinkenberg D, et al. (2020) How will countrybased mitigation measures influence the course of the COVID19 epidemic? Lancet 395: 931–934.
29. Zou L, Ruan F, Huang M, et al. (2020) SARSCoV2 viral load in upper respiratory specimens of infected patients. N Engl J Med.
30. Li Q, Guan X, Wu P, et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirusinfected pneumonia. N Engl J Med.
31. Office National des Statistiques (in French) (2020). Available from: http://www.ons.dz/Demographie.html.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)