-
AIMS Molecular Science, 2017, 4(2): 140-163. doi: 10.3934/molsci.2017.2.140.
Research article Topical Section
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Characterization and immobilization of engineered sialidases from Trypanosoma rangeli for transsialylation
1 Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2 Chemical and Environmental Engineering Group, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Madrid, Spain
† These two authors contributed equally.
Received: , Accepted: , Published:
Topical Section: Enzyme Activity and Immobilization
Keywords: Transsialylation; transsialidase; Trypanosoma rangeli; enzyme immobilization; casein glycomacropeptide (CGMP); GH33; human milk oligosaccharides (HMOs); galactooligosaccharides (GOS)
Citation: Birgitte Zeuner, Isabel González-Delgado, Jesper Holck, Gabriel Morales, María-José López-Muñoz, Yolanda Segura, Anne S. Meyer, Jørn Dalgaard Mikkelsen. Characterization and immobilization of engineered sialidases from Trypanosoma rangeli for transsialylation. AIMS Molecular Science, 2017, 4(2): 140-163. doi: 10.3934/molsci.2017.2.140
References:
-
1. Bode L (2012) Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22: 1147-1162.
- 2. Kunz C, Meyer C, Collado MC, et al. (2016) Influence of gestational age, secretor and Lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr in press.
- 3. ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, et al. (2014) Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr Rev 72: 377-389.
-
4. Holck J, Larsen DM, Michalak M, et al. (2014) Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnol 31: 156-165.
-
5. Wilbrink MH, ten Kate GA, van Leeuwen SS, et al. (2014) Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Appl Environ Microbiol 80: 5984-5991.
-
6. Wilbrink MH, ten Kate GA, Sanders P, et al. (2015) Enzymatic decoration of prebiotic galacto-oligosaccharides (Vivinal GOS) with sialic acid using Trypanosoma cruzi trans-sialidase and two bovine sialoglycoconjugates as donor substrates. J Agric Food Chem 63: 5976-5984.
- 7. Scudder P, Doom JP, Chuenkova M, et al. (1993) Enzymatic characterization of β-D-galactoside α2,3-transsialidase from Trypanosoma cruzi. J Biol Chem 268: 9886-9891.
- 8. Pereira ME, Zhang K, Gong Y, et al. (1996) Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect Immun 64: 3884-3892.
-
9. Paris G, Ratier L, Amaya MF, et al. (2005) A sialidase mutant displaying trans-sialidase activity. J Mol Biol 345: 923-934.
-
10. Jers C, Michalak M, Larsen DM, et al. (2014) Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One 9: e83902.
-
11. Pontes-de-Carvalho LC, Tomlinson S, Nussenzweig V (1993) Trypanosoma rangeli sialidase lacks trans-sialidase activity. Mol Biochem Parasitol 62: 19-25.
-
12. Amaya MF, Buschiazzo A, Nguyen T, et al. (2003) The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol 325: 773-784.
-
13. Buschiazzo A, Tavares GA, Campetella O, et al. (2000) Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 19: 16-24.
-
14. Pierdominici-Sottile G, Palma J, Roitberg AE (2014) Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins 82: 424-435.
-
15. Zeuner B, Luo J, Nyffenegger C, et al. (2014) Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Enzyme Microb Technol 55: 85-93.
-
16. Michalak M, Larsen DM, Jers C, et al. (2014) Biocatalytic production of 3′-sialyllactose by use of a modified sialidase with superior trans-sialidase activity. Process Biochem 49: 265-270.
- 17. Zeuner B, Holck J, Perna V, et al. (2016) Quantitative enzymatic production of sialylated galactooligosaccharides with an engineered sialidase from Trypanosoma rangeli. Enzyme Microb Technol 82: 42-50.
-
18. Nyffenegger C, Nordvang RT, Jers C, et al. (2017) Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. PLoS One 12: e0171585.
-
19. Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol 8: 4-16.
- 20. van Rantwijk F, Woudenberg-van Oosterom M, Sheldon RA (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B-Enzym 6: 511-532.
-
21. Hansson T, Andersson M, Wehtje E, et al. (2001) Influence of water activity on the competition between β-glycosidase catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme Microb Technol 29: 527-534.
-
22. Zeuner B, Jers C, Mikkelsen JD, et al. (2014) Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. J Agric Food Chem 62: 9615-9631.
- 23. Mateo C, Palomo JM, Fernandez-Lorente G, et al. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40: 1451-1463.
- 24. Rodrigues RC, Ortiz C., Berenguer-Murcia A, et al. (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42: 6290-6307.
-
25. Barbosa O, Ortiz C, Berenguer-Murcia A, et al. (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4: 1583-1600.
- 26. Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18: 247-251.
