Loading [MathJax]/jax/output/SVG/jax.js
Review Topical Sections

Androgen receptor and prostate cancer

  • Received: 22 April 2016 Accepted: 05 June 2016 Published: 25 January 2016
  • Androgens play a key role in the development and progression of prostate cancer, and androgen deprivation therapy (ADT) is the first line treatment for advanced disease. Although ADT is initially successful in controlling prostate cancer, many patients eventually become resistant to therapy and progress to develop lethal castration-resistant prostate cancer (CRPC). Androgens drive prostate cancer cell growth via the androgen receptor (AR), which is a transcription factor essential for prostate cancer cell viability, proliferation and invasion and has important roles in a range of signalling pathways. The progression to CRPC is thought to involve persistence of AR signalling and reprogramming of the AR transcriptional landscape to allow tumour cells to continue to grow despite low levels of circulating androgens. During this time AR activity can be maintained through activating mutations, gene amplification, AR splice variants or signalling crosstalk with other pathways. CRPC is highly aggressive and ultimately lethal, meaning there is an urgent need to understand the mechanisms that drive this form of the disease and to develop new therapeutic targets. This review discusses the role of the AR signalling in some of the many mechanisms and pathways that contribute to the development of prostate cancer and the progression to castrate resistant disease.

    Citation: Karen E. Livermore, Jennifer Munkley, David J. Elliott. Androgen receptor and prostate cancer[J]. AIMS Molecular Science, 2016, 3(2): 280-299. doi: 10.3934/molsci.2016.2.280

    Related Papers:

    [1] Joseph L. Shomberg . Well-posedness and global attractors for a non-isothermal viscous relaxationof nonlocal Cahn-Hilliard equations. AIMS Mathematics, 2016, 1(2): 102-136. doi: 10.3934/Math.2016.2.102
    [2] Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123
    [3] Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels . Distributed optimal control of a nonstandard nonlocal phase field system. AIMS Mathematics, 2016, 1(3): 225-260. doi: 10.3934/Math.2016.3.225
    [4] Dieunel DOR . On the modified of the one-dimensional Cahn-Hilliard equation with a source term. AIMS Mathematics, 2022, 7(8): 14672-14695. doi: 10.3934/math.2022807
    [5] Aymard Christbert Nimi, Daniel Moukoko . Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095
    [6] Martin Stoll, Hamdullah Yücel . Symmetric interior penalty Galerkin method for fractional-in-space phase-field equations. AIMS Mathematics, 2018, 3(1): 66-95. doi: 10.3934/Math.2018.1.66
    [7] Taishi Motoda . Time periodic solutions of Cahn-Hilliard systems with dynamic boundary conditions. AIMS Mathematics, 2018, 3(2): 263-287. doi: 10.3934/Math.2018.2.263
    [8] Mingliang Liao, Danxia Wang, Chenhui Zhang, Hongen Jia . The error analysis for the Cahn-Hilliard phase field model of two-phase incompressible flows with variable density. AIMS Mathematics, 2023, 8(12): 31158-31185. doi: 10.3934/math.20231595
    [9] Alain Miranville . The Cahn–Hilliard equation and some of its variants. AIMS Mathematics, 2017, 2(3): 479-544. doi: 10.3934/Math.2017.2.479
    [10] Scala Riccardo, Schimperna Giulio . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Mathematics, 2016, 1(1): 64-76. doi: 10.3934/Math.2016.1.64
  • Androgens play a key role in the development and progression of prostate cancer, and androgen deprivation therapy (ADT) is the first line treatment for advanced disease. Although ADT is initially successful in controlling prostate cancer, many patients eventually become resistant to therapy and progress to develop lethal castration-resistant prostate cancer (CRPC). Androgens drive prostate cancer cell growth via the androgen receptor (AR), which is a transcription factor essential for prostate cancer cell viability, proliferation and invasion and has important roles in a range of signalling pathways. The progression to CRPC is thought to involve persistence of AR signalling and reprogramming of the AR transcriptional landscape to allow tumour cells to continue to grow despite low levels of circulating androgens. During this time AR activity can be maintained through activating mutations, gene amplification, AR splice variants or signalling crosstalk with other pathways. CRPC is highly aggressive and ultimately lethal, meaning there is an urgent need to understand the mechanisms that drive this form of the disease and to develop new therapeutic targets. This review discusses the role of the AR signalling in some of the many mechanisms and pathways that contribute to the development of prostate cancer and the progression to castrate resistant disease.


    1. Introduction

    In recent years there has been an increased focus on the mathematical modelling and analysis of tumour growth. Many new models have been proposed and numerical simulations have been carried out to provide new and important insights on cancer research, see for instance [8] and [13, Chap. 3]. In this work we analyse a diffuse interface model proposed in [20], which models a mixture of tumour cells and healthy cells in the presence of an unspecified chemical species acting as a nutrient. More precisely, for a bounded domain $\Omega \subset {\mathbb{R}^d}$ where the cells reside and T > 0, we consider the following set of equations,

    $divv=ΓvinΩ×(0,T)=:Q,$ (1.1a)
    $v = - K(\nabla p - (\mu + \chi \sigma )\nabla \varphi ){\text{ in }}Q, $ (1.1b)
    ${\partial _t}\varphi + {\text{div}}(\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ (1.1c)
    $\mu = A\Psi '(\varphi ) - B\Delta \varphi - \chi \sigma {\text{ in }}Q, $ (1.1d)
    ${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )(D\nabla \sigma - \chi \nabla \varphi )) - \mathcal{S}{\text{ in }}Q.$ (1.1e)

    Here, ${v}$ denotes the volume-averaged velocity of the mixture, $p$ denotes the pressure, $\sigma$ denotes the concentration of the nutrient, $\varphi \in [-1, 1]$ denotes the difference in volume fractions, with $\{\varphi = 1\}$ representing the unmixed tumour tissue, and $\{\varphi = -1\}$ representing the surrounding healthy tissue, and $\mu$ denotes the chemical potential for $\varphi$.

    The model treats the tumour and healthy cells as inertia-less fluids, leading to the appearance of a Darcy-type subsystem with a source term $\Gamma_{{v}}$. The order parameter $\varphi$ satisfies a convective Cahn--Hilliard type equation with additional source term $\Gamma_{\varphi}$, and similarly, the nutrient concentration $\sigma$ satisfies a convection-reaction-diffusion equation with a non-standard flux and a source term $\mathcal{S}$. We refer the reader to [20, x2] for the derivation from thermodynamic principles, and to [20, x2.5] for a discussion regarding the choices for the source terms $\Gamma_{\varphi}, \Gamma_{{v}}$ and $\mathcal{S}$.

    The positive constants $K$ and $D$ denote the permeability of the mixture and the diffusivity of the nutrient, $m(\varphi)$ and $n(\varphi)$ are positive mobilities for $\varphi$ and $\sigma$, respectively. The parameter $\chi \geq 0$ regulates the chemotaxis effect (see [20] for more details), $\Psi(\cdot)$ is a potential with two equal minima at $\pm 1$, $A$ and $B$ denote two positive constants related to the thickness of the diffuse interface and the surface tension.

    We supplement the above with the following boundary and initial conditions

    ${\partial _n}\varphi = {\partial _n}\mu = 0{\text{ on }}\partial \Omega \times (0, T) = :\Sigma , $ (1.2a)
    $v \cdot n = {\partial _n}p = 0{\text{ on }}\Sigma , $ (1.2b)
    $n(\varphi )D{\partial _n}\sigma = b({\sigma _\infty } - \sigma ){\text{ on }}\Sigma , $ (1.2c)
    $\varphi (0) = {\varphi _0}, \quad \sigma (0) = {\sigma _0}{\text{ on }}\Omega .$ (1.2d)

    Here $\varphi_{0}$, $\sigma_{0}$ and $\sigma_{\infty}$ are given functions and $b > 0$ is a constant. We denote ${\partial _n} f := \nabla f \cdot {n}$ as the normal derivative of $f$ at the boundary $\partial \Omega$, where ${n}$ is the outer unit normal. Associated to (1.1) is the free energy density $N(\varphi, \sigma)$ for the nutrient, which is defined as

    $N(\varphi , \sigma ): = \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi ).$ (1.3)

    Note that

    ${N_{, \sigma }}: = \frac{{\partial N}}{{\partial \sigma }} = D\sigma + \chi (1 - \varphi ), \quad {N_{, \varphi }}: = \frac{{\partial N}}{{\partial \varphi }} = - \chi \sigma , $

    so that (1.1) may also be written as

    ${\text{div}} v = {\Gamma _v}, $ (1.4a)
    $v = - K(\nabla p - \mu \nabla \varphi + {N_{, \varphi }}\nabla \varphi ), $ (1.4b)
    ${\partial _t}\varphi + {\text{div}}(\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }, $ (1.4c)
    $\mu = A\Psi '(\varphi ) - B\Delta \varphi + {N_{, \varphi }}, $ (1.4d)
    ${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )\nabla {N_{, \sigma }}) - \mathcal{S}, $ (1.4e)

    which is the general phase field model proposed in [20]. In this work we do not aim to analyse such a model with a general free energy density $N(\varphi, \sigma)$, but we will focus solely on the choice (1.3) and the corresponding model (1.1)-(1.2).

    Our goal in this work is to prove the existence of weak solutions (see Definition 2.1 below) of (1.1)-(1.2) in two and three dimensions. Moreover, one might expect that by setting $\Gamma_{{v}} = 0$ and then sending $b \to 0$ and $K \to 0$, the weak solutions to (1.1)-(1.2) will converge (in some appropriate sense) to the weak solutions of

    ${\partial _t}\varphi = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ (1.5a)
    $\mu = A\Psi '(\varphi ) - B\Delta \varphi - \chi \sigma {\text{ in }}Q, $ (1.5b)
    ${\partial _t}\sigma = {\text{div}}(n(\varphi )(D\nabla \sigma - \chi \nabla \varphi )) - \mathcal{S}{\text{ in }}Q, $ (1.5c)
    $0 = {\partial _n}\varphi = {\partial _n}\mu = {\partial _n}\sigma {\text{ on }}\Sigma .$ (1.5d)

    We denote (1.5) as the limit system of vanishing permeability, where the effects of the volume-averaged velocity are neglected. By substituting

    $\Gamma_{\varphi} = \mathcal{S} = f(\varphi)(D \sigma + \chi(1-\varphi) - \mu)$ (1.6)

    for some non-negative function $f(\varphi)$ leads to the model derived in [21]. The specific choices for $\Gamma_{\varphi}$ and $\mathcal{S}$ in (1.6) are motivated by linear phenomenological laws for chemical reactions. The analysis of (1.5) with the parameters

    $D = 1, \quad \chi = 0, \quad n(\varphi) = m(\varphi) = 1$

    has been the subject of study in [5, 6, 7, 16], where well-posedness and long-time behaviour have been established for a large class of functions $\Psi(\varphi)$ and $f(\varphi)$. Alternatively, one may consider the following choice of source terms

    $\Gamma_{\varphi} = h(\varphi)(\lambda_{p} \sigma - \lambda_{a}), \quad \mathcal{S} = \lambda_{c} h(\varphi) \sigma, $ (1.7)

    where $\lambda_{p}$, $\lambda_{a}$, $\lambda_{c}$ are non-negative constants representing the tumour proliferation rate, the apoptosis rate, and the nutrient consumption rate, respectively, and $h(\varphi)$ is a non-negative interpolation function such that $h(-1) = 0$ and $h(1) = 1$. The above choices for $\Gamma_{\varphi}$ and $\mathcal{S}$ are motivated from the modelling of processes experienced by a young tumour.

    The well-posedness of model (1.5) with the choice (1.7) has been studied by the authors in [17] and [18] with the boundary conditions (1.2) (neglecting (1.2b)) in the former and for non-zero Dirichlet boundary conditions in the latter. It has been noted in [17] that the well-posedness result with the boundary conditions (1.2) requires $\Psi$ to have at most quadratic growth, which is attributed to the presence of the source term $\Gamma_{\varphi} \mu = h(\varphi) \mu (\lambda_{p} \sigma - \lambda_{a})$ when deriving useful a priori estimates. Meanwhile in [18] the Dirichlet boundary conditions and the application of the Poincaré inequality allows us to overcome this restriction and allow for $\Psi$ to be a regular potential with polynomial growth of order less than 6, and by a Yosida approximation, the case where $\Psi$ is a singular potential is also covered.

    We also mention the work of [19] that utilises a Schauder's fixed point argument to show existence of weak solutions for $\Psi$ with quartic growth and $\Gamma_{\varphi}, \mathcal{S}$ as in (1.7). This is based on first deducing that $\sigma$ is bounded by a comparison principle, leading to $\Gamma_{\varphi} \in L^{\infty}(\Omega)$. Then, the standard a priori estimates are derived for a Cahn--Hilliard equation with bounded source terms. The difference between [19] and [17, 18] is the absence of the chemotaxis and active transport mechanisms, i.e., $\chi = 0$, so that the comparison principle can be applied to the nutrient equation. We refer to [9] for the application of a similar procedure to a multi-species tumour model with logarithmic potentials.

    On the other hand, by sending $b \to 0$ and $\chi \to 0$ in (1.1), we should obtain weak solutions of

    ${\text{div}} v = {\Gamma _v}{\text{ in }}Q, $ (1.8a)
    $v = - K(\nabla p - \mu \nabla \varphi ){\text{ in }}Q, $ (1.8b)
    ${\partial _t}\varphi + {\text{div}} (\varphi v) = {\text{div}}(m(\varphi )\nabla \mu ) + {\Gamma _\varphi }{\text{ in }}Q, $ (1.8c)
    $\mu = A\Psi '(\varphi ) - B\Delta \varphi {\text{ in }}Q, $ (1.8d)
    ${\partial _t}\sigma + {\text{div}}(\sigma v) = {\text{div}}(n(\varphi )D\nabla \sigma ) - \mathcal{S}{\text{ in }}Q, $ (1.8e)
    $0 = {\partial _n}\varphi = {\partial _n}\mu = {\partial _n}\sigma = v \cdot n{\text{ on }}\Sigma .$ (1.8f)

    We denote (1.8) as the limit system of vanishing chemotaxis. If the source terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are independent of $\sigma$, then (1.8) consists of an independent Cahn--Hilliard--Darcy system and an equation for $\sigma$ which is advected by the volume-averaged velocity field ${v}$. In the case where there is no nutrient and source terms, i.e., $\sigma = \Gamma_{{v}} = \Gamma_{\varphi} = 0$, global existence of weak solutions in two and three dimensions has been established in [14] via the convergence of a fully discrete and energy stable implicit finite element scheme. For the well-posedness and long-time behaviour of strong solutions, we refer to [25]. Meanwhile, in the case where $\Gamma_{{v}} = \Gamma_{\varphi}$ is prescribed, global weak existence and local strong well-posedness for (1.8) without nutrient is shown in [22].

    We also mention the work of [3] on the well-posedness and long-time behaviour of a related system also used in tumour growth, known as the Cahn--Hilliard--Brinkman system, where in (1.8) without nutrient an additional viscosity term is added to the left-hand side of the velocity equation (1.8b) and the mass exchange terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are set to zero. The well-posedness of a nonlocal variant of the Cahn--Hilliard--Brinkman system has been investigated in [10]. Furthermore, when $K$ is a function depending on $\varphi$, the model (1.8) with $\sigma = \Gamma_{{v}} = \Gamma_{\varphi} = 0$ is also referred to as the Hele--Shaw--Cahn--Hilliard model (see [23, 24]). In this setting, $K(\varphi)$ represents the reciprocal of the viscosity of the fluid mixture. We refer to [30] concerning the strong well-posedness globally in time for two dimensions and locally in time for three dimensions when $\Omega$ is the $d$-dimensional torus. Global well-posedness in three dimensions under additional assumptions and long-time behaviour of solutions to the Hele--Shaw--Cahn--Hilliard model are investigated in [29].

    We point out that from the derivation of (1.1) in [20], the source terms $\Gamma_{{v}}$ and $\Gamma_{\varphi}$ are connected in the sense that $\Gamma_{{v}}$ is related to sum of the mass exchange terms for the tumour and healthy cells, and $\Gamma_{\varphi}$ is related to the difference between the mass exchange terms. Thus, if $\Gamma_{\varphi}$ would depend on the primary variables $\varphi$, $\sigma$ or $\mu$, then one expects that $\Gamma_{{v}}$ will also depend on the primary variables. Here, we are able to prove existence of weak solutions for $\Gamma_{\varphi}$ of the form (2.1), which generalises the choices (1.6) and (1.7), but in exchange $\Gamma_{{v}}$ has to be considered as a prescribed function. This is attributed to the presence of the source term ${\Gamma _v}\left( {\varphi \mu + \frac{D}{2}{{\left| \sigma \right|}^2}} \right)$ when deriving useful a priori estimates. We see that if $\Gamma_{{v}}$ depends on the primary variables, we obtain triplet products which cannot be controlled by the usual regularity of $\varphi$, $\mu$ and $\sigma$ in the absence of a priori estimates.

    In this work we attempt to generalise the weak existence results for the models studied in [5, 16, 17, 18, 22, 25] by proving that the weak solutions of (1.1) with $\Gamma_{{v}} = 0$ converge (in some appropriate sense) to the weak solutions of (1.5) as $b \to 0$ and $K \to 0$, and the weak solutions of (1.1) converge to the weak solutions of (1.8) as $b \to 0$ and $\chi \to 0$.

    This paper is organised as follows. In Section 2 we state the main assumptions and the main results. In Section 3 we introduce a Galerkin procedure and derive some a priori estimates for the Galerkin ansatz in Section 4 for the case of three dimensions. We then pass to the limit in Section 5 to deduce the existence result for three dimensions, while in Section 6 we investigate the asymptotic behaviour of solutions to (1.1) as $K \to 0$ and $\chi \to 0$. In Section 7, we outline the a priori estimates for two dimensions and show that the weak solutions for two dimensions yields better temporal regularity than the weak solutions for three dimensions. In Section 8 we discuss some of the issues present in the analysis of (1.1) using different formulations of Darcy's law and the pressure, and with different boundary conditions for the velocity and the pressure.

    Notation. For convenience, we will often use the notation $L^{p} := L^{p}(\Omega)$ and $W^{k, p} := W^{k, p}(\Omega)$ for any $p \in [1, \infty]$, $k > 0$ to denote the standard Lebesgue spaces and Sobolev spaces equipped with the norms ${\left\| \cdot \right\|_{{L^p}}}$ and $\left\| \cdot \right\|_{W^{k, p}}$. In the case $p = 2$ we use $H^{k} := W^{k, 2}$ and the norm $\left\| \cdot \right\|_{H^{k}}$. For the norms of Bochner spaces, we will use the notation $L^{p}(X) := L^{p}(0, T;X)$ for Banach space $X$ and $p \in [1, \infty]$. Moreover, the dual space of a Banach space $X$ will be denoted by $X^{*}$, and the duality pairing between $X$ and $X^{*}$ is denoted by ${\left\langle { \cdot , \cdot } \right\rangle _{X, {X^*}}}$. For $d = 2$ or $3$, let $\mathcal{H}^{d-1}$ denote the $(d-1)$ dimensional Hausdorff measure on $\partial \Omega$, and we denote ${\mathbb{R}^d}$-valued functions and any function spaces consisting of vector-valued/tensor-valued functions in boldface. We will use the notation D${f}$ to denote the weak derivative of the vector function ${f}$.

    Useful preliminaries. For convenience, we recall the Poincaré inequality: There exists a positive constant $C_{p}$ depending only on $\Omega$ such that, for all $f \in H^{1}$,

    ${\left\| {f - \bar f} \right\|_{{L^2}}} \leq {C_p}{\left\| {\nabla f} \right\|_{{L^2}}}, $ (1.9)

    where $\bar f: = \frac{1}{{\left| \Omega \right|}}\int_\Omega f {\text{ dx}}$ denotes the mean of $f$. The Gagliardo--Nirenberg interpolation inequality in dimension $d$ is also useful (see [15, Thm. 10.1, p. 27], [11, Thm. 2.1] and [1, Thm. 5.8]): Let $\Omega$ be a bounded domain with Lipschitz boundary, and $f \in W^{m, r} \cap L^{q}$, $1 \leq q, r \leq \infty$. For any integer $j$, $0 \leq j < m$, suppose there is $\alpha \in \mathbb{R}$ such that

    $\frac{1}{p} = \frac{j}{d} + \left ( \frac{1}{r} - \frac{m}{d} \right ) \alpha + \frac{1-\alpha}{q}, \quad \frac{j}{m} \leq \alpha \leq 1.$

    Then, there exists a positive constant $C$ depending only on $\Omega$, $m$, $j$, $q$, $r$, and $\alpha$ such that

    ${\left\| {{D^j}f} \right\|_{{L^p}}} \leq C\left\| f \right\|_{{W^{m, r}}}^\alpha \left\| f \right\|_{{L^q}}^{1 - \alpha }.$ (1.10)

    We will also use the following Gronwall inequality in integral form (see [17, Lem. 3.1] for a proof): Let $\alpha, \beta, u$ and $v$ be real-valued functions defined on $[0, T]$. Assume that $\alpha$ is integrable, $\beta$ is non-negative and continuous, $u$ is continuous, $v$ is non-negative and integrable. If $u$ and $v$ satisfy the integral inequality

    $u(s) + \int_0^s v (t){\text{ dt}} \leq \alpha (s) + \int_0^s \beta (t)u(t){\text{ dt}}\quad {\text{ for }}s \in (0, T], $

    then it holds that

    $u(s) + \int_0^s v (t){\text{ dt}} \leq \alpha (s) + \int_0^s \beta (t)\alpha (t)\exp \left( {\int_0^t \beta (r){\text{ dr}}} \right){\text{ dt}}.$ (1.11)

    To analyse the Darcy system, we introduce the spaces

    $L20:={fL2:ˉf=0},H2N:={fH2:nf=0 on Ω},(H1)0:={f(H1):f,1H1=0}. $

    Then, the Neumann-Laplacian operator $-\Delta _{N} : H^{1} \cap L^{2}_{0} \to (H^{1})^{*}_{0}$ is positively defined and self-adjoint. In particular, by the Lax--Milgram theorem and the Poincaré inequality (1.9) with zero mean, the inverse operator $(-\Delta _{N})^{-1} : (H^{1})^{*}_{0} \to H^{1} \cap L^{2}_{0}$ is well-defined, and we set $u := (-\Delta _{N})^{-1}f$ for $f \in (H^{1})^{*}_{0}$ if $\bar u = 0$ and

    $- \Delta u = f{\text{ in }}\Omega , \quad {\text{ }}{\partial _n}u = 0{\text{ on }}\partial \Omega .$

    2. Main results

    We make the following assumptions.

    Assumption 2.1.

    (A1) The constants A, B, K, D, $\chi$ and b are positive and fixed.

    (A2) The mobilities m, n are continuous on $\mathbb{R}$ and satisfy

    ${m_0} \leq m(t) \leq {m_1}, {\text{ }}\quad {n_0} \leq n(t) \leq {n_1}\quad \forall t \in \mathbb{R}, $

    for positive constants m0, m1, n0 and n1.

    (A3) $\Gamma_{\varphi}$ and $\mathcal{S}$ are of the form

    $Γφ(φ,μ,σ)=Λφ(φ,σ)Θφ(φ,σ)μ,S(φ,μ,σ)=ΛS(φ,σ)ΘS(φ,σ)μ, $ (2.1)

    where $\Theta_{\varphi}, \Theta_{S} : \mathbb{R}^{2} \to \mathbb{R}$ are continuous bounded functions with $\Theta_{\varphi}$ non-negative, and $\Lambda_{\varphi}, \Lambda_{S} : \mathbb{R}^{2} \to \mathbb{R}$ are continuous with linear growth

    $\left| {{\Theta _i}(\varphi , \sigma )} \right| \leq {R_0}, {\text{ }}\quad {\text{ }}\left| {{\Lambda _i}(\varphi , \sigma )} \right| \leq {R_0}(1 + \left| \varphi \right| + \left| \sigma \right|)\quad {\text{ for }}i \in \{ \varphi , S\} , $ (2.2)

    so that

    $\left| {{\Gamma _\varphi }} \right| + \left| \mathcal{S} \right| \leq {R_0}(1 + \left| \varphi \right| + \left| \mu \right| + \left| \sigma \right|), $ (2.3)

    for some positive constant R0.

    (A4) $\Gamma_{{v}}$ is a prescribed function belonging to $L^{4}(0, T;L^{2}_{0})$.

    (A5) $\Psi \in C^{2}(\mathbb{R})$ is a non-negative function satisfying

    $\Psi (t) \geq {R_1}{\text{ }}{\left| t \right|^2} - {R_2}\quad \forall t \in \mathbb{R}$ (2.4)

    and either one of the following,

    1: if $\Theta_{\varphi}$ is non-negative and bounded, then

    $\Psi (t) \leq {R_3}(1 + {\left| t \right|^2}), {\text{ }}\quad {\text{ }}\left| {\Psi '(t)} \right| \leq {R_4}(1 + \left| t \right|), \quad {\text{ }}\left| {\Psi ''(t)} \right| \leq {R_4};$ (2.5)

    2: if $\Theta_{\varphi}$ is positive and bounded, that is,

    $R_{0} \geq \Theta_{\varphi}(t, s) \geq R_{5} > 0 \quad \forall t, s \in \mathbb{R}, $ (2.6)

    then

    $\left| {\Psi ''(t)} \right| \leq {R_6}(1 + {\left| t \right|^q}), \;q \in [0, 4), $ (2.7)

    for some positive constants R1, R2, R3, R4, R5, R6. Furthermore we assume that

    $A > \frac{2 \chi^{2}}{D R_{1}} .$ (2.8)

    (A6) The initial and boundary data satisfy

    ${\sigma _\infty } \in {L^2}(0, T;{L^2}(\partial \Omega )), \quad {\sigma _0} \in {L^2}, \quad {\varphi _0} \in {H^1}.$

    We point out that some of the above assumptions are based on previous works on the well-posedness of Cahn--Hilliard systems for tumour growth. For instance, (2.5) and (2.8) reflect the situation encountered in [17], where if $\Theta_{\varphi} = 0$, i.e., $\Gamma_{\varphi}$ is independent of $\mu$, then the derivation of the a priori estimate requires a quadratic potential. But in the case where (2.6) is satisfied, we can allow $\Psi$ to be a regular potential with polynomial growth of order less than 6, and by a Yosida approximation, we can extend our existence results to the situation where $\Psi$ is a singular potential, see for instance [18]. Moreover, the condition (2.8) is a technical assumption based on the fact that the second term of the nutrient free energy $\chi \sigma (1-\varphi)$ does not have a positive sign.

    Meanwhile, the linearity of the source terms $\Gamma_{\varphi}$ and $\mathcal{S}$ with respect to the chemical potential $\mu$ assumed in (2.1) is a technical assumption based on the expectation that, at best, we have weak convergence for Galerkin approximation to $\mu$, which is in contrast with $\varphi$ and $\sigma$ where we might expect a.e convergence and strong convergence for the Galerkin approximations. Moreover, if we consider

    $\Theta_{\varphi}(\varphi, \sigma) = \Theta_{S}(\varphi, \sigma) = f(\varphi), \quad \Lambda_{\varphi}(\varphi, \sigma) = \Lambda_{S}(\varphi, \sigma) = f(\varphi)(D \sigma + \chi(1-\varphi)), $

    for a non-negative function $f(\varphi)$, then we obtain the source terms in [5, 16, 21].

    Compared to the set-up in [22], in (A4) we prescribe a higher temporal regularity for the prescribed source term $\Gamma_{{v}}$. This is needed when we estimate the source term ${\Gamma _v}\frac{D}{2}{\left| \sigma \right|^2}$ in the absence of a priori estimates, see Section 4.1.2 for more details. The mean zero condition is a consequence of the no-flux boundary condition ${v} \cdot {n} = 0$ on $\partial \Omega$ and the divergence equation (1.1a). In particular, we can express the Darcy subsystem (1.1a)-(1.1b) as an elliptic equation for the pressure $p$:

    $- \Delta p = \frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi ){\text{ in }}\Omega , $ (2.9a)
    ${\partial _n}p = 0{\text{ on }}\partial \Omega .$ (2.9b)

    Solutions to (2.9) are uniquely determined up to an arbitrary additive function that may only depend on time, and thus without loss of generality, we impose the condition $\bar p = \frac{1}{{\left| \Omega \right|}}\int_\Omega p {\text{ dx}} = 0$ to (2.9). We may then define $p$ as

    $p = {( - {\Delta _N})^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right), $ (2.10)

    if $\frac{1}{K}{\Gamma _v} - {\text{div}}((\mu + \chi \sigma )\nabla \varphi ) \in ({H^1})_0^*$.

    Remark 2.1. In the case $\Gamma_{{v}} = 0$, one can also consider the assumption

    $\mathcal{S} N_{, \sigma} - \Gamma_{\varphi} \mu = \mathcal{S} (D \sigma + \chi(1-\varphi)) - \Gamma_{\varphi} \mu \geq 0$ (2.11)

    instead of (2.6), which holds automatically if $\Gamma_{\varphi}$ and $\mathcal{S}$ are chosen to be of the form (1.6). In fact this property is used in [5, 16].

    We make the following definition.

    Definition 2.1 (Weak solutions for 3D). We call a quintuple $(\varphi, \mu, \sigma, {v}, p)$ a weak solution to (1.1)-(1.2) if

    $φL(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σL(0,T;L2)L2(0,T;H1)W1,54(0,T;(W1,5)),μL2(0,T;H1),pL85(0,T;H1L20),vL2(0,T;L2), $

    such that $\varphi(0) = \varphi_{0}$,

    ${\left\langle {{\sigma _0}, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}\quad \forall \zeta \in {H^1}, $

    and

    ${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ (2.12a)
    $\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ (2.12b)
    $tσ,ϕW1,5,(W1,5)=Ωn(φ)(Dσχφ)ϕSϕ+σvϕdx+Ωb(σσ)ϕ dHd1, $ (2.12c)
    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + (\mu + \chi \sigma )\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (2.12d)
    $\int_\Omega {} v \cdot {\text{ }}\zeta {\text{ dx}} = \int_\Omega - K(\nabla p - (\mu + \chi \sigma )\nabla \varphi ) \cdot {\text{ }}\zeta {\text{ dx}}, $ (2.12e)

    for a.e. $t \in (0, T)$ and for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, and ${\zeta} \in {L}^{2}$.

    Neglecting the nutrient $\sigma$, we observe that our choice of function spaces for $(\varphi, \mu, p, {v})$ coincide with those in [22, Defn. 2.1(i)]. In contrast to the usual $L^{2}(0, T;(H^{1})^{*})$-regularity (see [5, 16]) we obtain a less regular time derivative $\partial _{t}\varphi$. The drop in the time regularity from $2$ to $\frac{8}{5}$ is attributed to the convection term ${\text{div}} (\varphi {v})$ belonging to $L^{\frac{8}{5}}(0, T;(H^{1})^{*})$. The same is true for the regularity for the time derivative $\partial _{t}\sigma$ in $L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$ as the convection term ${\text{div}}(\sigma {v})$ lies in the same space. We refer the reader to the end of Section 4.3 for a calculation motivating the choice of function spaces for ${\text{div}} (\sigma {v})$ and $\partial _{t} \sigma$. Furthermore, the embedding of $L^{\infty}(0, T;H^{1}) \cap W^{1, \frac{8}{5}}(0, T;(H^{1})^{*})$ into $C^{0}([0, T];L^{2})$ from [28, x8, Cor. 4] guarantees that the initial condition for $\varphi$ is meaningful. However, for $\sigma$ we have the embedding $L^{\infty}(0, T;L^{2}) \cap W^{1, \frac{5}{4}}(0, T;(W^{1, 5})^{*}) \subset \subset C^{0}([0, T];(H^{1})^{*})$, and so $\sigma(0)$ makes sense as a function in $(H^{1})^{*}$. Thus, the initial condition $\sigma_{0}$ is attained as an equality in $(H^{1})^{*}$. We now state the existence result for (1.1)-(1.2).

    Theorem 2.1 (Existence of weak solutions in 3D and energy inequality). Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $C^{3}$-boundary $\partial \Omega$. Suppose Assumption 2.1 is satisfied. Then, there exists a weak solution quintuple $(\varphi, \mu, \sigma, {v}, p)$ to (1.1)-(1.2) in the sense of Definition 2.1 with

    $p \in L^{\frac{8}{7}}(0, T;H^{2}) , \quad {v} \in L^{\frac{8}{7}}(0, T;{H}^{1}), $ (2.13)

    and in addition satisfies

    $φL(H1)L2(H3)W1,85((H1))+σL(L2)W1,54((W1,5)))L2(H1)+μL2(H1)+b12σL2(L2(Ω))+pL85(H1)L87(H2)+K12(vL2(L2)L87(H1)+div(φv)L85((H1))+div(σv)L54((W1,5)))C, $ (2.14)

    where the constant $C$ does not depend on $(\varphi, \mu, \sigma, {v}, p)$ and is uniformly bounded for $b, \chi \in (0, 1]$ and is also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.

    The regularity result (2.13) is new compared to estimates for weak solutions in [22], which arises from a deeper study of the Darcy subsystem, and can be obtained even in the absence of the nutrient. We mention that higher regularity estimates for the pressure $p$ in $L^{2}(0, T;H^{2})$ and the velocity ${v}$ in $L^{2}(0, T;{H}^{1})$ are also established in [22, but these are for strong solutions local in time in three dimensions and global in time for two dimensions.

    We now investigate the situation in two dimensions, where the Sobolev embeddings in two dimensions yields better integrability exponents.

    Theorem 2.2 (Existence of weak solutions in 2D). Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with $C^{3}$-boundary $\partial \Omega$. Suppose Assumption 2.1is satisfied. Then, there exists a quintuple $(\varphi, \mu, \sigma, {v}, p)$ to (1.1)-(1.2) with the following regularity

    $φL(0,T;H1)L2(0,T;H3)W1,w(0,T;(H1)),μL2(0,T;H1),σL2(0,T;H1)L(0,T;L2)W1,r(0,T;(H1)),pLk(0,T;H1L20)Lq(0,T;H2),vL2(0,T;L2)Lq(0,T;H1), $

    for

    $1 \leq k < 2, \quad 1 \leq q < \frac{4}{3}, \quad 1 < r < \frac{8}{7}, \quad \frac{4}{3} \leq w < 2, $

    such that (2.12a), (2.12b), (2.12d), (2.12e) and

    ${\left\langle {{\partial _t}\sigma, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \zeta - \mathcal{S}\zeta + \sigma v \cdot \nabla \zeta {\text{ dx}} + \int_{\partial \Omega } b ({\sigma _\infty } - \sigma )\zeta {\text{ d}}{H^{d - 1}}$

    are satisfied for a.e. $t \in (0, T)$, for all $\zeta \in H^{1}$, and all ${\zeta} \in {L}^{2}$. Furthermore, the initial conditions $\varphi(0) = \varphi_{0}$ and $\sigma(0) = \sigma_{0}$ are attained as in Definition 2.1, and an analogous inequality to (2.14) also holds.

    The proof of Theorem 2.2 is similar to that of Theorem 2.1, and hence the details are omitted. In Section 7 we will only present the derivation of a priori estimates. It is due to the better exponents for embeddings in two dimensions and the regularity result for the velocity that we obtain better regularities for the time derivatives $\partial _{t}\varphi$ and $\partial _{t}\sigma$, namely $\partial _{t} \sigma(t)$ belongs to the dual space $(H^{1})^{*}$ for a.e. $t \in (0, T)$. Furthermore, as mentioned in Remark 7.1 below, if we only have ${v} \in L^{2}(0, T;{L}^{2})$, then the convection term ${\text{div}} (\sigma {v})$ and the time derivative $\partial _{t}\sigma$ would only belong to the dual space $L^{\frac{4}{3}}(0, T;(W^{1, 4})^{*})$. However, even with the improved temporal regularity, as $\partial _{t}\sigma \notin L^{2}(0, T;(H^{1})^{*})$, we do not have a continuous embedding into the space $C^{0}([0, T];L^{2})$ and so $\sigma(0)$ may not be well-defined as an element of $L^{2}$.

    We now state the two asymptotic limits of (1.1) for three dimensions, and note that analogous asymptotic limits also hold for two dimensions.

    Theorem 2.3 (Limit of vanishing permeability). For $b, K \in (0, 1]$, we denote a weak solution to (1.1)-(1.2) with $\Gamma_{{v}} = 0$ and initial conditions $(\varphi_{0}, \sigma_{0})$ by $(\varphi^{K}, \mu^{K}, \sigma^{K}, {v}^{K}, p^{K})$. Then, as $b \to 0$ and $K \to 0$, it holds that

    $φKφ weakly -  in L(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σKσ weakly -  in L2(0,T;H1)L(0,T;L2)W1,54(0,T;(W1,5)),μKμ weakly  in L2(0,T;H1),pKp weakly  in L85(0,T;H1)L87(0,T;H2),vK0 strongly  in L2(0,T;L2)L87(0,T;H1), $

    where $(\varphi, \mu, \sigma, p)$ satisfies

    ${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta {\text{ dx}}, $ (2.16a)
    $\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ (2.16b)
    ${\left\langle {{\partial _t}\sigma, \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi {\text{ dx}}, $ (2.16c)
    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (2.16d)

    for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$ and a.e. $t \in (0, T)$. A posteriori, it holds that

    ${\partial _t}\varphi , {\text{ }}{\partial _t}\sigma \in {L^2}(0, T;{({H^1})^*}), $

    and thus $\varphi(0) = \varphi_{0}$ and $\sigma(0) = \sigma_{0}$.

    Theorem 2.4 (Limit of vanishing chemotaxis). For $b, \chi \in (0, 1]$, we denote a weak solution to (1.1)-(1.2) with corresponding initial conditions $(\varphi_{0}, \sigma_{0})$ by $(\varphi^{\chi}, \mu^{\chi}, \sigma^{\chi}, {v}^{\chi}, p^{\chi})$. Then, as $b \to 0$ and $\chi \to 0$, it holds that

    $φχφ weakly -  in L(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σχσ weakly -  in L2(0,T;H1)L(0,T;L2)W1,54(0,T;(W1,5)),μχμ weakly  in L2(0,T;H1),pχp weakly  in L85(0,T;H1)L87(0,T;H2),vχv weakly  in L2(0,T;L2)L87(0,T;H1), $

    and

    $div(φχvχ)div(φv) weakly  in L85(0,T;(H1)),div(σχvχ)div(σv) weakly  in L54(0,T;(W1,5)), $

    where ($\varphi, \mu, \sigma, {v}, p)$ satisfies

    ${\left\langle {{\partial _t}\varphi, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ (2.19a)
    $\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (2.19b)
    ${\left\langle {{\partial _t}\sigma, \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )D\nabla \sigma \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi + \sigma {\text{ }}v \cdot \nabla \phi {\text{ dx}}, $ (2.19c)
    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + \mu \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (2.19d)
    $\int_\Omega {} v \cdot {\text{ }}\zeta {\text{ dx}} = \int_\Omega - K(\nabla p - \mu \nabla \varphi ) \cdot \zeta {\text{ dx}}, $ (2.19e)

    for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, ${\zeta} \in {L}^{2}$ and a.e. $t \in (0, T)$, with the attainment of initial conditions as in Definition 2.1.


    3. Galerkin approximation

    We will employ a Galerkin approximation similar to the one used in [22]. For the approximation, we use the eigenfunctions of the Neumann--Laplacian operator $\{w_{i}\}_{i \in \mathbb{N}}$. Recall that the inverse Neumann--Laplacian operator $\mathcal{L} := (-\Delta _{N})^{-1} \vert_{L^{2}_{0}} : L^{2}_{0} \to L^{2}_{0}$ is compact, positive and symmetric. Indeed, let $f, g \in L^{2}_{0}$ with $z = \mathcal{L}f$, $y = \mathcal{L}g$. Then,

    ${(\mathcal{L}f, f)_{{L^2}}} = \int_\Omega z f{\text{ dx}} = \int_\Omega {} {\left| {\nabla z} \right|^2}{\text{ dx}} \geq 0, \quad {(\mathcal{L}f, g)_{{L^2}}} = \int_\Omega \nabla z \cdot \nabla y{\text{ dx}} = {(f, \mathcal{L}g)_{{L^2}}}.$

    Furthermore, let $\{f_{n}\}_{n \in \mathbb{N}} \subset L^{2}_{0}$ denote a sequence with corresponding solution sequence $\{z_{n} = \mathcal{L} f_{n} \}_{n \in \mathbb{N}} \subset H^{1} \cap L^{2}_{0}$. By elliptic regularity theory, we have that $z_{n} \in H^{2}_{N}$ for all $n \in \mathbb{N}$. Then, by reflexive weak compactness theorem and Rellich--Kondrachov theorem, there exists a subsequence such that $z_{n_{j}} \to z \in H^{1} \cap L^{2}_{0}$ as $j \to \infty$.

    Thus, by the spectral theorem, the operator $\mathcal{L}$ admits a countable set of eigenfunctions $\{v_{n}\}_{n \in \mathbb{N}}$ that forms a complete orthonormal system in $L^{2}_{0}$. The eigenfunctions of the Neumann--Laplacian operator is then given by $w_{1} = 1$, $w_{i} = v_{i-1}$ for $i \geq 2$, and $\{w_{i}\}_{i \in \mathbb{N}}$ is a basis of $L^{2}$.

    Elliptic regularity theory gives that $w_{i} \in H^{2}_{N}$ and for every $g \in H^{2}_{N}$, we obtain for $g_{k} := \sum_{i=1}^{k} (g, w_{i})_{L^{2}} w_{i}$ that

    $\Delta {g_k} = \sum\limits_{i = 1}^k {{{(g, {w_i})}_{{L^2}}}} \Delta {w_i} = \sum\limits_{i = 1}^k {{{(g, {\lambda _i}{w_i})}_{{L^2}}}} {w_i} = \sum\limits_{i = 1}^k {{{(g, {\text{ }}\Delta {w_i})}_{{L^2}}}} {w_i} = \sum\limits_{i = 1}^k {{{(\Delta g, {w_i})}_{{L^2}}}} {w_i}, $

    where $\lambda_{i}$ is the corresponding eigenvalue to $w_{i}$. This shows that $\Delta g_{k}$ converges strongly to $\Delta g$ in $L^{2}$. Making use of elliptic regularity theory again gives that $g_{k}$ converges strongly to $g$ in $H^{2}_{N}$. Thus the eigenfunction $\{w_{i}\}_{i \in \mathbb{N}}$ of the Neumann--Laplace operator forms an orthonormal basis of $L^{2}$ and is also a basis of $H^{2}_{N}$.

    Later in Section 5, we will need to use the property that $H^{2}_{N}$ is dense in $H^{1}$ and $W^{1, 5}$. We now sketch the argument for the denseness of $H^{2}_{N}$ in $W^{1, 5}$ and the argument for $H^{1}$ follows in a similar fashion.

    Lemma 3.1. $H^{2}_{N}$ is dense in $W^{1, 5}$.

    Proof. Take $g \in W^{1, 5}$, as $\Omega$ has a $C^{3}$-boundary, by standard results [12, Thm. 3, x5.3.3] there exists a sequence $g_{n} \in C^{\infty}(\overline{\Omega})$ such that $g_{n} \to g$ strongly in $W^{1, 5}$. Let $\varepsilon > 0$ be fixed, and define $D_{\varepsilon } := \{ x \in \Omega : \text{ dist}(x, \partial \Omega) \leq \varepsilon \}$. Let $\zeta_{\varepsilon } \in C^{\infty}_{c}(\Omega)$ be a smooth cut-off function such that $\zeta_{\varepsilon } = 1$ in $\Omega \setminus \overline{D_{\varepsilon }}$ and $\zeta_{\varepsilon } = 0$ in $\overline{D_{\frac{\varepsilon }{2}}}$.

    As $g_{n} \in C^{\infty}(\overline{\Omega})$, its trace on $\partial \Omega$ is well-defined. Choosing $\varepsilon $ sufficiently small allows us to use a classical result from differential geometry about tubular neighbourhoods, i.e., for any $z \in {\text{Tu}}{{\text{b}}_\varepsilon }(\partial \Omega ): = \{ x \in {\mathbb{R}^d}:{\text{ }}\left| {{\text{dist}}(z, \partial \Omega )} \right| \leq \varepsilon \} $ there exists a unique $y \in \partial \Omega$ such that

    $z = y + {\text{dist}}(z, \partial \Omega )n(y), $

    where ${n}$ is the outer unit normal of $\partial \Omega$. We consider a bounded smooth function $f_{n, \varepsilon }: \mathbb{R}^{d} \to \mathbb{R}$ such that

    ${f_{n, \varepsilon }}(z) = {g_n}(y){\text{ for all }}z \in {\text{Tu}}{{\text{b}}_\varepsilon }(\partial \Omega ){\text{ satisfying }}z = y + {\text{ dist}}(z, \partial \Omega )n(y).$

    We now define the smooth function $G_{n, \varepsilon }$ as

    $G_{n, \varepsilon }(x) := \zeta_{\varepsilon }(x) g_{n}(x) + (1-\zeta_{\varepsilon }(x)) f_{n, \varepsilon }(x).$

    By construction, the values of the function $f_{n, \varepsilon }$ in $D_{\varepsilon } \subset \mathrm{Tub}_{\varepsilon }(\partial \Omega)$ are constant in the normal direction, so $\nabla G_{n, \varepsilon } \cdot {n} = 0$ on $\partial \Omega$ and thus $G_{n, \varepsilon } \in H^{2}_{N}$. Furthermore, we compute that

    $Gn,εgnL5=(1ζε)(fn,εgn)L5(Dε),(Gn,εgn)L5=(gnfn,ε)ζε+(1ζε)gn+(1ζε)fn,εL5. $

    Using that $g_{n}, f_{n, \varepsilon }$ are smooth functions on $\overline{\Omega}$ and that the Lebesgue measure of $D_{\varepsilon }$ tends to zero as $\varepsilon \to 0$ we have the strong convergence of $G_{n, \varepsilon }$ to $g_{n}$ in $L^{5}$. For the difference in the gradients, we use that $\zeta_{\varepsilon } \to 1$ a.e. in $\Omega$, Lebesgue's dominated convergence theorem and the boundedness of $\nabla g_{n}$ and $\nabla f_{n, \varepsilon }$ to deduce that

    ${\left\| {(1 - {\zeta _\varepsilon })\nabla {g_n}} \right\|_{{L^5}}} + {\left\| {(1 - {\zeta _\varepsilon })\nabla {f_{n, \varepsilon }}} \right\|_{{L^5}}} \to 0{\text{ as }}\varepsilon \to 0.$

    For the remaining term ${\left\| {({g_n} - {f_{n, \varepsilon }})\nabla {\zeta _\varepsilon }} \right\|_{{L^5}}}$ we use that the support of $\nabla \zeta_{\varepsilon }$ lies in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$ and for any $z \in D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$,

    $|fn,ε(z)gn(z)|=|gn(y)gn(y+dist(z,Ω)n(y))|dist(z,Ω)0|gn(y+ξn(y))|dξgnLdist(z,Ω)Cε. $

    That is, $f_{n, \varepsilon }$ converges uniformly to $g_{n}$ in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$. Furthermore, using ${\left\| {\nabla {\zeta _\varepsilon }} \right\|_{{L^\infty }}} \leq \frac{C}{\varepsilon }$ in $D_{\varepsilon } \setminus \overline{D_{\frac{\varepsilon }{2}}}$ and $\left| {{D_\varepsilon } \setminus \overline {{D_{\frac{\varepsilon }{2}}}} } \right| \leq C\varepsilon $ we obtain ${\left\| {({g_n} - {f_{\varepsilon , n}})\nabla {\zeta _\varepsilon }} \right\|_{{L^5}}} \leq C{\varepsilon ^{\frac{1}{5}}} \to 0$ as $\varepsilon \to 0$. This shows that $G_{n, \varepsilon }$ converges strongly to $g_{n}$ in $W^{1, 5}$.

    We denote

    $W_{k} := \mathrm{span} \{ w_{1}, \dots, w_{k} \}$

    as the finite dimensional space spanned by the first k basis functions and consider

    $\varphi_{k}(t, x) =\sum_{i=1}^{k} \alpha_{i}^{k}(t) w_{i}(x), \; \mu_{k}(t, x) = \sum_{i=1}^{k} \beta_{i}^{k}(t) w_{i}(x), \; \sigma_{k}(t, x) = \sum_{i=1}^{k} \gamma_{i}^{k}(t) w_{i}(x), $ (3.1a)

    and the following Galerkin ansatz: For $1 \leq j \leq k$,

    $\int_\Omega {{\partial _t}} {\varphi _k}{w_j}{\text{ dx}} = \int_\Omega - m({\varphi _k})\nabla {\mu _k} \cdot \nabla {w_j} + {\Gamma _{\varphi , k}}{w_j} + {\varphi _k}{v_k} \cdot \nabla {w_j}dx, $ (3.2a)
    $\int_\Omega {{\mu _k}} {w_j}{\text{ dx}} = \int_\Omega A \Psi '({\varphi _k}){w_j} + B\nabla {\varphi _k} \cdot \nabla {w_j} - \chi {\sigma _k}{w_j}{\text{ dx}}, $ (3.2b)
    $Ωtσkwjdx=Ωn(φk)(Dσkχφk)wjSkwj+σkvkwjdx+Ωb(σσk)wj dHd1, $ (3.2c)

    where we define the Galerkin ansatz for the pressure $p_{k}$ and the velocity field ${v}_{k}$ by

    ${p_k} = {( - {\Delta _N})^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}} (({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k})} \right), $ (3.3)
    ${v_k} = - K(\nabla {p_k} - ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k}), $ (3.4)

    and we set

    $\Gamma_{\varphi, k} := \Gamma_{\varphi}(\varphi_{k}, \mu_{k}, \sigma_{k}), \quad \mathcal{S}_{k} := \mathcal{S}(\varphi_{k}, \mu_{k}, \sigma_{k}).$

    Note that in (3.3), the properties $\Gamma_{{v}} \in L^{2}_{0}$ and $\nabla \varphi_{k} \cdot {n} = 0$ on $\partial \Omega$ show that the term inside the bracket belongs to $L^{2}_{0}$ and hence $p_{k}$ is well-defined. Let ${M}$ and ${S}$ denote the following mass and stiffness matrices, respectively: For $1 \leq i, j \leq k$,

    ${M_{ij}} = \int_\Omega {{w_i}} {w_j}{\text{ dx}}, \quad {\text{ }}{S_{ij}}: = \int_\Omega \nabla {w_i} \cdot \nabla {w_j}{\text{ dx}}.$

    Thanks to the orthonormality of $\{w_{i}\}_{i \in \mathbb{N}}$ in $L^{2}$, we see that ${M}$ is the identity matrix. It is convenient to define the following matrices with components

    $(Ck)ji:=Ωwivkwjdx,(MΩ)ji:=ΩwiwjdH,(Skm)ji:=Ωm(φk)wiwjdx,(Skn)ji:=Ωn(φk)wiwjdx, $

    for $1 \leq i, j \leq k$. Furthermore, we introduce the notation

    $R_{\varphi , j}^k: = \int_\Omega {{\Gamma _{\varphi , k}}} {w_j}{\text{ dx}}, \quad R_{S, j}^k: = \int_\Omega {{\mathcal{S}_k}} {w_j}{\text{ dx}}, \quad \psi _j^k: = \int_\Omega {\Psi '} ({\varphi _k}){w_j}{\text{ dx}}, \quad \Sigma _j^k: = \int_{\partial \Omega } {{\sigma _\infty }} {w_j}{\text{ dH}}, $

    for $1 \leq i, j \leq k$, and denote

    $R_\varphi ^k: = {(R_{\varphi , 1}^k, \ldots , R_{\varphi , k}^k)^ \top }, \quad {\text{ }}R_S^k: = {(R_{S, 1}^k, \ldots , R_{S, k}^k)^ \top }, \quad {\text{ }}{\psi ^k}: = {(\psi _1^k, \ldots , \psi _k^k)^ \top }, \quad {\text{ }}{\Sigma ^k}: = {(\Sigma _1^k, \ldots , \Sigma _k^k)^ \top }, $

    as the corresponding vectors, so that we obtain an initial value problem for a system of equations for ${\alpha _k}: = {(\alpha _1^k, \ldots \alpha _k^k)^ \top }, {\beta _k}: = {(\beta _1^k, \ldots , \beta _k^k)^ \top }$, and ${\gamma _k}: = {(\gamma _1^k, \ldots , \gamma _k^k)^ \top }$ as follows,

    $\frac{{\text{d}}}{{{\text{dt}}}}{\alpha _k} = - S_m^k{\beta _k} + R_\varphi ^k + {C^k}{\alpha _k}, $ (3.5a)
    ${\beta _k} = A{\psi ^k} + BS{\alpha _k} - \chi {\gamma _k}, $ (3.5b)
    $\frac{{\text{d}}}{{{\text{dt}}}}{\gamma _k} = - S_n^k(D{\gamma _k} - \chi {\alpha _k}) - R_S^k + {C^k}{\gamma _k} - b{M_{\partial \Omega }}{\gamma _k} + b{\Sigma ^k}, $ (3.5c)
    ${p_k} = {\left( { - {\Delta _N}} \right)^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}} (({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k})} \right)$ (3.5d)
    ${v_k} = - K(\nabla {p_k} - ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k}), $ (3.5e)

    and we supplement (3.5) with the initial conditions

    ${({\alpha _k})_j}(0) = \int_\Omega {{\varphi _0}} {w_j}{\text{ dx}}, \quad {({\gamma _k})_j}(0) = \int_\Omega {{\sigma _0}} {w_j}{\text{ dx}}, $ (3.6)

    for $1 \leq j \leq k$, which satisfy

    ${\left\| {\sum\limits_{i = 1}^k {{{({\alpha _k})}_i}} (0){w_i}} \right\|_{{H^1}}} \leq C{\left\| {{\varphi _0}} \right\|_{{H^1}}}, \quad {\text{ }}{\left\| {\sum\limits_{j = 1}^k {{{({\gamma _k})}_i}} (0){w_i}} \right\|_{{L^2}}} \leq {\left\| {{\sigma _0}} \right\|_{{L^2}}}\quad \forall k \in \mathbb{N}, $ (3.7)

    for some constant C not depending on k.

    We can substitute (3.5b), (3.5d) and (3.5e) into (3.5a) and (3.5c), and obtain a coupled system of ordinary differential equations for ${\alpha}_{k}$ and ${\gamma}_{k}$, where ${S}_{m}^{k}$, ${C}^{k}$ and ${S}_{n}^{k}$ depend on the solutions ${\alpha}_{k}$ and ${\gamma}_{k}$ in a non-linear manner. Continuity of $m(\cdot)$, $n(\cdot)$, $\Psi'(\cdot)$ and the source terms, and the stability of $(-\Delta _{N})^{-1}$ under perturbations imply that the right-hand sides of (3.5) depend continuously on $({\alpha}_{k}, {\gamma}_{k})$. Thus, we can appeal to the theory of ODEs (via the Cauchy--Peano theorem [4, Chap. 1, Thm. 1.2]) to infer that the initial value problem (3.5)-(3.6) has at least one local solution pair $({\alpha}_{k}, {\gamma}_{k})$ defined on $[0, t_{k}]$ for each $k \in \mathbb{N}$.

    We may define ${\beta}_{k}$ via the relation (3.5b) and hence the Galerkin ansatz $\varphi_{k}, \mu_{k}$ and $\sigma_{k}$ can be constructed from (3.1). Then, we can define $p_{k}$ and ${v}_{k}$ via (3.3) and (3.4), respectively. Furthermore, as the basis function $w_{j}$ belongs to $H^{2}$ for each $j \in \mathbb{N}$, by the Sobolev embedding $H^{2} \subset L^{\infty}$, we obtain that ${\text{div}} (w_{i} \nabla w_{j}) \in L^{2}$ for $i, j \in \mathbb{N}$ and hence the function ${\text{div}} ((\mu_{k} + \chi \sigma_{k}) \nabla \varphi_{k})$ belongs to $L^{2}$. Then, by elliptic regularity theory, we find that $p_{k}(t) \in H^{2}_{N} \cap L^{2}_{0}$ for all $t \in [0, t_{k}]$. This in turn implies that

    ${v_k}(t) \in \{ f \in {\text{ }}{H^1}:{\text{div}} f = {\Gamma _v}, \;{\text{ }}f \cdot n = 0{\text{ on }}\partial \Omega \} {\text{ for all }}t \in [0, {t_k}].$ (3.8)

    Next, we show that the Galerkin ansatz can be extended to the interval [0, T] using a priori estimates.


    4. A priori estimates

    In this section, the positive constants $C$ are independent of $k$, $\Gamma_{{v}}$, $K$, $b$ and $\chi$, and may change from line to line. We will denote positive constants that are uniformly bounded for $b, \chi \in (0, 1]$ and are also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$ by the symbol $\mathcal{E}$.

    We first state the energy identity satisfied by the Galerkin ansatz. Let $\delta_{ij}$ denote the Kronecker delta. Multiplying (3.2a) with $\beta_{j}^{k}$, (3.2b) with $\frac{{\text{d}}}{{{\text{dt}}}}\alpha _j^k$, (3.2c) with $N_{, \sigma}^{k} := D \gamma_{j}^{k} + \chi (\delta_{1j} - \alpha_{j}^{k})$, and then summing the product from $j = 1$ to $k$ lead to

    $Ωtφkμkdx=Ωm(φk)|μk|2+Γφ,kμk+φkvkμkdx,Ωμktφkdx=ddtΩAΨ(φk)+B2|φk|2dxΩχσktφkdx,ΩtσkNk,σdx=Ωn(φk)|Nk,σ|2SkNk,σ+σkvkNk,σdx +Ωb(σσk)Nk,σdHd1. $

    Here, we used that $w_{1} = 1$ and $\nabla w_{1} = {0}$. Then, summing the three equations leads to

    $ddtΩAΨ(φk)+B2|φk|2+N(φk,σk)dx+Ωm(φk)|μk|2+n(φk)|Nk,σ|2dx+ΩDb|σk|2dHd1=ΩΓφ,kμkSkNk,σ+(φkvkμk+σkvkNk,σ)dx+Ωb(σNk,σσkχ(1φk))dHd1. $ (4.2)

    Next, multiplying (3.4) with $\frac{1}{K} {v}_{k}$, integrating over $\Omega$ and integrating by parts gives

    $Ω1K|vk|2dx=Ωpkvk+(μk+χσk)φkvkdx=ΩΓvpk+(μk+χσk)φkvk dx, $

    where we used that ${\text{div}} {v}_{k} = \Gamma_{{v}}$ and ${v}_{k} \cdot {n} = 0$ on $\partial \Omega$. Similarly, we see that

    $Ω(φkμk+σkNk,σ)vkdx=Ωφkvkμk+σkvk(Dσk+χ(1φk))dx=ΩφkΓvμk+(μk+χσk)vkφkD2vk|σk|2dx=ΩΓv(φkμk+D2|σk|2)+(μk+χσk)φkvk dx. $

    In particular, we have

    $\int_\Omega {\frac{1}{K}} {\left| {{v_k}} \right|^2}{\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right) - ({\varphi _k}\nabla {\mu _k} + {\sigma _k}\nabla N_{, \sigma }^k) \cdot {v_k}{\text{ dx}}.$ (4.4)

    Adding (4.3) to (4.2) leads to

    $ddtΩAΨ(φk)+B2|φk|2+N(φk,σk)dx+Ωm(φk)|μk|2+n(φk)|Nk,σ|2+1K|vk|2dx+ΩDb|σk|2dHd1=ΩΓφ,kμkSkNk,σ+Γv(pkμkφkD2|σk|2)dx+Ωb(σ(Dσk+χ(1φk))σkχ(1φk))dHd1. $ (4.3)

    To derive the first a priori estimate for the Galerkin ansatz, it suffices to bring (4.4) into a form where we can apply Gronwall's inequality. We start with estimating the boundary term on the right-hand side of (4.4). By Hölder's inequality and Young's inequality,

    $|Ωb(σ(Dσk+χ(1φk))σkχ(1φk))dHd1|b(σL2(Ω)Dσk+χ(1φk)L2(Ω)+χσkL2(Ω)(|Ω|12+φkL2(Ω)))Db2σk2L2(Ω)+b(1+χ2D)φk2L2(Ω)+bC(χ+(1+χ2)σ2L2(Ω)). $

    By the trace theorem and the growth condition (2.4), we have

    $φ2L2(Ω)C2tr(φ2L2+φ2L2)C2tr(1R1Ψ(φ)L1+φ2L2)+C(R2,|Ω|,Ctr), $ (4.5)

    where the positive constant $C_{\mathrm{tr}}$ from the trace theorem only depends on $\Omega$, and so

    $Ωb(σ(Dσk+χ(1φk))σkχ(1φk))dHd1Db2σk2L2(Ω)+Cb(1+χ2)(Ψ(φk)L1+φk2L2)+Cb(1+χ2)+bC(χ+(1+χ2)σ2L2(Ω)). $ (4.6)

    4.1. Estimation of the source terms

    For the source term

    $\int_\Omega {{\Gamma _{\varphi , k}}} {\mu _k} - {\mathcal{S}_k}N_{, \sigma }^k + {\Gamma _v}\left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}}$

    that appears on the right-hand side of (4.4) we will divide its analysis into two parts. We first analyse the part involving $\Gamma_{{v}}$, which will involve a closer look at the Darcy subsystem to deduce an estimate on ${\left\| {{p_k}} \right\|_{{L^2}}}$. For the remainder $\Gamma_{\varphi, k} \mu_{k} - \mathcal{S}_{k} N_{, \sigma}^{k}$ term we will estimate it differently based on the assumptions on $\Theta_{\varphi}$.


    4.1.1 Pressure estimates

    Before we estimate the source terms involving $\Gamma_{{v}}$, we look at the Darcy subsystem, which can be expressed as an elliptic equation for the pressure (we will drop the subscript $k$ for clarity)

    $- \Delta p = \frac{1}{K}{\Gamma _v} - {\text{div}} ((\mu + \chi \sigma )\nabla \varphi ){\text{ in }}\Omega , {\text{ with }}\bar p = 0, $ (4.7a)
    $\partial p = 0{\text{ on }}\partial \Omega .$ (4.7b)

    The following lemma is similar to [22, Lem. 3.1], and the hypothesis is fulfilled by the Galerkin ansatz.

    Lemma 4.1. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $C^{3}$-boundary. Given $\varphi \in H^{2}_{N}$, $\mu, \sigma \in H^{1}$, the source term $\Gamma_{{v}} \in L^{2}_{0}$, and the function $p$ satisfying the above elliptic equation (4.7). Then, the following estimate hold

    ${\left\| p \right\|_{{L^2}}} \leq \frac{C}{K}{\left\| {{\Gamma _v}} \right\|_{{L^2}}} + C\left( {{{\left\| {\nabla \mu } \right\|}_{{L^2}}} + \chi {{\left\| \sigma \right\|}_{{L^6}}}} \right){\left\| {\nabla \varphi } \right\|_{{L^{\frac{3}{2}}}}} + C\bar \mu {\left\| {\nabla \varphi } \right\|_{{L^2}}}, $ (4.8)

    for some positive constant $C$ depending only on $\Omega$.

    Proof. We first recall some properties of the inverse Neumann-Laplacian operator. Suppose for $g \in L^{2}_{0}$, $f = (-\Delta _{N})^{-1} g \in H^{1} \cap L^{2}_{0}$ solves

    $- \Delta f = g{\text{ in }}\Omega , \quad {\text{ }}\partial f = 0{\text{ on }}\partial \Omega .$ (4.9)

    Then, testing with $f$ and integrating over $\Omega$, applying integration by parts and the Poincaré inequality (1.9) leads to

    ${\left\| {{{\left( { - {\Delta _N}} \right)}^{ - 1}}g} \right\|_{{H^1}}} = {\left\| f \right\|_{{H^1}}} \leq c{\left\| {\nabla f} \right\|_{{L^2}}} \leq C{\left\| g \right\|_{{L^2}}}, $ (4.10)

    for positive constants $c$ and $C$ depending only on $C_{p}$. Elliptic regularity theory then gives that $f \in H^{2}_{N}$ with

    ${\left\| f \right\|_{{H^2}}} \leq C\left( {{{\left\| f \right\|}_{{H^1}}} + {{\left\| g \right\|}_{{L^2}}}} \right) \leq C{\left\| g \right\|_{{L^2}}}, $ (4.11)

    with a positive constant $C$ depending only on $\Omega$. Returning to the pressure system, we observe from (2.10) and the above that

    $pL21K(ΔN)1ΓvL2+(ΔN)1(div((μ+χσ)φ))L2CKΓvL2+(ΔN)1(div((μˉμ+χσ)φ))L2+(ΔN)1(div(ˉμφ))L2, $ (4.12)

    for some positive constant $C$ depending only on $C_{p}$. Note that the third term on the right-hand side can be estimated as

    $\bar \mu {\left\| {{{\left( { - {\Delta _N}} \right)}^{ - 1}}{\text{div}}\nabla (\varphi - \bar \varphi )} \right\|_{{L^2}}} = \bar \mu {\left\| {\varphi - \bar \varphi } \right\|_{{L^2}}} \leq {C_p}\bar \mu {\left\| {\nabla \varphi } \right\|_{{L^2}}}.$ (4.13)

    We now consider estimating the second term on the right-hand side of (4.12). By assumption $\mu, \sigma \in H^{1}$ and $\varphi \in H^{2}_{N}$, we have that

    ${\left\| {(\mu - \bar \mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu - \bar \mu + \chi \sigma } \right\|_{{L^6}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}}, $ (4.14)

    and so if we consider the function $h: = {( - {\Delta _N})^{ - 1}}({\text{div}}((\mu - \bar \mu + \chi \sigma )\nabla \varphi ))$, then we obtain that

    $\int_\Omega \nabla h \cdot \nabla \zeta {\text{ dx}} = \int_\Omega - (\mu - \bar \mu + \chi \sigma )\nabla \varphi \cdot \nabla \zeta {\text{ dx}}\quad \forall \zeta \in {H^1}$ (4.15)

    must hold, and by (4.14) and the Poincaré inequality (1.9) with zero mean it holds that $h \in H^{1} \cap L^{2}_{0}$. We now define $f:= (-\Delta _{N})^{-1}(h) \in H^{2}_{N}$, and consider testing with $\zeta = f$ in (4.15), leading to

    $\int_\Omega {} {\left| h \right|^2}{\text{ dx}} = \int_\Omega \nabla h \cdot \nabla f{\text{ dx}} = \int_\Omega - (\mu - \bar \mu + \chi \sigma )\nabla \varphi \cdot \nabla f{\text{ dx}}.$

    Since $f \in H^{2}_{N}$, elliptic regularity theory and Hölder's inequality gives

    $h2L2(μˉμ+χσ)φL65fL6C(μˉμ+χσ)φL65fH2C(μˉμ+χσ)φL65hL2, $

    where the constant $C$ depends on $\Omega$ and the constant in (4.11). Thus we obtain

    $(ΔN)1(div((μˉμ+χσ)φ))L2C(μˉμ+χσ)φL65C(μˉμL6+χσL6)φL32 $ (4.16)

    for some constant $C$ depending only on $\Omega$. By the Sobolev embedding $H^{1} \subset L^{6}$ (with constant $C_{\mathrm{Sob}}$ that depends only on $\Omega$) and the Poincaré inequality, we find that

    ${\left\| {\mu - \bar \mu } \right\|_{{L^6}}} \leq {C_{{\text{Sob}}}}{\left\| {\mu - \bar \mu } \right\|_{{H^1}}} \leq c({C_{{\text{Sob}}}}, {C_p}){\left\| {\nabla \mu } \right\|_{{L^2}}}.$ (4.17)

    Substituting the above elements into (4.12) yields (4.8).

    Remark 4.1. We choose not to use the estimate

    $c{\left\| h \right\|_{{L^2}}} \leq {\left\| {\nabla h} \right\|_{{L^2}}} \leq {\left\| {(\mu - \bar \mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}}$ (4.18)

    obtained from substituting $\zeta = h$ in (4.15), where $c$ is a positive constant depending only on $C_{p}$, since by (4.14) we require control of $\nabla \varphi$ in the ${L}^{3}(\Omega)$-norm and this is not available when deriving the first a priori estimate. Thus, we make use of the auxiliary problem $f = (-\Delta _{N})^{-1}(h)$ to derive another estimate on ${\left\| h \right\|_{{L^2}}}$ that involves controlling $\nabla \varphi$ in the weaker ${L}^{\frac{3}{2}}(\Omega)$-norm.

    Next, we state regularity estimates for the pressure and the velocity field. The hypothesis will be fulfilled for the Galerkin ansatz once we derived the a priori estimates in Section 4. Note that in Lemma 4.2 below, we consider a source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, so that our new regularity results for the pressure and the velocity is also applicable to the setting considered in [22].

    Lemma 4.2. Let $\varphi \in L^{\infty}(0, T;H^{1}) \cap L^{2}(0, T;H^{2}_{N} \cap H^{3})$, $\sigma \in L^{2}(0, T;H^{1})$, $\mu \in L^{2}(0, T;H^{1})$, the source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, and the function $p$ satisfying (4.7). Then,

    $\left\| p \right\|_{{L^{\frac{8}{5}}}({H^1})}^{\frac{8}{5}} \leq {C_1}\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{6}{5}}\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{5}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{2}{5}} + \frac{{{C_1}}}{K}{T^{\frac{1}{5}}}\left\| {{\Gamma _v}} \right\|_{{L^2}({L^2})}^{\frac{8}{5}}, $ (4.19)

    for some positive constant $C_{1}$ depending only on $\Omega$, and

    $p87L87(H2)C2T37K87Γv87L2(L2)+C2T27p87L85(H1)+C2φ27L(H1)μ+χσ87L2(H1)φ67L2(H3), $ (4.20)

    for some positive constant $C_{2}$ depending only on $\Omega$. Moreover, if we have the relation

    $v = - K\left( {\nabla p - (\mu + \chi \sigma )\nabla \varphi } \right), $

    then

    $\left\| {{\text{D}}v} \right\|_{{L^{\frac{8}{7}}}({L^2})}^{\frac{8}{7}} \leq {C_3}K\left\| p \right\|_{{L^{\frac{8}{7}}}({H^2})}^{\frac{8}{7}} + {C_3}K\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{7}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{6}{7}}\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{2}{7}}, $ (4.21)

    for some positive constant $C_{3}$ depending only on $\Omega$.

    Proof. From (4.7) we see that $p$ satisfies $\bar p{\text{ = 0}}$ and

    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta + \frac{1}{K}{\Gamma _v}\zeta {\text{ dx}}\quad \forall \zeta \in {H^1}(\Omega ).$

    Testing with $\zeta = p$ and applying the Hölder's inequality and the Poincaré inequality (1.9) gives

    ${\left\| {\nabla p} \right\|_{{L^2}}} \leq {\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} + \frac{{{C_p}}}{K}{\left\| {{\Gamma _v}} \right\|_{{L^2}}}.$ (4.22)

    Applying Hölder's inequality and the Sobolev embedding $H^{1} \subset L^{6}$ yields that

    ${\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu + \chi \sigma } \right\|_{{L^6}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}} \leq {C_{{\text{Sob}}}}{\left\| {\mu + \chi \sigma } \right\|_{{H^1}}}{\left\| {\nabla \varphi } \right\|_{{L^3}}}.$ (4.23)

    By the Gagliardo--Nirenberg inequality (1.10) with parameters $j = 0$, $p = 3$, $r = 2$, $m = 2$, $d = 3$ and $q = 2$,

    ${\left\| {\nabla \varphi } \right\|_{{L^3}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{4}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{3}{4}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{4}}\left\| \varphi \right\|_{{H^1}}^{\frac{3}{4}}, $ (4.24)

    where $C > 0$ is a constant depending only on $\Omega$. Then, the boundedness of $\mu, \sigma$ in $L^{2}(0, T;H^{1})$ and $\varphi$ in $L^{2}(0, T;H^{3}) \cap L^{\infty}(0, T;H^{1})$ leads to

    $T0(μ+χσ)φ85L2dtCT0μ+χσ85H1φ25H3φ65H1dtCφ65L(H1)μ+χσ85L2(H1)φ25L2(H3). $

    By (4.22) we find that

    $T0p85L2dtT0(μ+χσ)φ85L2+CKΓv85L2dtC[φ]65L(H1)μ+χσ85L2(H1)φ25L2(H3)+CKT15Γv85L2(L2), $

    where the positive constant $C$ depends only on $\Omega$. As $\bar p{\text{ = 0}}$, by the Poincarö inequality (1.9), we see that

    $\left\| p \right\|_{{L^{\frac{8}{5}}}({H^1})}^{\frac{8}{5}} \leq C\left\| \varphi \right\|_{{L^\infty }({H^1})}^{\frac{6}{5}}\left\| {\mu + \chi \sigma } \right\|_{{L^2}({H^1})}^{\frac{8}{5}}\left\| \varphi \right\|_{{L^2}({H^3})}^{\frac{2}{5}} + \frac{C}{K}{T^{\frac{1}{5}}}\left\| {{\Gamma _v}} \right\|_{{L^2}({L^2})}^{\frac{8}{5}}, $

    for some positive constant $C$ depending only on $\Omega$. Next, we see that

    $div((μ+χσ)φ)L2(μ+χσ)ΔφL2+(μ+χσ)φL2μ+χσL6ΔφL3+(μ+χσ)L2φL. $

    By the Gagliardo-Nirenberg inequality (1.10), we find that

    $D2φL3Cφ34H3φ14L6Cφ34H3φ14H1,φLCφ34H3φ14L6Cφ34H3φ14H1, $ (4.25)

    and so, we have

    ${\left\| {{\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right\|_{{L^2}}} \leq C{\left\| {\mu + \chi \sigma } \right\|_{{H^1}}}\left\| \varphi \right\|_{{H^3}}^{\frac{3}{4}}\left\| \varphi \right\|_{{H^1}}^{\frac{1}{4}}.$ (4.26)

    That is, ${\text{div}} (( \mu + \chi \sigma) \nabla \varphi) \in L^{2}$. Since by assumption $\Gamma_{{v}} \in L^{2}_{0}$, using elliptic regularity theory, we find that $p(t, \cdot) \in H^{2}$ for a.e. $t$ and there exists a constant $C$ depending only on $\Omega$, such that

    ${\left\| p \right\|_{{H^2}}} \leq C\left( {{{\left\| p \right\|}_{{H^1}}} + {{\left\| {{\text{div}}((\mu + \chi \sigma )\nabla \varphi )} \right\|}_{{L^2}}} + {K^{ - 1}}{{\left\| {{\Gamma _v}} \right\|}_{{L^2}}}} \right).$ (4.27)

    Furthermore, from (4.26), we see that

    $T0div((μ+χσ)φ)87L2dtCφ27L(H1)T0μ+χσ87H1φ67H3dtCφ27L(H1)μ+χσ87L2(H1)φ67L2(H3), $

    and so for some positive constant $C$ depending only on $\Omega$, it holds that

    $T0p87H2dtCT37K87Γv87L2(L2)+CT27p87L85(H1)+Cφ27L(H1)μ+χσ87L2(H1)φ67L2(H3). $ (4.28)

    For the velocity field ${v}$ we estimate as follows. Let $1 \leq i, j \leq 3$ be fixed, we obtain from (4.25),

    $DivjL2=KDiDjpDi(μ+χσ)Djφ(μ+χσ)DiDjφL2K(pH2+(μ+χσ)L2φL+μ+χσL6D2φL3)K(pH2+Cμ+χσH1φ34H3φ14H1). $ (4.29)

    Applying the same calculation as in (4.28) yields

    $T0Dv87L2dtCKT0p87H2+μ+χσ87H1φ67H3φ27H1dtCK(p87L87(H2)+μ+χσ87L2(H1)φ67L2(H3)φ27L(H1)), $

    for some positive constant $C$ depending only on $\Omega$.


    4.1.2 Source term from the Darcy system

    To estimate the third source term

    $\int_\Omega {{\Gamma _v}} \left( {{p_k} - {\mu _k}{\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{p_k} - {{\bar \mu }_k}{\varphi _k} + ({\mu _k} - {{\bar \mu }_k}){\varphi _k} - \frac{D}{2}{{\left| {{\sigma _k}} \right|}^2}} \right){\text{ dx}}$

    of the energy equality we use Hölder’s inequality to obtain

    $|ΩΓvD2|σk|2+Γvφk(μkˉμk)dx|D2ΓvL2σk2L4+ΓvL32μkˉμkL6φkL6. $

    By the Gagliardo--Nirenberg inequality (1.10) with $j = 0$, $r = 2$, $m = 1$, $p = 4$, $q = 2$ and $\alpha = \frac{3}{4}$, we have

    $\left\| {{\sigma _k}} \right\|_{{L^4}}^2 \leq C\left\| {{\sigma _k}} \right\|_{{H^1}}^{\frac{3}{2}}\left\| {{\sigma _k}} \right\|_{{L^2}}^{\frac{1}{2}} = C\left( {\left\| {{\sigma _k}} \right\|_{{L^2}}^2 + \left\| {{\sigma _k}} \right\|_{{L^2}}^{\frac{1}{2}}{{\left\| {\nabla \sigma } \right\|}_k}_{{L^2}}^{\frac{3}{2}}} \right).$

    By Young's inequality with Hölder exponents (i.e., $ab \leq \frac{\varepsilon }{p} a^{p} + \frac{\varepsilon ^{-q/p}}{q} b^{q}$ for $\frac{1}{p} + \frac{1}{q} = 1$ and $\varepsilon > 0$), we find that

    $\frac{D}{2}{\left\| {{\Gamma _v}} \right\|_{{L^2}}}\left\| {{\sigma _k}} \right\|_{{L^4}}^2 \leq C\left( {{{\left\| {{\Gamma _v}} \right\|}_{{L^2}}}\left\| {{\sigma _k}} \right\|_{{L^2}}^2 + \left\| {{\Gamma _v}} \right\|_{{L^2}}^4\left\| {{\sigma _k}} \right\|_{{L^2}}^2} \right) + \frac{{{n_0}{D^2}}}{4}\left\| {\nabla {\sigma _k}} \right\|_{{L^2}}^2, $

    for some positive constant $C$ depending only in $n_{0}$, $D$ and $\Omega$. Then, by (4.17) we have

    $|ΩΓvD2|σk|2+Γvφk(μk¯μk)dx|n0D24σk2L2+C(1+Γv4L2)σk2L2+ΓvL32c(Cp,CSob)μkL2φkH1n0D24σk2L2+C(1+Γv4L2)σk2L2+m08μk2L2+CΓv2L2φk2H1, $

    where the positive constant $C$ depends only on $\Omega$, $m_{0}$, $n_{0}$ and $D$. Here we point out that the assumption $\Gamma_{{v}} \in L^{4}(0, T;L^{2}_{0})$ is needed. For the remainder term $\Gamma_{{v}} (p_{k} - \overline{\mu_{k}} \varphi_{k})$, we find that

    $pk¯μkφk=((ΔN)1(1KΓvdiv((μk¯μk+χσk)φk)¯μkdiv(φk¯φk)))¯μkφk=((ΔN)1(1KΓvdiv((μk¯μk+χσk)φk)))¯μk¯φk, $

    where we used

    ${( - {\Delta _N})^{ - 1}}\left( { - \overline {{\mu _k}} {\text{div}}\nabla ({\varphi _k} - \overline {{\varphi _k}} )} \right) = \overline {{\mu _k}} ({\varphi _k} - \overline {{\varphi _k}} ).$

    Then, by

    $\int_\Omega {{\Gamma _v}} \overline {{\varphi _k}} \overline {{\mu _k}} {\text{ dx}} = \overline {{\mu _k}} \overline {{\varphi _k}} \int_\Omega {{\Gamma _v}} {\text{ dx}} = 0, $

    it holds that

    $\int_\Omega {{\Gamma _v}} ({p_k} - \overline {{\mu _k}} {\varphi _k}){\text{ dx}} = \int_\Omega {{\Gamma _v}} \left( {{{\left( { - {\Delta _N}} \right)}^{ - 1}}\left( {\frac{1}{K}{\Gamma _v} - {\text{div}}(({\mu _k} - \overline {{\mu _k}} + \chi {\sigma _k})\nabla {\varphi _k})} \right)} \right).$

    Applying the calculations in the proof of Lemma 4.1 (specifically (4.10), (4.16) and (4.17)), H¨older’s inequality and Young’s inequality, we find that

    $|ΩΓv(pk¯μkφk)dx|CKΓv2L2+CΓvL2(μkL2+χσkH1)φkL32CKΓv2L2+m08μk2L2+n0D24σk2L2+σk2L2+C(1+χ2)Γv2L2φk2L2, $

    where $C$ is a positive constant depending only on $\left| \Omega \right|$, $C_{p}$, $C_{\mathrm{Sob}}$, $D$, $n_{0}$ and $m_{0}$. Here we point out that if we applied (4.18) instead of (4.8) then we obtain a term containing ${\left\| {\nabla \varphi } \right\|_{{L^3}}}$ on the right-hand side and this cannot be controlled by the left-hand side of (4.4). Using (2.4) we have

    $\left\| {{\varphi _k}} \right\|_{{L^2}}^2 \leq \frac{1}{{{R_1}}}{\left\| {\Psi ({\varphi _k})} \right\|_{{L^1}}} + \frac{{{R_2}}}{{{R_1}}}\left| \Omega \right|.$ (4.30)

    Then, we obtain the following estimate

    $|ΩΓv(pkμkφkD2|σk|2)dx|C(1KΓv2L2+1)+n0D22σk2L2+m04μk2L2+C(1+Γv4L2)σk2L2+CΨ(φk)L1+C(1+χ2)Γv2L2φk2L2, $ (4.31)

    for some positive constant $C$ depending only on $R_{1}$, $R_{2}$, $\Omega$, $m_{0}$, $n_{0}$ and $D$. Here we point out that it is crucial for the source term $\Gamma_{{v}}$ to be prescribed and is not a function of $\varphi$, $\mu$ and $\sigma$, otherwise the product term $\left\| {{\Gamma _v}} \right\|_{{L^2}}^4\left\| {{\sigma _k}} \right\|_{{L^2}}^2$ and $\left\| {{\Gamma _v}} \right\|_{{L^2}}^2\left\| {\nabla {\varphi _k}} \right\|_{{L^2}}^2$ cannot be controlled in the absence of any a priori estimates. For the remaining source term

    $\int_\Omega {{\Gamma _{\varphi , k}}} {\mu _k} - {\mathcal{S}_k}N_{, \sigma }^k{\text{ dx}}$

    we split the analysis into two cases and combine with (4.31) to derive an energy inequality.


    4.1.3 Energy inequality for non-negative $\Theta_{\varphi}$

    Suppose $\Theta_{\varphi}$ is non-negative and bounded, and $\Psi$ is a potential that satisfies (2.5). We will estimate the mean of $\mu_{k}$ by setting $j = 1$ in (3.2b), and using the growth condition (2.5) to obtain

    $|Ωμkdx|2=|ΩAΨ(φk)χσkdx|22A2Ψ(φk)2L1+2χ2σk2L12A2R24(|Ω|+|Ω|12φkL2)2+2χ2|Ω|σk2L2C(A,R4,|Ω|)+4A2R24|Ω|σk2L2+2χ2|Ω|σk2L2. $

    Then, by the Poincarö inequality (1.9) and the growth condition (2.4), we find that

    $μk2L22C2Pμk2L2+2|Ω||¯μk|22C2pμk2L2+8A2R24φk2L2+4χ2σk2L2+C(A,R4,|Ω|)2C2pμk2L2+8A2R24R1Ψ(φk)L1+4χ2σk2L2+C(A,R4,R1,R2,|Ω|). $ (4.32)

    Note that by the specific form (2.1) for $\Gamma_{\varphi}$ we have that

    ${\Gamma _{\varphi , k}}{\mu _k} = {\Lambda _\varphi }({\varphi _k}, {\sigma _k}){\mu _k} - {\Theta _\varphi }({\varphi _k}, {\sigma _k}){\text{ }}{\left| {{\mu _k}} \right|^2}.$

    Moving the non-negative term ${\Theta _\varphi }({\varphi _k}, {\sigma _k}){\left| {{\mu _k}} \right|^2}$ to the left-hand side of (4.4) and subsequently neglecting it, we estimate the remainder using the growth condition (2.3) and Hölder's inequality as follows (here we use the notation $\Lambda_{\varphi, k} := \Lambda_{\varphi}(\varphi_{k}, \sigma_{k})$),

    $|ΩΛφ,kμkSk(Dσk+χ(1φk))dx|Λφ,kL2μkL2+(ΛS,kL2+R0μkL2)Dσk+χ(1φk)L2C(1+χ+(1+χ)φkL2+(1+D)σkL2)μkL2+C(1+φkL2+σL2)(χ|Ω|12+DσL2+χφkL2) $ (4.33)

    where $C$ is a positive constant depending only on $R_{0}$ and $\left| \Omega \right|$. By Young's inequality, (4.32) and (4.30), we have

    $|ΩΛφ,kμkSk(Dσk+χ(1φk))dx|m08C2pμk2L2+C(1+χ+D+χ2)φk2L2+C(1+χ+D)2σk2L2+C(1+χ+χ2)m04μk2L2+C(1+χ2)σk2L2+C(1+χ2)Ψ(φk)L1+C(1+χ2), $ (4.34)

    for some positive constant $C$ depending only on $\left| \Omega \right|$, $R_{0}$, $R_{1}$, $R_{2}$, $R_{4}$, $A$, $D$, $C_{p}$ and $m_{0}$. Using the fact that

    ${\left\| {D\nabla \sigma } \right\|_{{L^2}}} \leq {\left\| {\nabla (D\sigma + \chi (1 - \varphi ))} \right\|_{{L^2}}} + {\left\| {\chi \nabla \varphi } \right\|_{{L^2}}}, $

    we now estimate the right-hand side of (4.4) using (4.6), (4.31) and (4.34), which leads to

    $ddtΩAΨ(φk)+B2|φk|2+D2|σk|2+χσk(1φk)dx+m02μk2L2+n0D22σk2L2+1Kvk2L2+Db2σk2L2(Ω)C(1+b)(1+χ2)Ψ(φk)L1+C(Γv2L2+b)(1+χ2)φk2L2+C(1+χ2+Γv4L2)σk2L2+C(1+b)(1+χ2)+CKΓv2L2+bC(1+χ2)σ2L2(Ω), $ (4.35)

    for some positive constant $C$ not depending on $\Gamma_{{v}}$, $K$, $b$ and $\chi$. Integrating (4.35) with respect to $t$ from $0$ to $s \in (0, T]$ leads to

    $AΨ(φk(s))L1+B2φk(s)2L2+D2σk(s)2L2+Ωχσk(s)(1φk(s))dx+s0m02μk2L2+n0D22σk2L2+1Kvk2L2+Db2σk2L2(Ω)dts0C(1+b)(1+χ2)(1+Γv4L2)(Ψ(φk)L1+φk2L2+σk2L2)dt+C(1+b)(1+χ2)T+CKΓv2L2(0,T;L2)+Cb(1+χ2)σ2L2(0,T;L2(Ω))+C(Ψ(φ0)L1+φ02H1+σ02L2), $ (4.36)

    for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $\chi$ and $b$. Here we used $\sigma_{0} \in L^{2}$ and $\varphi_{0} \in H^{1}$, which implies by the growth condition (2.5) that $\Psi(\varphi_{0}) \in L^{1}$. Next, by Hölder's inequality and Young's inequality we have

    $|Ωχσk(x,s)(1φk(x,s))dx|2D8σk(s)2L2+2χ2|Ω|D+2χ2Dφk(s)2L2D4σk(s)2L2+2χ2DR1Ψ(φk(s))L1+2χ2|Ω|D(1+R2). $ (4.37)

    Substituting (4.37) into (4.36) then yields

    $min(A2χ2DR1,B2,D4)(Ψ(φk(s))L1(Ω)+φk(s)2L2(Ω)+σk(s)2L2(Ω))+s0μk2L2+σk2L2+1Kvk2L2+b2σk2L2(Ω)dts0C(1+b)(1+χ2)(1+Γv4L2)(Ψ(φk)L1+φk2L2+σk2L2)dt+C(1+b)(1+χ2)(1+T)+CKΓv2L2(0,T;L2), $ (4.38)

    for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $b$ and $\chi$. Setting

    $α:=C(1+b)(1+χ2)(1+T)+CKΓv2L2(0,T;L2),β:=C(1+b)(1+χ2)(1+Γv4L2)L1(0,T), $ (4.39)

    and noting that

    $\alpha \left( {1 + \int_0^s \beta (t)\exp \left( {\int_0^t \beta (r){\text{ dr}}} \right){\text{ dt}}} \right) \leq \alpha \left( {1 + {{\left\| \beta \right\|}_{{L^1}(0, T)}}\exp \left( {{{\left\| \beta \right\|}_{{L^1}(0, T)}}} \right)} \right) < \infty , $

    we find after applying the Gronwall inequality (1.11) to (4.38) leads to

    $sups(0,T](Ψ(φk(s))L1+φk(s)2L2+σk(s)2L2)+T0μk2L2+σk2L2+1Kvk2L2+b2σk2L2(Ω)dtE, $ (4.40)

    where we recall that $\mathcal{E}$ denotes a constant that is uniformly bounded for $b, \chi \in (0, 1]$ and is also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.


    4.1.4 Energy inequality for positive $\Theta_{\varphi}$

    Suppose $\Theta_{\varphi}$ satisfies (2.6) and $\Psi$ is a potential satisfying the growth condition (2.7). Similar to the previous case, we see that the specific form for $\Gamma_{\varphi}$ leads to

    ${\Gamma _{\varphi , k}}{\mu _k} = {\Lambda _\varphi }({\varphi _k}, {\sigma _k}){\mu _k} - {\Theta _\varphi }({\varphi _k}, {\sigma _k}){\text{ }}{\left| {{\mu _k}} \right|^2}.$

    We move the term ${\Theta _\varphi }({\varphi _k}, {\sigma _k}){\left| {{\mu _k}} \right|^2}$ to the left-hand side of (4.4) and estimate the remainder as in (4.33). Using Young's inequality differently and also (4.30), we have

    $|ΩΛφ,kμkSk(Dσk+χ(1φk))dx|R52μk2L2+C(1+χ+D+χ2)φk2L2+C(1+χ+D)2σk2L2+C(1+χ+χ2)R52μk2L2+C(1+χ2)σk2L2+C(1+χ2)Ψ(φk)L1+C(1+χ2), $ (4.41)

    for some positive constant $C$ depending only on $\left| \Omega \right|$, $R_{5}$, $R_{1}$, $R_{2}$, $A$, $D$, and $C_{p}$. Using (4.6), (4.31), (4.41) and the lower bound $\Theta_{\varphi} \geq R_{5}$, instead of (4.35) we obtain from (4.4)

    $ddtΩAΨ(φk)+B2|φk|2+D2|σ|k2+χσk(1φk)dx+R52μk2L2+m02μk2L2(Ω)+n0D22σk2L2+1Kvk2L2+Db2σk2L2(Ω)C(1+b)(1+χ2)Ψ(φk)L1+C(Γv2L2+b)(1+χ2)φk2L2+C(1+χ2+Γv4L2)σk2L2+C(1+b)(1+χ2)+CKΓv2L2+Cb(1+χ2)σ2L2(Ω), $ (4.42)

    for some positive constant $C$ independent of $\Gamma_{{v}}$, $K$, $b$ and $\chi$. We point out the main difference between (4.35) and the above is the appearance of the term $\frac{{{R_5}}}{2}\left\| {{\mu _k}} \right\|_{{L^2}}^2$ on the left-hand side. The positivity of $\Theta_{\varphi}$ allows us to absorb the $\left\| {{\mu _k}} \right\|_{{L^2}}^2$ term on the right-hand side of (4.41) and thus we do not need to use (4.32), which was the main reason why $\Psi$ has to be a quadratic potential for a non-negative $\Theta_{\varphi}$. Then, applying a similar argument as in Section 4.1.3, we arrive at an analogous energy inequality to (4.40),

    $sups(0,T](Ψ(φk(s))L1+φk(s)2L2+σk(s)2L2)+T0μk2H1+σk2L2+1Kvk2L2+b2σk2L2(Ω)dtE. $ (4.43)

    Using (4.32) and (4.30) applied to (4.40), and similarly using (4.30) applied to (4.43) we obtain

    $sups(0,T](Ψ(φk(s))L1+φk(s)2H1+σk(s)2L2)+T0μk2H1+σk2L2+1Kvk2L2+b2σk2L2(Ω)dtE. $ (4.44)

    This a priori estimate implies that the Galerkin ansatz $\varphi_{k}$, $\mu_{k}$, $\sigma_{k}$ and ${v}_{k}$ can be extended to the interval $[0, T]$. To determine if $p_{k}$ can also be extended to the interval $[0, T]$ we require some higher order estimates for $\varphi_{k}$ in order to use (4.19).


    4.2. Higher order estimates

    Let $\Pi_{k}$ denote the orthogonal projection onto the finite-dimensional subspace $W_{k}$. From (3.2b) we may view $\varphi_{k}$ as the solution to the following elliptic equation

    $- B\Delta u + u = {\mu _k} - A{\Pi _k}\left( {\Psi '(u)} \right) + \chi {\sigma _k} + u{\text{ in }}\Omega , $ (4.45a)
    ${\partial _n}u = 0{\text{ on }}\partial \Omega .$ (4.45b)

    For the case where $\Psi$ satisfies (2.5), as $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{\infty}(0, T;H^{1})$, we have that $\{ \Psi'(\varphi_{k})\}_{k \in \mathbb{N}}$ is also bounded in $L^{\infty}(0, T;H^{1})$. Using the fact that our basis functions $\{w_{i}\}_{i \in \mathbb{N}}$ are the eigenfunctions of the inverse Neumann-Laplacian operator and is therefore orthogonal in $H^{1}$, and the Sobolev embedding $H^{1} \subset L^{r}$ for $r \in [1, 6]$, there exists a positive constant $C$ independent of $\varphi_{k}$ such that

    ${\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_X} \leq C{\left\| {\Psi '({\varphi _k})} \right\|_X}\quad {\text{ for }}X = {H^1}{\text{ or }}{L^r}, 1 \leq r \leq 6.$ (4.46)

    Then, this implies that $\{\Pi_{k} \left ( \Psi'(\varphi_{k} ) \right )\}_{k \in \mathbb{N}}$ is also bounded in $L^{\infty}(0, T;H^{1})$. As the right-hand side of (4.45a) belongs to $H^{1}$ for a.e. $t \in (0, T)$, and the boundary $\partial \Omega$ is $C^{3}$, by elliptic regularity theory, we have

    ${\left\| {{\varphi _k}} \right\|_{{L^2}({H^3})}} \leq C\left( {1 + {{\left\| {{\varphi _k}} \right\|}_{{L^2}({H^1})}} + {{\left\| {{\mu _k} + \chi {\sigma _k}} \right\|}_{{L^2}({H^1})}}} \right) \leq \mathcal{E}, $ (4.47)

    for some positive constant $C$ depending only on $\Omega$ and $R_{4}$. For the case where $\Psi$ satisfies (2.7), we employ a bootstrap argument from [18, x3.3]. The growth assumption (2.7) implies that

    $\left| {\Psi '(y)} \right| \leq C\left( {1 + {{\left| y \right|}^m}} \right), \quad {\text{ }}\left| {\Psi ''(y)} \right| \leq C\left( {1 + {{\left| y \right|}^{m - 1}}} \right){\text{ for }}m \in [1, 5).$ (4.48)

    For fixed $m \in [1, 5)$, we define a sequence of positive numbers $\{l_{j}\}_{j \in \mathbb{N}}$ by

    $l_{1}m \leq 6, \quad l_{j+1} = \frac{6 l_{j}}{6 - (5-m)l_{j}}.$

    It can be shown that $\{l_{j}\}_{j \in \mathbb{N}}$ is a strictly increasing sequence such that $l_{j} \to \infty$ as $j \to \infty$. The Gagliardo--Nirenberg inequality (1.10) then yields the following continuous embedding

    $L^{2}(0, T;W^{2, l_{j}}) \cap L^{\infty}(0, T;L^{6}) \subset L^{2m}(0, T;L^{m l_{j+1}}).$ (4.49)

    At the first step, the boundedness of $\{\varphi_{k}\}_{k \in \mathbb{N}}$ in $L^{\infty}(0, T;H^{1})$ yields

    $\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_{{L^{{l_1}}}}^2 \leq C\left( {1 + \left\| {{\varphi _k}} \right\|_{{L^6}}^{2m}} \right), $

    which implies that $\{\Pi_{k}(\Psi'(\varphi_{k})) \}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;L^{l_{1}})$. As the other terms on the right-hand side of (4.45) are bounded in $L^{2}(0, T;H^{1})$, elliptic regularity then yields that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, l_{1}})$, and thus in $L^{2m}(0, T;L^{ml_{2}})$ by (4.49).

    At the $j$-th step, we have $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T, W^{2, l_{j}}) \cap L^{2m}(0, T;L^{m l_{j+1}})$. Then, it holds that

    $\left\| {{\Pi _k}(\Psi '({\varphi _k}))} \right\|_{{L^2}({L^{{l_{j + 1}}}})}^2 \leq C\left( {1 + \left\| {{\varphi _k}} \right\|_{{L^{2m}}({L^{m{l_{j + 1}}}})}^{2m}} \right), $

    and so $\{\Pi_{k}(\Psi'(\varphi_{k})) \}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;L^{l_{j+1}})$. Elliptic regularity then implies that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, l_{j+1}})$.

    We terminate the bootstrapping procedure once $l_{j} \geq 6$ for some $j \in \mathbb{N}$. This occurs after a finite number of steps as $\lim_{j \to \infty} l_{j} = \infty $. Altogether, we obtain that $\{\varphi_{k}\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;W^{2, 6})$. From (4.48) it holds that

    ${\left\| {\Psi ''({\varphi _k})\nabla {\varphi _k}} \right\|^2} \leq C\left( {1 + {{\left| {{\varphi _k}} \right|}^{2m - 2}}} \right){\left| {\nabla {\varphi _k}} \right|^2}{\text{ for }}m \in [1, 5), $

    and by the following continuous embeddings obtain from the Gagliardo-Nirenberg inequality (1.10),

    $L^{2}(0, T;W^{2, 6}) \cap L^{\infty}(0, T;H^{1}) \subset L^{2m}(0, T;L^{2m}) \cap L^{2m-2}(0, T;L^{\infty}) \text{ for } m \in [1, 5), $

    we find that $\{\Pi_{k}(\Psi'(\varphi_{k}))\}_{k \in \mathbb{N}}$ is bounded in $L^{2}(0, T;H^{1})$. Applying elliptic regularity once more leads to the boundedness of $\{\varphi_{k}\}_{k \in \mathbb{N}}$ in $L^{2}(0, T;H^{3})$. Consequently, the hypotheses of Lemma 4.2 are satisfied and we obtain that

    ${\left\| {{p_k}} \right\|_{{L^{\frac{8}{5}}}({H^1})}} \leq \mathcal{E}, $

    which implies that the Galerkin ansatz $p_{k}$ can be extended to the interval $[0, T]$.


    4.3. Estimates for the convection terms and the time derivatives

    By the Gagliardo-Nirenberg inequality (1.10) with $j = 0$, $p = \infty$, $m = 3$, $r = 2$, $q = 2$ and $d = 3$, we have

    ${\left\| {{\varphi _k}} \right\|_{{L^\infty }}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{4}}\left\| {{\varphi _k}} \right\|_{{L^6}}^{\frac{3}{4}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{4}}\left\| {{\varphi _k}} \right\|_{{H^1}}^{\frac{3}{4}}.$

    For any $\zeta \in L^{\frac{8}{3}}(0, T;H^{1})$ with coefficients $\{\zeta_{kj}\}_{1 \leq j \leq k} \subset \mathbb{R}^{k}$ such that $\Pi_{k} \zeta = \sum_{j=1}^{k} \zeta_{kj} w_{j}$, we can estimate

    $|T0ΩφkvkΠkζdx dt|T0vkL2φkLΠkζL2dtCφk34L(H1)vkL2(L2)φk14L2(H3)ζL83(H1). $ (4.50)

    Using (4.44) and (4.47), we find that

    ${\left\| {{\text{div}}({\varphi _k}{v_k})} \right\|_{{L^{\frac{8}{5}}}({{({H^1})}^*})}} \leq {K^{\frac{1}{2}}}\mathcal{E}.$ (4.51)

    Next, multiplying (3.2a) by $\zeta_{kj}$, summing from $j = 1$ to $k$ and then integrating in time from $0$ to $T$ leads to

    $|T0Ωtφkζdx dt|T0m1μkL2ΠkζL2dt+T0Γφ,kL2ΠkζL2+div(φkvk)(H1)ΠkζH1dt. $

    By (2.1), (2.2) and (4.44), we find that

    ${\left\| {{\Gamma _{\varphi , k}}} \right\|_{{L^2}({L^2})}} \leq C({R_0}, \left| \Omega \right|, T)\left( {1 + {{\left\| {{\varphi _k}} \right\|}_{{L^2}({L^2})}} + {{\left\| {{\mu _k}} \right\|}_{{L^2}({L^2})}} + {{\left\| {{\sigma _k}} \right\|}_{{L^2}({L^2})}}} \right) \leq \mathcal{E}, $

    and so, by Hölder’s inequality, we find that

    $\left| {\int_0^T {\int_\Omega {{\partial _t}} } {\varphi _k}\zeta {\text{ dx dt}}} \right| \leq \left( {\mathcal{E}{T^{\frac{1}{8}}} + {{\left\| {{\text{div}}({\varphi _k}{v_k})} \right\|}_{{L^{\frac{8}{5}}}({{({H^1})}^*})}}} \right){\left\| \zeta \right\|_{{L^{\frac{8}{3}}}({H^1})}}.$

    Taking the supremum over $\zeta \in L^{\frac{8}{3}}(0, T;H^{1})$ and using (4.44) and (4.51) yields that

    ${\left\| {{\partial _t}{\varphi _k}} \right\|_{{L^{\frac{8}{5}}}({{({H^1})}^*})}} \leq \mathcal{E}\left( {1 + {K^{\frac{1}{2}}}} \right), $ (4.52)

    Similarly, by Hölder's inequality and the following Gagliardo--Nirenberg inequality (1.10) with $j = 0$, $r = 2$, $m = 1$, $p = \frac{10}{3}$, $q = 2$ and $d = 3$,

    ${\left\| f \right\|_{{L^{\frac{{10}}{3}}}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{3}{5}}\left\| f \right\|_{{L^2}}^{\frac{2}{5}}, $

    which in turn implies that $\{\sigma_{k}\}_{k \in \mathbb{N}}$ is bounded uniformly in $L^{\frac{10}{3}}(Q)$. Then, we find that for any $\zeta \in L^{5}(0, T;W^{1, 5})$,

    $|T0ΩσkvkΠkζdx dt|T0σkL103vkL2ζL5dtσkL103(Q)vkL2(L2)ζL5(L5), $ (4.53)

    and

    ${\left\| {{\text{div}}({\sigma _k}{v_k})} \right\|_{{L^{\frac{5}{4}}}({{({W^{1, 5}})}^*})}} \leq {K^{\frac{1}{2}}}\mathcal{E}.$ (4.54)

    A similar calculation to (4.52) yields that

    ${\left\| {{\partial _t}{\sigma _k}} \right\|_{{L^{\frac{5}{4}}}({{({W^{1, 5}})}^*})}} \leq \mathcal{E}\left( {1 + {K^{\frac{1}{2}}}} \right).$ (4.55)

    Remark 4.2. We may also use the Gagliardo-Nirenberg inequality to deduce that

    ${\left\| f \right\|_{{L^r}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{{3(r - 2)}}{{2r}}}\left\| f \right\|_{{L^2}}^{\frac{{6 - r}}{{2r}}}{\text{ for any }}r \in (2, 6).$

    Then, the computation (4.53) becomes

    $\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq C{\left\| {{v_k}} \right\|_{{L^2}({L^2})}}\left\| {{\sigma _k}} \right\|_{{L^\infty }({L^2})}^{\frac{{6 - r}}{{2r}}}\left\| {{\sigma _k}} \right\|_{{L^2}({H^1})}^{\frac{{3(r - 2)}}{{2r}}}{\left\| {\nabla \zeta } \right\|_{{L^{\frac{{4r}}{{6 - r}}}}({L^{\frac{{2r}}{{r - 2}}}})}}, $

    which implies that $\{ {\text{div}} (\sigma_{k} {v}_{k}) \}_{k \in \mathbb{N}}$ and $\{ \partial _{t}\sigma_{k}\}_{k \in \mathbb{N}}$ are bounded uniformly in

    $L^{\frac{4r}{5r-6}}(0, T;(W^{1, \frac{2r}{r-2}})^{*}) \text{ for } r \in (2, 6).$

    Note that the temporal exponent decreases while the spatial exponent increases as r increases, and they intersect at the point $r = \frac{10}{3}$

    Here we point out that even with the improved regularity ${v}_{k} \in L^{\frac{8}{7}}(0, T;{H}^{1})$, we are unable to show ${\text{div}}(\sigma_{k} {v}_{k})$ is bounded in the dual space $(H^{1})^{*}$. Indeed, let $q$, $r > 1$ be constants yet to be determined such that $\frac{1}{q} + \frac{1}{r} = \frac{1}{2}$. Then, from Hölder's inequality we have

    $\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq \int_0^T {} {\left\| {{\sigma _k}} \right\|_{{L^q}}}{\left\| {{v_k}} \right\|_{{L^r}}}{\left\| {\nabla \zeta } \right\|_{{L^2}}}{\text{ dt}}.$

    By the Gagliardo--Nirenberg inequality we have for $\alpha = \frac{3}{2} - \frac{3}{q} \leq 1$, $\beta = \frac{3}{2} - \frac{3}{r} \leq 1$,

    $|T0ΩσkvkΠkζdx dt|CT0σk1αL2σkαH1vkβH1vk1βL2ζL2dtCσk1αL(L2)T0σkαH1vkβH1vk1βL2ζH1dtCσk1αL(L2)σkαLαx1(H1)vkβLβx2(H1)vk1βL(1β)x3(L2)ζLx4(H1), $

    where

    $\frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} + \frac{1}{x_{4}} = 1, \quad \alpha x_{1} \leq 2, \quad \beta x_{2} \leq \frac{8}{7}, \quad (1-\beta) x_{3} \leq 2.$ (4.56)

    Note that $\alpha = \frac{3}{2} - \frac{3}{q} = \frac{3}{r}$, and then substituting into the constraints (4.56) we find that

    $\frac{1}{x_{1}} + \frac{1}{x_{2}} + \frac{1}{x_{3}} \geq \frac{\alpha}{2} + \frac{7}{8} \beta + \frac{1-\beta}{2} = \frac{3}{2r} + \frac{21}{16} - \frac{21}{8r} + \frac{3}{2r} - \frac{1}{4} = \frac{17}{16} + \frac{3}{8}r > 1.$ (4.57)

    Hence, we cannot find $x_{1}$, $x_{2}$, $x_{3}$ and $x_{4}$ satisfying (4.56) and we are unable to deduce that ${\text{div}} (\sigma_{k} {v}_{k})$ lies in the dual space $(H^{1})^{*}$ even with the improved regularity ${v}_{k} \in L^{\frac{8}{7}}(0, T; {H}^{1})$.


    5. Passing to the limit

    From (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), (4.55), we find that

    ${φk}kNbounded in L(0,T;H1)L2(0,T;H3),{tφk}kN,{div(φkvk)}kN bounded in L85(0,T;(H1)),{σk}kN bounded in L(0,T;L2)L2(0,T;H1)L2(Σ),{tσk}kN,{div(σkvk)}kN bounded in L54(0,T;(W1,5)),{μk}kN bounded in L2(0,T;H1),{pk}kN bounded in L85(0,T;H1)L87(0,T;H2),{vk}kN bounded in L2(0,T;L2)L87(0,T;H1). $

    By standard compactness results (Banach-Alaoglu theorem and reflexive weak compactness theorem), and [28, x8, Cor. 4], and the compact embeddings in dimension 3 (see [1, Thm. 6.3] and [15, Thm. 11.2, p. 31])

    $H^{j+1}(\Omega) = W^{j+1, 2}(\Omega) \subset \subset W^{j, q}(\Omega) \quad \forall j \geq 0, j \in \mathbb{Z}, \; 1 \leq q < 6, $

    and the compact embedding $L^{2} \subset \subset (H^{1})^{*}$, we obtain, for a relabelled subsequence, the following weak/weak-* convergences:

    $φkφ weakly -  in L(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σkσ weakly -  in L2(0,T;H1)L(0,T;L2)L2(Σ),tσktσ weakly  in L54(0,T;(W1,5)),μkμ weakly  in L2(0,T;H1),pkp weakly  in L85(0,T;H1)L87(0,T;H2),vkv weakly  in L2(0,T;L2)L87(0,T;H1),div(φkvk)ξ weakly  in L85(0,T;(H1)),div(σkvk)θ weakly  in L54(0,T;(W1,5)), $

    and the following strong convergences:

    $φkφ strongly  in C0([0,T];Lr)L2(0,T;W2,r) and a.e. in Q,σkσ strongly  in C0([0,T];(H1))L2(0,T;Lr) and a.e. in Q, $

    for any $r \in [1, 6)$ and some functions $\xi \in L^{\frac{8}{5}}(0, T;(H^{1})^{*})$, $\theta \in L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$.

    For the rest of this section, we fix $1 \leq j \leq k$ and $\delta \in C^{\infty}_{c}(0, T)$. Then, we have $\delta(t) w_{j} \in C^{\infty}(0, T;H^{2})$. By continuity of $m(\cdot)$, we see that $m(\varphi_{k}) \to m(\varphi)$ a.e. in $Q$. Thanks to the boundedness of $m(\cdot)$, applying Lebesgue's dominated convergence theorem to ${(m({\varphi _k}) - m(\varphi ))^2}{\left| {\delta \nabla {w_j}} \right|^2}$ yields

    ${\left\| {m({\varphi _k})\delta \nabla {w_j} - m(\varphi )\delta \nabla {w_j}} \right\|_{{L^2}(Q)}} \to 0{\text{ as }}k \to \infty .$

    Together with the weak convergence $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, we obtain by the product of weak-strong convergence

    $\int_0^T {\int_\Omega m } ({\varphi _k})\delta \nabla {w_j} \cdot \nabla {\mu _k}{\text{ dx dt}} \to \int_0^T {\int_\Omega m } (\varphi )\delta \nabla {w_j} \cdot \nabla \mu {\text{ dx dt as }}k \to \infty .$

    Terms involving $n(\cdot)$ can be dealt with in a similar fashion. For the source term $\Gamma_{\varphi, k} = \Lambda_{\varphi}(\varphi_{k}, \sigma_{k}) - \Theta_{\varphi}(\varphi_{k}, \sigma_{k})\mu_{k}$, by the continuity and boundedness of $\Theta_{\varphi}$, the a.e. convergence of $\varphi_{k} \to \varphi$ and $\sigma_{k} \to \sigma$ in $Q$, we may apply Lebesgue's dominated convergence theorem to deduce that

    $\int_0^T {\int_\Omega {} } {\left| {\delta {w_j}({\Theta _\varphi }({\varphi _k}, {\sigma _k}) - {\Theta _\varphi }(\varphi , \sigma ))} \right|^2}{\text{ dx dt}} \to 0{\text{ as }}k \to \infty , $

    that is, we obtain the strong convergence $\delta w_{j} \Theta_{\varphi}(\varphi_{k}, \sigma_{k}) \to \delta w_{j} \Theta_{\varphi}(\varphi, \sigma)$ in $L^{2}(Q)$. Hence, the weak convergence $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$ yields

    $\int_0^T {\int_\Omega \delta } {w_j}{\Theta _\varphi }({\varphi _k}, {\sigma _k}){\mu _k}{\text{ dx dt}} \to \int_0^T {\int_\Omega \delta } {w_j}{\Theta _\varphi }(\varphi , \sigma )\mu {\text{ dx dt as }}k \to \infty .$

    Meanwhile, by the triangle inequality $\left| {\left| a \right| - \left| b \right|} \right| \leq \left| {a - b} \right|$, and Hölder's inequality, we obtain

    $\int_0^T {\int_\Omega {} } \left| {(\left| {{\varphi _k}} \right| - \left| \varphi \right|)(\delta {w_j})} \right|{\text{ dx dt}} \leq {\left\| {{\varphi _k} - \varphi } \right\|_{{L^2}(0, T;{L^2})}}{\left\| {\delta {w_j}} \right\|_{{L^2}(0, T;{L^2})}} \to 0$

    and

    $\int_0^T {\int_\Omega {} } \left| {(\left| {{\sigma _k}} \right| - \left| \sigma \right|)(\delta {w_j})} \right|{\text{ dx dt}} \leq {\left\| {{\sigma _k} - \sigma } \right\|_{{L^2}(0, T;{L^2})}}{\left\| {\delta {w_j}} \right\|_{{L^2}(0, T;{L^2})}} \to 0$

    as $k \to \infty$. In particular, we have

    $(1 + \left| {{\varphi _k}} \right| + \left| {{\sigma _k}} \right|)\left| {\delta {w_j}} \right| \to (1 + \left| \varphi \right| + \left| \sigma \right|)\left| {\delta {w_j}} \right|{\text{ strongly in }}{L^1}(Q){\text{ as }}k \to \infty .$

    By the continuity of $\Lambda_{\varphi}$ we have

    ${\Lambda _\varphi }({\varphi _k}, {\sigma _k}) \to {\Lambda _\varphi }(\varphi , \sigma ){\text{ a}}{\text{.e}}{\text{. as }}k \to \infty , \quad \left| {{\Lambda _\varphi }({\varphi _k}, {\sigma _k})\delta {w_j}} \right| \leq {R_0}(1 + \left| {{\varphi _k}} \right| + \left| {{\sigma _k}} \right|)\left| {\delta {w_j}} \right|.$

    which leads to

    Then, the generalised Lebesgue dominated convergence theorem (see [27, Thm. 1.9, p. 89], or [2, Thm. 3.25, p. 60]) yields

    $\Lambda_{\varphi}(\varphi_{k}, \sigma_{k}) \delta w_{j} \to \Lambda_{\varphi}(\varphi, \sigma) \delta w_{j} \text{ strongly in } L^{1}(Q) \text{ as } k \to \infty, $

    which leads to

    $\int_0^T {\int_\Omega {{\Gamma _\varphi }} } ({\varphi _k}, {\mu _k}, {\sigma _k})\delta {w_j}{\text{ dx dt}} \to \int_0^T {\int_\Omega {{\Gamma _\varphi }} } (\varphi , \mu , \sigma )\delta {w_j}{\text{ dx dt as }}k \to \infty .$ (5.1)

    The same arguments can be applied for the source term $\mathcal{S}$ and for the derivative $\Psi'(\varphi)$ satisfying the linear growth condition (2.5). For potentials satisfying the growth condition (2.7), we refer to the argument in [18, x3.1.2].

    To identify the limits $\xi$ and $\theta$ of the convection terms ${\text{div}} (\varphi_{k} {v}_{k})$ and ${\text{div}} (\sigma_{k} {v}_{k})$, respectively, we argue as follows. Since $\delta w_{j} \in C^{\infty}(0, T;H^{2}) \subset L^{\frac{8}{3}}(0, T;H^{1})$, by the weak convergence ${\text{div}} (\varphi_{k} {v}_{k}) \rightharpoonup \xi$ in $L^{\frac{8}{5}}(0, T;(H^{1})^{*})$, we have

    $\int_0^T {\int_\Omega {{\text{div}}} } ({\varphi _k}{v_k})\delta {w_j}{\text{ dx dt}} \to \int_0^T {} {\left\langle {\xi, {w_j}} \right\rangle _{{H^1}, {{({H^1})}^*}}}\delta {\text{ dt as }}k \to \infty .$

    Next, applying integrating by parts and by the boundary conditions ${v}_{k} \cdot {n} = 0$ on $\partial \Omega$ (see (3.8)), we see that

    $\int_0^T {\int_\Omega {} } div({\varphi _k}{v_k})\delta {w_j}{\text{ dx dt}} = - \int_0^T {\int_\Omega \delta } {\varphi _k}{v_k} \cdot \nabla {w_j}{\text{ dx dt}}.$ (5.2)

    Moreover, we claim that $\delta \varphi_{k} \nabla w_{j}$ converges strongly to $\delta \varphi \nabla w_{j}$ in $L^{2}(0, T;{L}^{2})$. Indeed, we compute

    $T0Ω|δ|2|wj|2|φkφ|2dx dtT0|δ|2wj2L6φkφ2L3dtwj2H2δ2L(0,T)φkφ2L2(L3)0 $

    as $k \to \infty$ by the strong convergence $\varphi_{k} \to \varphi$ in $L^{2}(0, T;L^{r})$ for $r \in [1, 6)$. Together with the weak convergence ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, when passing to the limit $k \to \infty$ in (5.2) we find that

    $\int_0^T {} {\left\langle {\xi , {w_j}} \right\rangle _{{H^1}, {{({H^1})}^*}}}\delta {\text{ dt}} = - \int_0^T {\int_\Omega \delta } \varphi v \cdot \nabla {w_j}{\text{ dx dt}}.$

    Applying integration by parts on the right-hand side shows that $\xi = {\text{div}} (\varphi {v})$ in the sense of distributions.

    Now considering $\delta(t)w_{j}$ as an element in $L^{5}(0, T;W^{1, 5})$, a similar argument can be used to show $\theta = {\text{div}}(\sigma {v})$ in the sense of distributions using the strong convergence $\sigma_{k} \to \sigma$ in $L^{2}(0, T;L^{r})$ for $r \in [1, 6)$, the weak convergence ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, and the weak convergence ${\text{div}}(\sigma_{k} {v}_{k}) \rightharpoonup \phi$ in $L^{\frac{5}{4}}(0, T;(W^{1, 5})^{*})$.

    For the pressure and the velocity, we apply $-\Delta _{N}$ to both sides of (3.3) and test with $w_{j}$, then integrating by parts leads to

    $\int_\Omega \nabla {p_k} \cdot \nabla {w_j}{\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}{w_j} + ({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k} \cdot \nabla {w_j}{\text{ dx}}.$

    Multiplying by $\delta(t)$, integrating in time and passing to the limit $k \to \infty$, keeping in mind the weak convergences $p_{k} \rightharpoonup p$ in $L^{\frac{8}{5}}(0, T;H^{1})$, $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, $\sigma_{k} \rightharpoonup \sigma$ in $L^{2}(0, T;H^{1})$, and the strong convergence $\varphi_{k} \to \varphi$ in $L^{2}(0, T;W^{2, r})$ for $r \in [1, 6)$ leads to

    $\int_0^T {\int_\Omega \delta } (t)\nabla p \cdot \nabla {w_j}{\text{ dx dt}} = \int_0^T {\int_\Omega \delta } (t)\left( {\frac{1}{K}{\Gamma _v}{w_j} + (\mu + \chi \sigma )\nabla \varphi \cdot \nabla {w_j}} \right){\text{dx dt}}.$ (5.3)

    Here we used that $w_{j} \in H^{2}$, and

    $T0Ω|δ|2|φkφ|2|wj|2dx dtδ2L(0,T)wj2W1,6φkφ2L2(W1,3)0 as k, $ (5.4)

    to deduce that $\delta \nabla \varphi_{k} \cdot \nabla w_{j} \to \delta \nabla \varphi \cdot \nabla w_{j}$ in $L^{2}(0, T;L^{2})$. Fix $1 \leq j_{1}, j_{2}, j_{3} \leq k$, and define ${\zeta} = (w_{j_{1}}, w_{j_{2}}, w_{j_{3}})^{\top}$. Then, we can consider $\delta(t) {\zeta}$ as an element in $L^{\frac{8}{3}}(0, T;{L}^{2}) \subset L^{2}(0, T;{L}^{2})$. Taking the scalar product of (3.4) with $\delta {\zeta}$, integrating over $\Omega$ and in time from $0$ to $T$ leads to

    $\int_0^T {\int_\Omega \delta } (t)({v_k} + K\nabla {p_k}) \cdot \zeta {\text{ dx dt}} = \int_0^T {\int_\Omega \delta } K({\mu _k} + \chi {\sigma _k})\nabla {\varphi _k} \cdot \zeta {\text{ dx dt}}.$ (5.5)

    By the weak convergences ${v}_{k} \rightharpoonup {v}$ in $L^{2}(0, T;{L}^{2})$, $\mu_{k} \rightharpoonup \mu$ in $L^{2}(0, T;H^{1})$, $\sigma_{k} \rightharpoonup \sigma$ in $L^{2}(0, T;H^{1})$, $\nabla p_{k} \rightharpoonup \nabla p$ in $L^{\frac{8}{5}}(0, T;{L}^{2})$, and the strong convergence $\delta \nabla \varphi_{k} \cdot {\zeta} \to \delta \nabla \varphi \cdot {\zeta}$ in $L^{2}(0, T; L^{2})$ (which is proved in a similar manner as (5.4)), we find that passing to the limit in (5.5) yields

    $\int_0^T {\int_\Omega \delta } (t)(v + K\nabla p) \cdot \zeta {\text{ dx dt}} = \int_0^T {\int_\Omega \delta } (t)K(\mu + \chi \sigma )\nabla \varphi \cdot \zeta {\text{ dx dt}}.$ (5.6)

    Then, multiplying (3.2) with $\delta \in C^{\infty}_{c}(0, T)$, integrating with respect to time from $0$ to $T$, and passing to the limit $k \to \infty$, we obtain

    $T0δ(t)tφ,wjH1,(H1)dt=T0Ωδ(t)(m(φ)μwj+Γφwj+φvwj)dx dt,T0Ωδ(t)μwjdx dt=T0Ωδ(t)(AΨ(φ)wj+Bφwjχσwj)dx dt,T0δ(t)tσ,wjW1,5,(W1,5)dt=T0Ωδ(t)(n(φ)(Dσχφ)wjSwj)dx dt+T0δ(t)(Ωσvwj dx+Γb(σσ)wj dHd1)dt. $

    Since the above, (5.3) and (5.6) hold for all $\delta \in C^{\infty}_{c}(0, T)$, we infer that $\{\varphi, \mu, \sigma, p, {v}\}$ satisfies (2.12) with $\zeta = \phi = w_{j}$ for a.e. $t \in (0, T)$ and for all $j \geq 1$. As $\{ w_{j}\}_{j \in \mathbb{N}}$ is a basis for $H^{2}_{N}$, and $H^{2}_{N}$ is dense in both $H^{1}$ and $W^{1, 5}$ (see Section 3), we see that $\{ \varphi, \mu, \sigma, p, {v}\}$ satisfy (2.12a), (2.12b), (2.12d) for all $\zeta \in H^{1}$, (2.12c) for all $\phi \in W^{1, 5}$, and (2.12e) for all ${\zeta} \in {L}^{2}$.

    Attainment of initial conditions. It remains to show that $\varphi$ and $\sigma$ attain their corresponding initial conditions. Strong convergence of $\varphi_{k}$ to $\varphi$ in $C^{0}([0, T];L^{2})$, and the fact that $\varphi_{k}(0) \to \varphi_{0}$ in $L^{2}$ imply that $\varphi(0) = \varphi_{0}$. Meanwhile, as the limit function $\sigma$ belongs to the function space $C^{0}([0, T]; (H^{1})^{*})$, we see that $\sigma(0):= \sigma(\cdot, 0)$ makes sense as an element of $(H^{1})^{*}$. Let $\zeta \in H^{1}$ be arbitrary, then by the strong convergence $\sigma_{k} \to \sigma$ in $C^{0}([0, T];(H^{1})^{*})$ we see that

    ${\left\langle {{\sigma _k}(0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} \to {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}{\text{ as }}k \to \infty .$

    On the other hand, by (3.7), we have $\sigma_{k}(0) \to \sigma_{0}$ in $L^{2}$. This yields

    ${\left\langle {{\sigma _0}, \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \mathop {\lim }\limits_{k \to \infty } {\left\langle {{\sigma _k}(0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = {\left\langle {\sigma (0), \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}}.$

    Energy inequality. For the energy inequality (2.14) we employ the weak/weak-* lower semicontinuity of the norms and dual norms to (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), and (4.55).


    6. Asymptotic limits


    6.1. Limit of vanishing permeability

    For $K, b \in (0, 1]$ let $(\varphi^{K}, \mu^{K}, \sigma^{K}, {v}^{K}, p^{K})$ denote a weak solution to (1.1)-(1.2) with $\Gamma_{{v}} = 0$, obtain from Theorem 2.1. By we deduce that, for a relabelled subsequence as $b \to 0$ and $K \to 0$, the following weak/weak-* convergences:

    $φKφ weakly -  in L(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σKσ weakly -  in L2(0,T;H1)L(0,T;L2)W1,54(0,T;(W1,5)),μKμ weakly  in L2(0,T;H1),pKp weakly  in L85(0,T;H1)L87(0,T;H2), $

    and the following strong convergences:

    $φKφ strongly  in C0([0,T];Lr)L2(0,T;W2,r) and a.e. in Q,σKσ strongly  in C0([0,T];(H1))L2(0,T;Lr) and a.e. in Q,vK0 strongly  in L2(0,T;L2)L87(0,T;H1),div(φKvK)0 strongly  in L85(0,T;(H1)),div(σKvK)0 strongly  in L54(0,T;(W1,5)), $

    for any $r \in [1, 6)$. The strong convergence of the velocity and the convection terms to zero follows from (2.14). Upon multiplying (2.12) by $\delta \in C^{\infty}_{c}(0, T)$ and passing to the limit $b, K \to 0$, we obtain that the limit functions $(\varphi, \mu, \sigma, p)$ satisfy

    ${\left\langle {{\partial _t}\varphi , \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta {\text{ dx}}, $ (6.1a)
    $\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta - \chi \sigma \zeta {\text{ dx}}, $ (6.1b)
    ${\left\langle {{\partial _t}\sigma , \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi {\text{ dx}}$ (6.1c)
    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {(\mu + \chi \sigma )} \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (6.1d)

    for all $\zeta \in H^{1}$ and $\phi \in W^{1, 5}$ and a.e. $t \in (0, T)$.

    Note that substituting any $\zeta \in L^{2}(0, T;H^{1})$ into (6.1a), integrating in time from $0$ to $T$, using Hölder's inequality and the linear growth condition for $\Gamma_{\varphi}$ leads to the deduction that $\partial _{t} \varphi \in L^{2}(0, T;(H^{1})^{*})$. To show that $\partial _{t} \sigma \in L^{2}(0, T;(H^{1})^{*})$ we argue as follows. For any $\xi \in L^{2}(0, T;H^{1})$, we can define

    $F(\xi ): = \int_0^T {\int_\Omega - } n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \xi - \mathcal{S}(\varphi , \mu , \sigma )\xi {\text{ dx dt}}.$

    By Hölder's inequality and the growth condition on $\mathcal{S}$, we see that $F \in L^{2}(0, T;(H^{1})^{*})$. It is known that the set of functions that are finite linear combinations of $C^{1}_{c}(0, T) \cdot H^{2}_{N}(\Omega) := \{ \delta(t) \phi(x) : \delta \in C^{1}_{c}(0, T), \; \phi \in H^{2}_{N}(\Omega) \}$ is dense in $C^{1}_{c}(0, T;H^{1})$ (see for instance [26, p. 384], and in fact this is what we use in Section 5). Let $\zeta \in C^{1}_{c}(0, T;H^{1})$ and let $\{\zeta^{n}\}_{n \in \mathbb{N}}$ denote a sequence of functions of the above form such that $\zeta^{n} \to \zeta$ in $C^{1}_{c}(0, T;H^{1})$ as $n \to \infty$. Then, substituting $\phi = \zeta^{n}$ in (6.1c), integrating over $t$ from $0$ to $T$, and passing to the limit $n \to \infty$ yields

    $\mathop {\lim }\limits_{n \to \infty } \int_0^T {} {\left\langle {{\partial _t}\sigma , {\zeta ^n}} \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}}{\text{ dt}} = \mathop {\lim }\limits_{n \to \infty } F({\zeta ^n}) = F(\zeta ).$

    Moreover, by the definition of the weak time derivative, we have

    $\int_0^T {} {\left\langle {{\partial _t}\sigma , {\zeta ^n}} \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}}{\text{ dt}} = - \int_0^T {\int_\Omega \sigma } {\partial _t}{\zeta ^n}{\text{ dx dt}} \to - \int_0^T {\int_\Omega \sigma } {\partial _t}\zeta {\text{ dx dt as }}n \to \infty .$

    Hence, we obtain

    $- \int_0^T {\int_\Omega \sigma } {\partial _t}\zeta {\text{ dx dt}} = F(\zeta ) = \int_0^T {\int_\Omega - } n(\varphi )(D\nabla \sigma - \chi \nabla \varphi ) \cdot \nabla \zeta - \mathcal{S}(\varphi , \mu , \sigma )\zeta {\text{ dx dt}}$

    for all $\zeta \in C^{1}_{c}(0, T;H^{1})$. This implies that the weak time derivative $\partial _{t} \sigma$ satisfies

    $\int_0^T {} {\partial _t}\sigma {\zeta _{{H^1}, {{({H^1})}^*}}}{\text{ dt}} = F(\zeta )\quad \forall \zeta \in C_c^1(0, T;{H^1}), $

    and as $F$ belongs to $L^{2}(0, T;(H^{1})^{*})$, we find that $\partial _{t} \sigma$ also belongs to $L^{2}(0, T;(H^{1})^{*})$. Furthermore, due to the improved regularity $\partial _{t} \sigma \in L^{2}(0, T;(H^{1})^{*})$, we use the continuous embedding

    $L^{2}(0, T;H^{1}) \cap H^{1}(0, T;(H^{1})^{*}) \subset C^{0}([0, T];L^{2})$

    to deduce that $\sigma(0) = \sigma_{0}$.


    6.2. Limit of vanishing chemotaxis

    For $\chi, b \in (0, 1]$, let $(\varphi^{\chi}, \mu^{\chi}, \sigma^{\chi}, {v}^{\chi}, p^{\chi})$ denote a weak solution to (1.1)-(1.2) obtain from Theorem 2.1. By (2.14) we deduce that, for a relabelled subsequence as $b \to 0$ and $\chi \to 0$, the following weak/weak-* convergences:

    $φχφ weakly -  in L(0,T;H1)L2(0,T;H3)W1,85(0,T;(H1)),σχσ weakly -  in L2(0,T;H1)L(0,T;L2)W1,54(0,T;(W1,5)),μχμ weakly  in L2(0,T;H1),pχp weakly  in L85(0,T;H1)L87(0,T;H2),vχv weakly  in L2(0,T;L2)L87(0,T;H1),div(φχvχ)div(φv) weakly  in L85(0,T;(H1)),div(σχvχ)div(σv) weakly  in L54(0,T;(W1,5)), $

    and the following strong convergences:

    $φχφ strongly  in C0([0,T];Lr)L2(0,T;W2,r) and a.e. in Q,σχσ strongly  in C0([0,T];(H1))L2(0,T;Lr) and a.e. in Q, $

    for any $r \in [1, 6)$. For any $\delta \in C^{\infty}_{c}(0, T)$ and $\zeta \in H^{1}$, we have

    $|T0Ωδχσχζdx dt|χσχL2(L2)ζL2δL2(0,T)0,|T0Ωδn(φχ)χφχζdx dt|n1χφχL2(L2)ζL2δL2(0,T)0,|T0Ωδχσχφχζ dx dt|χζL2σχL2(L4)φχL2(L4)δL(0,T)0, $

    as $\chi \to 0$. Thus, multiplying (2.12) with $\delta \in C^{\infty}_{c}(0, T)$, and then passing to the limit $b, \chi \to 0$, we see that $(\varphi, \mu, \sigma, {v}, p)$ satisfies

    ${\left\langle {{\partial _t}\varphi , \zeta } \right\rangle _{{H^1}, {{({H^1})}^*}}} = \int_\Omega - m(\varphi )\nabla \mu \cdot \nabla \zeta + {\Gamma _\varphi }(\varphi , \mu , \sigma )\zeta + \varphi v \cdot \nabla \zeta {\text{ dx}}, $ (6.2a)
    $\int_\Omega \mu \zeta {\text{ dx}} = \int_\Omega A \Psi '(\varphi )\zeta + B\nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (6.2b)
    ${\left\langle {{\partial _t}\sigma , \phi } \right\rangle _{{W^{1, 5}}, {{({W^{1, 5}})}^*}}} = \int_\Omega - n(\varphi )D\nabla \sigma \cdot \nabla \phi - \mathcal{S}(\varphi , \mu , \sigma )\phi + \sigma v \cdot \nabla \phi {\text{ dx}}, $ (6.2c)
    $\int_\Omega \nabla p \cdot \nabla \zeta {\text{ dx}} = \int_\Omega {\frac{1}{K}} {\Gamma _v}\zeta + \mu \nabla \varphi \cdot \nabla \zeta {\text{ dx}}, $ (6.2d)
    $\int_\Omega {} v \cdot \zeta {\text{ dx}} = \int_\Omega - K(\nabla p - \mu \nabla \varphi ) \cdot \zeta {\text{ dx}}, $ (6.2e)

    for all $\zeta \in H^{1}$, $\phi \in W^{1, 5}$, ${\zeta} \in {L}^{2}$ and a.e. $t \in (0, T)$.


    7. Existence in two dimensions

    We first derive an analogous result to Lemma 4.2 for two dimensions.

    Lemma 7.1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with $C^{3}$-boundary. Let $\varphi \in L^{\infty}(0, T;H^{1}) \cap L^{2}(0, T;H^{2}_{N} \cap H^{3})$, $\sigma \in L^{2}(0, T;H^{1})$, $\mu \in L^{2}(0, T;H^{1})$, the source term $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, and the function $p$ satisfying (4.7). Then,

    $p \in {L^k}(0, T;{H^1}) \cap {L^q}(0, T;{H^2}), \quad {\text{ }}v \in {L^q}(0, T;{H^1}), $

    for any

    $1 \leq k < 2, \quad 1 \leq q < \frac{4}{3}.$

    Proof. We estimate (4.23) differently than in the proof of Lemma 4.2. By Hölder’s inequality for any $1 \leq s < \infty$ we have

    ${\left\| {(\mu + \chi \sigma )\nabla \varphi } \right\|_{{L^2}}} \leq {\left\| {\mu + \chi \sigma } \right\|_{{L^{2s}}}}{\left\| {\nabla \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}}.$

    Then, by the Gagliardo--Nirenberg inequality (1.10) with $p = \frac{2s}{s-1}$, $j = 0$, $r = 2$, $m = 2$, $d = 2$, $q = 2$, and $\alpha = \frac{1}{2} - \frac{s-1}{2s} = \frac{1}{2s}$, we find that

    ${\left\| {\nabla \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{{2s}}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{1 - \frac{1}{{2s}}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{{2s}}}\left\| \varphi \right\|_{{H^1}}^{1 - \frac{1}{{2s}}}.$

    Then, by Hölder's inequality and the Sobolev embedding $H^{1} \subset L^{r}$ for $1 \leq r < \infty$ in two dimensions, we have for $w, y \geq 1$,

    $T0(μ+χσ)φwL2dtCT0μ+χσwL2sφwL2ss1dtCφw2s12sL(H1)μ+χσwLwy(H1)φw2sLw2syy1(H3). $

    As $\mu, \sigma$ belong to $L^{2}(0, T;H^{1})$ and $\varphi$ belongs to $L^{2}(0, T;H^{3}) \cap L^{\infty}(0, T;H^{1})$, we need

    $wy = 2, \quad \frac{w}{{2s}}\frac{y}{{y - 1}} = 2 \Rightarrow y = \frac{{2s + 1}}{{2s}}, \quad w = \frac{{4s}}{{1 + 2s}}.$

    Since $w = \frac{4s}{1+2s} < 2$ for all $s \in [1, \infty)$, and $\Gamma_{{v}} \in L^{2}(0, T;L^{2}_{0})$, the computations in the proof of Lemma 4.2 yields that

    $p \in L^{k}(0, T;H^{1}) \quad \text{ for } 1 \leq k < 2$

    Next, we see that

    $div((μ+χσ)φ)L2(μ+χσ)ΔφL2+(μ+χσ)φL2μ+χσL2sΔφL2ss1+(μ+χσ)L2φL. $

    By the Gagliardo--Nirenberg inequality (1.10) with $p = \infty$, $j = 0$, $r = 2$, $m = 2$, $d = 2$, $q = 2$ and $\alpha = \frac{1}{2}$, we have

    ${\left\| {\nabla \varphi } \right\|_{{L^\infty }}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{1}{2}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{1}{2}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{1}{2}}\left\| \varphi \right\|_{{H^1}}^{\frac{1}{2}}, $ (7.1)

    and with $p = \frac{2s}{s-1}$, $j = 1$, $r = 2$, $m = 2$, $d = 2$, $q = 2$ and $\alpha = \frac{s+1}{2s} \in (\frac{1}{2}, 1]$ for $s \in [1, \infty)$, we have

    ${\left\| {\Delta \varphi } \right\|_{{L^{\frac{{2s}}{{s - 1}}}}}} \leq C\left\| {\nabla \varphi } \right\|_{{H^2}}^{\frac{{s + 1}}{{2s}}}\left\| {\nabla \varphi } \right\|_{{L^2}}^{\frac{{s - 1}}{{2s}}} \leq C\left\| \varphi \right\|_{{H^3}}^{\frac{{s + 1}}{{2s}}}\left\| \varphi \right\|_{{H^1}}^{\frac{{s - 1}}{{2s}}}.$ (7.2)

    Hence, for $w, y, z \geq 1$, we find that

    $T0div((μ+χσ)φ)wL2dtCφw2L(H1)μ+χσwLwz(H1)φw2Lw2zz1(H3)+Cφws12sL(H1)μ+χσwLwy(H1)φws+12sLws+12syy1(H3). $

    Since $\frac{s+1}{2s} \leq 1$ for all $s \in [1, \infty)$, we require

    $wy = 2, \quad \frac{{wy(s + 1)}}{{2s(y - 1)}} = 2 \Rightarrow y = \frac{{3s + 1}}{{2s}}, \quad w = \frac{{4s}}{{1 + 3s}}.$

    We choose $z = \frac{3s+1}{2s} \in (\frac{3}{2}, 2]$ so that

    $wz = 2, \quad \frac{w}{2} \frac{z}{z-1} = \frac{2s}{1 + 3s} \frac{3s+1}{s+1} = \frac{2s}{s+1} \in [1, 2), $

    and thus we obtain

    $T0div((μ+χσ)φ)4s1+3sL2dtCφ2s1+3sL(H1)μ+χσ4s1+3sL2(H1)φ2s1+3sL2ss+1(H3)+Cφ2s21+3sL(H1)μ+χσ4s1+3sL2(H1)φ2s+21+3sL2(H3). $

    From (4.27) and using the fact that $\frac{4s}{1+3s} < \frac{4s}{1+2s}$ for all $s \in [1, \infty)$, we see that

    $p \in L^{q}(0, T;H^{2}) \quad \text{ for } 1 \leq q < \frac{4}{3}.$

    Similarly, from (4.29), (7.1) and (7.2), we obtain for fixed $1 \leq i, j \leq 2$, and any $s \in [1, \infty)$,

    $DivjL2=KDiDjp(Di(μ+χσ)Djφ(μ+χσ)DiDjφL2K(pH2+(μ+χσ)L2φL+μ+χσL2sD2φL2ss1)K(pH2+Cμ+χσH1(φ12H3φ12H1+φs+12sH3φs12sH1)). $ (7.3)

    Then, a similar calculation shows that the right-hand side is bounded in $L^{\frac{4s}{1+3s}}(0, T)$, which in turn implies that

    $v \in {L^q}(0, T;{H^1}){\text{ for }}1 \leq q < \frac{4}{3}.$

    By the above new estimates we can show that ${\text{div}}(\varphi {v})$ and $\partial _{t} \varphi$ have improved temporal regularity, and that ${\text{div}} (\sigma {v})$ and $\partial _{t}\sigma$ belong to the dual space $(H^{1})^{*}$.

    Lemma 7.2. For dimension $d = 2$, let $(\varphi_{k}, \mu_{k}, \sigma_{k}, p_{k}, {v}_{k})$ denote the Galerkin ansatz from Section 3 satisfying (4.44). Then, it holds that for $\frac{4}{3} \leq w < 2$ and $1 < r < \frac{8}{7}$,

    $div(φkvk)Lw((H1))+div(σkvk)Lr((H1))K12E,tφkLw((H1))+tσkLr((H1))E(1+K12), $

    where $\mathcal{E}$ denotes positive constants that are uniformly bounded for $b, \chi \in (0, 1]$ and are also uniformly bounded for $K \in (0, 1]$ when $\Gamma_{{v}} = 0$.

    Proof. The assertions for $\partial _{t}\varphi_{k}$ and $\partial _{t}\sigma_{k}$ will follow via similar arguments in Section 4.3 once we establish the assertion for the convection terms. In dimension $d = 2$, we have the embedding $L^{2}(0, T;H^{1}) \cap L^{\infty}(0, T;L^{2}) \subset L^{4}(Q)$, and by the Gagliardo--Nirenberg inequality (1.10) with $p = 4$, $j = 0$, $r = 2$, $d = 2$, $m = 1$, $q = 2$ and $\alpha = \frac{1}{2}$,

    ${\left\| f \right\|_{{L^4}}} \leq C\left\| f \right\|_{{H^1}}^{\frac{1}{2}}\left\| f \right\|_{{L^2}}^{\frac{1}{2}}.$

    Consider an arbitrary $\zeta \in L^{s}(0, T;H^{1})$ for some $s \geq 1$ yet to be determined. Then, we compute that

    $|T0ΩσkvkΠkζdx dt|T0σkL4vkL4ζL2dtCσkL4(Q)(T0vk23H1vk23L2ζ43H1dt)34CσkL4(Q)vk12L23x1(H1)vk12L23x2(L2)ζL43x3(H1), $

    where $x_{1}, x_{2}, x_{3} \geq 1$ satisfy

    $\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} + \frac{1}{{{x_3}}} = 1, \quad \frac{2}{3}{x_1} < \frac{4}{3}, \quad \frac{2}{3}{x_2} \leq 2 \Rightarrow {x_3} > 6.$

    Then, from (4.44) and (7.3), it holds that

    $\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq \mathcal{E}{K^{\frac{1}{2}}}{\left\| \zeta \right\|_{{L^s}({H^1})}}\quad {\text{ for }}s = \frac{4}{3}{x_3} > 8, $

    that is, $\{{\text{div}} (\sigma_{k} {v}_{k})\}_{k \in \mathbb{N}}$ is uniformly bounded in the dual space of $L^{s}(0, T;H^{1})$ for $s > 8$. Similarly, by the Gagliardo--Nirenberg inequality (1.10) with $p = \infty$, $j = 0$, $r = 2$, $d = 2$, $m = 3$, $q \in [1, \infty)$ and $\alpha = \frac{1}{q+1}$,

    ${\left\| {{\varphi _k}} \right\|_{{L^\infty }}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{{q + 1}}}\left\| {{\varphi _k}} \right\|_{{L^q}}^{\frac{q}{{q + 1}}} \leq C\left\| {{\varphi _k}} \right\|_{{H^3}}^{\frac{1}{{q + 1}}}\left\| {{\varphi _k}} \right\|_{{H^1}}^{\frac{q}{{q + 1}}}.$

    Proceeding as in (4.50), we find that for an arbitrary $\zeta \in L^{s}(0, T;H^{1})$, where $s \geq 1$ is yet to be determined,

    $|T0ΩφkvkΠkζdx dt|T0vkL2φkLΠkζL2dtCφkqq+1L(H1)vkL2(L2)φk1q+1L2(H3)ζL2(q+1)q(H1)EK12ζL2(q+1)q(H1), $

    and so $\{{\text{div}}(\varphi_{k} {v}_{k})\}_{k \in \mathbb{N}}$ is uniformly bounded in the dual space of $L^{s}(0, T;H^{1})$ for $s = 2 + \frac{2}{q} \in (2, 4]$.

    Remark 7.1. We point out that in the absence of the regularity result ${v}_{k} \in L^{q}(0, T;{H}^{1})$ from Lemma 7.1, and if we only have ${v}_{k} \in L^{2}(0, T;{L}^{2})$, then we obtain

    $\left| {\int_0^T {\int_\Omega {{\sigma _k}} } {v_k} \cdot \nabla {\Pi _k}\zeta {\text{ dx dt}}} \right| \leq {\left\| {{\sigma _k}} \right\|_{{L^4}(Q)}}{\left\| {{v_k}} \right\|_{{L^2}({L^2})}}{\left\| {\nabla \zeta } \right\|_{{L^4}({L^4})}}, $

    and this implies that both $\{{\text{div}}(\sigma_{k} {v}_{k})\}_{k \in \mathbb{N}}$ and $\{\partial _{t}\sigma_{k}\}_{k \in \mathbb{N}}$ are bounded uniformly only in $L^{\frac{4}{3}}(0, T;(W^{1, 4})^{*})$.


    8. Discussion

    Reformulations of Darcy’s law and the pressure. Associated to Darcy's law (1.1b) is the term ${\lambda _v}: = p - \mu \varphi - \frac{D}{2}{\left| \sigma \right|^2}$ which will contribute the source term $\Gamma_{{v}} \lambda_{{v}}$ in the energy identity (4.4). In [20, Rmk. 2.1] three other reformulations of Darcy's law (1.1b) and the pressure are considered:

    (R1) Let $q: = p - A\Psi (\varphi ) - \frac{B}{2}{\left| {\nabla \varphi } \right|^2}$ so that

    ${\lambda _v} = q + A\Psi (\varphi ) + \frac{B}{2}{\left| {\nabla \varphi } \right|^2} - \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi ) - \mu \varphi , $ (8.1a)
    $v = K(\nabla ( - q - \tfrac{B}{2}{\left| {\nabla \varphi } \right|^2}) - B\Delta \varphi \nabla \varphi ) = - K(\nabla q + B {\text{div}} (\nabla \varphi \otimes \nabla \varphi )).$ (8.1b)

    (R2) Let $\hat p: = p + \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma (1 - \varphi )$ so that

    ${\lambda _v} = \hat p - \mu \varphi - D{\left| \sigma \right|^2} - \chi \sigma (1 - \varphi ), $ (8.2a)
    $v = - K(\nabla \hat p - \mu \nabla \varphi - (D\sigma + \chi (1 - \varphi ))\nabla \sigma ).$ (8.2b)

    (R3) Let $\tilde p: = p - \frac{D}{2}{\left| \sigma \right|^2} - \mu \varphi $ so that

    ${\lambda _v} = \tilde p, $ (8.3a)
    $v = - K(\nabla \tilde p + \varphi \nabla \mu + \sigma \nabla (D\sigma + \chi (1 - \varphi ))).$ (8.3b)

    From the viewpoint of estimating the source term $\Gamma_{{v}} \lambda_{{v}}$, we see that (8.3a) has the advantage of being the simplest. Meanwhile, for (8.2a) the analysis for $\Gamma_{{v}} \lambda_{{v}}$ is similar to that performed in Section 4.1.2, but for (8.1a) the main difficulty will be to estimate the terms $(A\Psi (\varphi ) + \frac{B}{2}{\left| {\nabla \varphi } \right|^2}){\Gamma _v}$ and $( - \frac{D}{2}{\left| \sigma \right|^2} + \chi \sigma \varphi ){\Gamma _v}$, which at first glance would require the assumption that $\Gamma_{{v}} \in L^{\infty}(Q)$, and obtaining an $L^{2}$-estimate for the pressure $q$ from the Darcy law (8.1b) would be difficult due to the term ${\text{div}} (\nabla \varphi \otimes \nabla \varphi)$.

    Other boundary conditions for the pressure and velocity. In [20, x2.4.4] the authors have discussed possible boundary conditions for the velocity and for the pressure. As discussed in Section 2 following Assumption 2.1, we require the source term $\Gamma_{{v}}$ to have zero mean due to the no-flux boundary condition ${v} \cdot {n} = 0$ on $\partial \Omega$. The general energy identity (with homogeneous Neumann boundary conditions for $\varphi$ and $\mu$) from [20, Equ. (2.27)] reads as

    $ddtΩAΨ(φ)+B2|φ|2+D2|σ|2+χσ(1φ)dx+Ωm(φ)|μ|2+n(φ)|(Dσ+χ(1φ))|2+1K|v|2dx=ΩΓφμS(Dσ+χ(1φ))+Γvλvdx+Ω(Dσ+χ(1φ))n(φ)(Dnσ)(vn)(D2|σ|2+χσ(1φ)+p) dHd1, $

    and we see the appearance of an extra boundary source term involving the normal component of the velocity and the pressure. Here it would be advantageous to use the rescaled pressure $\hat{p}$ and the Darcy law (8.2b), as the extra boundary source term will become

    $\int_{\partial \Omega } - (v \cdot n)\hat p{\text{ d}}{H^{d - 1}}, $

    which motivates the consideration of a Robin-type boundary condition for $\hat{p}$

    $g = a\hat p - v \cdot n = a\hat p + K{\partial _n}\hat p - K(D\sigma + \chi (1 - \varphi )){\partial _n}\sigma {\text{ on }}\partial \Omega , $

    for some given datum $g$ and positive constant $a$. On one hand, this would allow us to consider source terms $\Gamma_{{v}}$ that need not have zero mean, but on the other hand, the analysis of the Darcy system becomes more complicated. In particular, the weak formulation of the pressure system now reads as

    $ΩKˆpζdx+ΩaˆpζdHd1=ΩΓvζ+K(μφ+(Dσ+χ(1φ))σ)ζdx+ΩgζdHd1, $

    and we observe that the term $D\sigma \nabla \sigma$ on the right-hand side belongs to ${L}^{1}$ as $\sigma$ has at most $H^{1}$-spatial regularity from the energy identity. Thus, it is not clear if the pressure system can be solved with the regularities stated in Lemma 4.1. A deeper study into the theory of linear elliptic equations with right-hand sides of the form ${\text{div}} {f}$ where ${f} \in {L}^{1}$ is required.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] McNeal JE (1981) The zonal anatomy of the prostate. Prostate 2: 35-49.
    [2] Mcneal JE (1988) Normal Histology of the Prostate. Am J Surg Pathol 12: 619-633. doi: 10.1097/00000478-198808000-00003
    [3] Isaacs JT (1994) Etiology of benign prostatic hyperplasia. Eur Urol 25 Suppl 1: 6-9.
    [4] McNeal JE (1978) Origin and evolution of benign prostatic enlargement. Invest Urol 15: 340-345.
    [5] Berry SJ, Coffey DS, Walsh PC, et al. (1984) The development of human benign prostatic hyperplasia with age. J Urol 132: 474-479.
    [6] Briganti A, Capitanio U, Suardi N, et al. (2009) Benign Prostatic Hyperplasia and Its Aetiologies. Eur Urol Suppl 8: 865-871. doi: 10.1016/j.eursup.2009.11.002
    [7] Ferlay J, Soerjomataram I, Dikshit R, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136: E359-386. doi: 10.1002/ijc.29210
    [8] Cancer Research UK (2013) Prostate cancer statistics.
    [9] Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194: 23-28. doi: 10.1126/science.959840
    [10] Collins AT, Berry PA, Hyde C, et al. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946-10951. doi: 10.1158/0008-5472.CAN-05-2018
    [11] Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10: 717-728. doi: 10.1016/j.stem.2012.05.007
    [12] Ablin RJ, Soanes WA, Bronson P, et al. (1970) Precipitating antigens of the normal human prostate. J Reprod Fertil 22: 573-574. doi: 10.1530/jrf.0.0220573
    [13] Papsidero LD, Wang MC, Valenzuela LA, et al. (1980) A prostate antigen in sera of prostatic cancer patients. Cancer Res 40: 2428-2432.
    [14] Nadler RB, Humphrey PA, Smith DS, et al. (1995) Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol 154: 407-413. doi: 10.1016/S0022-5347(01)67064-2
    [15] Romero Otero J, Garcia Gomez B, Campos Juanatey F, et al. (2014) Prostate cancer biomarkers: an update. Urol Oncol 32: 252-260. doi: 10.1016/j.urolonc.2013.09.017
    [16] Gilgunn S, Conroy PJ, Saldova R, et al. (2013) Aberrant PSA glycosylation--a sweet predictor of prostate cancer. Nat Rev Urol 10: 99-107. doi: 10.1038/nrurol.2012.258
    [17] Hessels D, Klein Gunnewiek JM, van Oort I, et al. (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44: 8-15. doi: 10.1016/S0302-2838(03)00201-X
    [18] Attard G, Clark J, Ambroisine L, et al. (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27: 253-263. doi: 10.1038/sj.onc.1210640
    [19] Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111: 58-64.
    [20] Mellinger GT, Gleason D, Bailar J 3rd (1967) The histology and prognosis of prostatic cancer. J Urol 97: 331-337.
    [21] Conn PM, Crowley WF Jr. (1994) Gonadotropin-releasing hormone and its analogs. Annu Rev Med 45: 391-405. doi: 10.1146/annurev.med.45.1.391
    [22] Lubahn DB, Joseph DR, Sullivan PM, et al. (1988) Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 240: 327-330. doi: 10.1126/science.3353727
    [23] Gelmann EP (2002) Molecular biology of the androgen receptor. J Clin Oncol 20: 3001-3015. doi: 10.1200/JCO.2002.10.018
    [24] Edwards A, Hammond HA, Jin L, et al. (1992) Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241-253. doi: 10.1016/0888-7543(92)90371-X
    [25] Verrijdt G, Haelens A, Claessens F (2003) Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression. Mol Genet Metab 78: 175-185. doi: 10.1016/S1096-7192(03)00003-9
    [26] Maitland NJ, Frame FM, Polson ES, et al. (2011) Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm Cancer 2: 47-61. doi: 10.1007/s12672-010-0058-y
    [27] Mirosevich J, Bentel JM, Zeps N, et al. (1999) Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. J Endocrinol 162: 341-350. doi: 10.1677/joe.0.1620341
    [28] Radmayr C, Lunacek A, Schwentner C, et al. (2008) 5-alpha-reductase and the development of the human prostate. Indian J Urol 24: 309-312. doi: 10.4103/0970-1591.42610
    [29] Saartok T, Dahlberg E, Gustafsson JA (1984) Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology 114: 2100-2106. doi: 10.1210/endo-114-6-2100
    [30] Cano LQ, Lavery DN, Bevan CL (2013) Mini-review: Foldosome regulation of androgen receptor action in prostate cancer. Mol Cell Endocrinol 369: 52-62. doi: 10.1016/j.mce.2013.01.023
    [31] He B, Kemppainen JA, Voegel JJ, et al. (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 274: 37219-37225. doi: 10.1074/jbc.274.52.37219
    [32] Massie CE, Lynch A, Ramos-Montoya A, et al. (2011) The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30: 2719-2733. doi: 10.1038/emboj.2011.158
    [33] Cleutjens KB, van Eekelen CC, van der Korput HA, et al. (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271: 6379-6388. doi: 10.1074/jbc.271.11.6379
    [34] Sun M, Yang L, Feldman RI, et al. (2003) Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src. J Biol Chem 278: 42992-43000. doi: 10.1074/jbc.M306295200
    [35] Migliaccio A, Castoria G, Di Domenico M, et al. (2000) Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 19: 5406-5417.
    [36] Liao RS, Ma S, Miao L, et al. (2013) Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol 2: 187-196.
    [37] Peterziel H, Mink S, Schonert A, et al. (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18: 6322-6329. doi: 10.1038/sj.onc.1203032
    [38] Huggins C, Hodges CV (1972) Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 22: 232-240. doi: 10.3322/canjclin.22.4.232
    [39] Harris WP, Mostaghel EA, Nelson PS, et al. (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6: 76-85. doi: 10.1038/ncpuro1296
    [40] Klugo RC, Farah RN, Cerny JC (1981) Bilateral orchiectomy for carcinoma of prostate. Response of serum testosterone and clinical response to subsequent estrogen therapy. Urology 17: 49-50. doi: 10.1016/0090-4295(81)90011-X
    [41] Labrie F, Dupont A, Belanger A, et al. (1986) Treatment of prostate cancer with gonadotropin-releasing hormone agonists. Endocr Rev 7: 67-74. doi: 10.1210/edrv-7-1-67
    [42] Labrie F, Belanger A, Dupont A, et al. (1993) Science behind total androgen blockade: from gene to combination therapy. Clin Invest Med 16: 475-492.
    [43] Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32: 5501-5511. doi: 10.1038/onc.2013.206
    [44] de Bono JS, Logothetis CJ, Molina A, et al. (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364: 1995-2005. doi: 10.1056/NEJMoa1014618
    [45] Tran C, Ouk S, Clegg NJ, et al. (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324: 787-790. doi: 10.1126/science.1168175
    [46] Kluetz PG, Pierce W, Maher VE, et al. (2014) Radium Ra 223 dichloride injection: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res 20: 9-14. doi: 10.1158/1078-0432.CCR-13-2665
    [47] Pal S, Gupta R, Davuluri RV (2012) Alternative transcription and alternative splicing in cancer. Pharmacol Ther 136: 283-294. doi: 10.1016/j.pharmthera.2012.08.005
    [48] Heuze-Vourc'h N, Leblond V, Courty Y (2003) Complex alternative splicing of the hKLK3 gene coding for the tumor marker PSA (prostate-specific-antigen). Eur J Biochem 270: 706-714. doi: 10.1046/j.1432-1033.2003.03425.x
    [49] Narla G, DiFeo A, Fernandez Y, et al. (2008) KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest 118: 2711-2721. doi: 10.1172/JCI34780
    [50] Thorsen K, Sorensen KD, Brems-Eskildsen AS, et al. (2008) Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 7: 1214-1224. doi: 10.1074/mcp.M700590-MCP200
    [51] Erho N, Buerki C, Triche TJ, et al. (2012) Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer. J Oncol 2012: 541353.
    [52] Rajan P, Dalgliesh C, Carling PJ, et al. (2011) Identification of novel androgen-regulated pathways and mRNA isoforms through genome-wide exon-specific profiling of the LNCaP transcriptome. PLoS One 6: e29088. doi: 10.1371/journal.pone.0029088
    [53] Munkley J, Rajan P, Lafferty NP, et al. (2014) A novel androgen-regulated isoform of the TSC2 tumour suppressor gene increases cell proliferation. Oncotarget 5: 131-139.
    [54] Busa R, Paronetto MP, Farini D, et al. (2007) The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 26: 4372-4382. doi: 10.1038/sj.onc.1210224
    [55] Rajan P, Gaughan L, Dalgliesh C, et al. (2008) The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol 215: 67-77. doi: 10.1002/path.2324
    [56] Mavrou A, Brakspear K, Hamdollah-Zadeh M, et al. (2014) Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 34: 4311-4319.
    [57] Clark EL, Coulson A, Dalgliesh C, et al. (2008) The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res 68: 7938-7946. doi: 10.1158/0008-5472.CAN-08-0932
    [58] Wu X, Daniels G, Lee P, et al. (2014) Lipid metabolism in prostate cancer. Am J Clin Exp Urol 2: 111-120.
    [59] Suburu J, Chen YQ (2012) Lipids and prostate cancer. Prostaglandins Other Lipid Mediat 98: 1-10. doi: 10.1016/j.prostaglandins.2012.03.003
    [60] Swinnen JV, Ulrix W, Heyns W, et al. (1997) Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins. Proc Natl Acad Sci U S A 94: 12975-12980. doi: 10.1073/pnas.94.24.12975
    [61] Swinnen JV, Esquenet M, Goossens K, et al. (1997) Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res 57: 1086-1090.
    [62] Swinnen JV, Vanderhoydonc F, Elgamal AA, et al. (2000) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88: 176-179.
    [63] Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9: 230-234. doi: 10.1038/sj.pcan.4500879
    [64] Segawa T, Nau ME, Xu LL, et al. (2002) Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21: 8749-8758. doi: 10.1038/sj.onc.1205992
    [65] Sheng X, Arnoldussen YJ, Storm M, et al. (2015) Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Mol Med 7: 788-801. doi: 10.15252/emmm.201404509
    [66] Munkley J, Mills IG, Elliott DJ (2016) The role of glycans in the development and progression of prostate cancer. Nat Rev Urol 13: 324-333.
    [67] Hakomori S (1996) Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 56: 5309-5318.
    [68] Reis CA, Osorio H, Silva L, et al. (2010) Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 63: 322-329. doi: 10.1136/jcp.2009.071035
    [69] Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15: 540-555. doi: 10.1038/nrc3982
    [70] Barfeld SJ, East P, Zuber V, et al. (2014) Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genom 7: 513. doi: 10.1186/s12920-014-0074-9
    [71] Munkley J, Elliott DJ (2016) Hallmarks of glycosylation in cancer. Oncotarget in press.
    [72] Munkley J, Vodak D, Livermore KE, et al. (2016) Glycosylation is an androgen-regulated process essential for prostate cancer cell viability. EBioMedicine in press.
    [73] Itkonen HM, Engedal N, Babaie E, et al. (2015) UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 34: 3744-3750. doi: 10.1038/onc.2014.307
    [74] Munkley J, Oltean S, Vodak D, et al. (2015) The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget 6: 34358-34374.
    [75] Sato T, Yoneyama T, Tobisawa Y, et al. (2016) Core 2 (beta-1, 6-N-acetylglucosaminyltransferase-1 expression in prostate biopsy specimen is an indicator of prostate cancer aggressiveness. Biochem Biophys Res Commun 470: 150-156. doi: 10.1016/j.bbrc.2016.01.011
    [76] Chen Z, Gulzar ZG, St Hill CA, et al. (2014) Increased expression of GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate cancers. Prostate 74: 1059-1067. doi: 10.1002/pros.22826
    [77] Taylor BS, Schultz N, Hieronymus H, et al. (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11-22. doi: 10.1016/j.ccr.2010.05.026
    [78] Pourmand G, Ziaee AA, Abedi AR, et al. (2007) Role of PTEN gene in progression of prostate cancer. Urol J 4: 95-100.
    [79] Robinson D, Van Allen EM, Wu YM, et al. (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161: 1215-1228. doi: 10.1016/j.cell.2015.05.001
    [80] Carver BS, Chapinski C, Wongvipat J, et al. (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19: 575-586. doi: 10.1016/j.ccr.2011.04.008
    [81] Munkley J, Lafferty NP, Kalna G, et al. (2015) Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells. BMC Cancer 15: 9. doi: 10.1186/s12885-015-1012-8
    [82] Schutzman JL, Martin GR (2012) Sprouty genes function in suppression of prostate tumorigenesis. Proc Natl Acad Sci U S A 109: 20023-20028. doi: 10.1073/pnas.1217204109
    [83] Yokoyama NN, Shao S, Hoang BH, et al. (2014) Wnt signaling in castration-resistant prostate cancer: implications for therapy. Am J Clin Exp Urol 2: 27-44.
    [84] Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60: 4709-4713.
    [85] Mulholland DJ, Cheng H, Reid K, et al. (2002) The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli. J Biol Chem 277: 17933-17943. doi: 10.1074/jbc.M200135200
    [86] Rajan P, Sudbery IM, Villasevil ME, et al. (2014) Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur Urol 66: 32-39. doi: 10.1016/j.eururo.2013.08.011
    [87] Chen G, Shukeir N, Potti A, et al. (2004) Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 101: 1345-1356. doi: 10.1002/cncr.20518
    [88] Voeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520-2523.
    [89] Mostaghel EA, Solomon KR, Pelton K, et al. (2012) Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. PLoS One 7: e30062. doi: 10.1371/journal.pone.0030062
    [90] Hamid AR, Pfeiffer MJ, Verhaegh GW, et al. (2012) Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol Med 18: 1449-1455.
    [91] Stanbrough M, Bubley GJ, Ross K, et al. (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815-2825. doi: 10.1158/0008-5472.CAN-05-4000
    [92] Mohler JL, Gregory CW, Ford OH, 3rd, et al. (2004) The androgen axis in recurrent prostate cancer. Clin Cancer Res 10: 440-448. doi: 10.1158/1078-0432.CCR-1146-03
    [93] Knuuttila M, Yatkin E, Kallio J, et al. (2014) Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. Am J Pathol 184: 2163-2173. doi: 10.1016/j.ajpath.2014.04.010
    [94] Liu W, Xie CC, Zhu Y, et al. (2008) Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 10: 897-907. doi: 10.1593/neo.08428
    [95] Edwards J, Krishna NS, Grigor KM, et al. (2003) Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 89: 552-556. doi: 10.1038/sj.bjc.6601127
    [96] Edwards J, Krishna NS, Witton CJ, et al. (2003) Gene amplifications associated with the development of hormone-resistant prostate cancer. Clin Cancer Res 9: 5271-5281.
    [97] Holzbeierlein J, Lal P, LaTulippe E, et al. (2004) Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol 164: 217-227. doi: 10.1016/S0002-9440(10)63112-4
    [98] Barbieri CE, Bangma CH, Bjartell A, et al. (2013) The mutational landscape of prostate cancer. Eur Urol 64: 567-576. doi: 10.1016/j.eururo.2013.05.029
    [99] Grasso CS, Wu YM, Robinson DR, et al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487: 239-243. doi: 10.1038/nature11125
    [100] Shaffer DR, Leversha MA, Danila DC, et al. (2007) Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res 13: 2023-2029. doi: 10.1158/1078-0432.CCR-06-2701
    [101] Salvi S, Casadio V, Conteduca V, et al. (2015) Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br J Cancer 112: 1717-1724. doi: 10.1038/bjc.2015.128
    [102] Azad AA, Volik SV, Wyatt AW, et al. (2015) Androgen Receptor Gene Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in Castration-Resistant Prostate Cancer. Clin Cancer Res 21: 2315-2324. doi: 10.1158/1078-0432.CCR-14-2666
    [103] Attard G, Swennenhuis JF, Olmos D, et al. (2009) Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 69: 2912-2918. doi: 10.1158/0008-5472.CAN-08-3667
    [104] Wallen MJ, Linja M, Kaartinen K, et al. (1999) Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 189: 559-563.
    [105] Gottlieb B, Beitel LK, Nadarajah A, et al. (2012) The androgen receptor gene mutations database: 2012 update. Hum Mutat 33: 887-894. doi: 10.1002/humu.22046
    [106] Gaddipati JP, McLeod DG, Heidenberg HB, et al. (1994) Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 54: 2861-2864.
    [107] Steketee K, Timmerman L, Ziel-van der Made AC, et al. (2002) Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 100: 309-317. doi: 10.1002/ijc.10495
    [108] Steinkamp MP, O'Mahony OA, Brogley M, et al. (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69: 4434-4442. doi: 10.1158/0008-5472.CAN-08-3605
    [109] Hu R, Dunn TA, Wei S, et al. (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69: 16-22.
    [110] Sun S, Sprenger CC, Vessella RL, et al. (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120: 2715-2730. doi: 10.1172/JCI41824
    [111] Hu R, Lu C, Mostaghel EA, et al. (2012) Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 72: 3457-3462. doi: 10.1158/0008-5472.CAN-11-3892
    [112] Li Y, Chan SC, Brand LJ, et al. (2013) Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 73: 483-489. doi: 10.1158/0008-5472.CAN-12-3630
    [113] Hornberg E, Ylitalo EB, Crnalic S, et al. (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6: e19059. doi: 10.1371/journal.pone.0019059
    [114] Antonarakis ES, Lu C, Wang H, et al. (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371: 1028-1038. doi: 10.1056/NEJMoa1315815
    [115] Steinestel J, Luedeke M, Arndt A, et al. (2015) Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget 5.
    [116] Culig Z (2016) Androgen Receptor Coactivators in Regulation of Growth and Differentiation in Prostate Cancer. J Cell Physiol 231: 270-274. doi: 10.1002/jcp.25099
    [117] Heemers HV, Sebo TJ, Debes JD, et al. (2007) Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res 67: 3422-3430. doi: 10.1158/0008-5472.CAN-06-2836
    [118] Comuzzi B, Nemes C, Schmidt S, et al. (2004) The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J Pathol 204: 159-166. doi: 10.1002/path.1609
    [119] Halkidou K, Gnanapragasam VJ, Mehta PB, et al. (2003) Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene 22: 2466-2477. doi: 10.1038/sj.onc.1206342
    [120] Debes JD, Schmidt LJ, Huang H, et al. (2002) p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62: 5632-5636.
    [121] Shiota M, Yokomizo A, Masubuchi D, et al. (2010) Tip60 Promotes Prostate Cancer Cell Proliferation by Translocation of Androgen Receptor into the Nucleus. Prostate 70: 540-554.
    [122] Kishimoto T (1989) The biology of interleukin-6. Blood 74: 1-10.
    [123] Okamoto M, Lee C, Oyasu R (1997) Autocrine effect of androgen on proliferation of an androgen responsive prostatic carcinoma cell line, LNCAP: role of interleukin-6. Endocrinology 138: 5071-5074. doi: 10.1210/endo.138.11.5653
    [124] Hobisch A, Rogatsch H, Hittmair A, et al. (2000) Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol 191: 239-244.
    [125] Culig Z, Bartsch G, Hobisch A (2002) Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol Cell Endocrinol 197: 231-238. doi: 10.1016/S0303-7207(02)00263-0
    [126] Twillie DA, Eisenberger MA, Carducci MA, et al. (1995) Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 45: 542-549. doi: 10.1016/S0090-4295(99)80034-X
    [127] Chen T, Wang LH, Farrar WL (2000) Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 60: 2132-2135.
    [128] Heinrich PC, Behrmann I, Haan S, et al. (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374: 1-20. doi: 10.1042/bj20030407
    [129] Olayioye MA, Neve RM, Lane HA, et al. (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19: 3159-3167.
    [130] Slamon DJ, Godolphin W, Jones LA, et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707-712. doi: 10.1126/science