-
27. Mateo C, Abian O, Bernedo M, et al. (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol 37: 456-462.
-
28. Mateo C, Palomo JM, Fuentes M, et al. (2006) Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme Microb Technol 39: 274-280.
- 29. Barbosa O, Ortiz C, Berenguer-Murcia A, et al. (2015) Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol Adv 33: 435-456.
- 30. Zucca P, Fernandez-Lafuente R, Sanjust E (2016) Agarose and its derivatives as supports for enzyme immobilization. Molecules 21: 1577.
- 31. Calandri C, Marques DP, Mateo C, et al. (2013) Purification, immobilization, stabilization and characterization of commercial extract with β-galactosidase activity. J Biocatal Biotransformation 2: 1-7.
-
32. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas – benefits and challenges. Chem Soc Rev 42: 6277-6289.
-
33. Bernal C, Urrutia P, Illanes A, et al. (2013) Hierarchical meso-macroporous silica grafted with glyoxyl groups: opportunities for covalent immobilization of enzymes. New Biotechnol 30: 500-506.
-
34. Bernal C, Sierra L, Mesa M (2014) Design of β-galactosidase/silica biocatalysts: Impact of the enzyme properties and immobilization pathways on their catalytic performance. Eng Life Sci 14: 85-94.
-
35. González-Delgado I, Segura Y, Morales G, et al. (2017) Production of high galacto-oligosaccharides by Pectinex Ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J Agric Food Chem 65: 1649-1658.
-
36. Liu Y, Li Y, Li XM, et al. (2013) Kinetics of (3-aminopropyl)triethoxysilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29: 15275-15282.
- 37. Gunda NSK, Singh M, Norman L, et al. (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305: 522-530.
- 38. Zhang D, Hegab HE, Lvov Y, et al. (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. SpringerPlus 5: 48.
-
39. Nordvang RT, Nyffenegger C, Holck J, et al. (2016) It all starts with a sandwich: Identification of sialidases with trans-glycosylation activity. PLoS One 11: e0158434.
-
40. Alva V, Nam SZ, Söding J, et al. (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44: W410-W415.
-
41. Sayle R, Milner-White EJ (1995) RasMol: Biomolecular graphics for all. Trends Biochem Sci 20: 374-376.
-
42. Fersht AR, Serrano L (1993) Principles of protein stability derived from protein engineering experiments. Curr Opin Struct Biol 3: 75-83.
-
43. Torrez M, Schultehenrich M, Livesay DR (2003) Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces. Biophys J 85: 2845-2853.
-
44. Hagiwara Y, Sieverling L, Hanif F, et al. (2016) Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies. Sci Rep 6: 25182.
-
45. Lu Y, Zen KC, Muthukrishnan S, et al. (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32: 1369-1382.
- 46. Cha J, Batt CA (1998) Lowering the pH optimum of D-xylose isomerase: the effect of mutations of the negatively charged residues. Mol Cells 8: 374-382.
-
47. Joshi MD, Sidhu G, Pot I, et al. (2000) Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol 299: 255-279.
- 48. Hirata A, Adachi M, Sekine A, et al. (2004) Structural and enzymatic analysis of soybean β-amylase mutants with increased pH optimum. J Biol Chem 279: 7287-7295.
-
49. Amaya MF, Watts AG, Damager I, et al. (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12: 775-784.
- 50. Vandekerckhove F, Schenkman S, Pontes de Carvalho L, et al. (1992) Substrate specificity of the Trypanosoma cruzi trans-sialidase. Glycobiology 2: 541-548.
- 51. Bridiau N, Issaoui N, Maugard T (2010) The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol Prog 26: 1278-1289.
-
52. Thiem J, Sauerbrei B (1991) Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angew Chem Int Ed Engl 30: 1503-1505.
-
53. Ajisaka K, Fujimoto H, Isomura M (1994) Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydr Res 259: 103-115.
- 54. Marques ME, Mansur AAP, Mansur HS (2013) Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Appl Surf Sci 275: 347-360.
- 55. Ferreira L, Ramos MA, Dordick JS, et al. (2003) Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). J Mol Catal B-Enzym 21: 189-199.
-
56. Thomä-Worringer C, Sørensen J, López-Fandiño R (2006) Health effect and technological features of caseinomacropeptide. Int Dairy J 16:1324-1333.
- 57. Koshland D (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28: 416-436.
This article has been cited by:
- 1. Birgitte Zeuner, David Teze, Jan Muschiol, Anne S. Meyer, Synthesis of Human Milk Oligosaccharides: Protein Engineering Strategies for Improved Enzymatic Transglycosylation, Molecules, 2019, 24, 11, 2033, 10.3390/molecules24112033
Reader Comments
Copyright Info: 2017, Birgitte Zeuner, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *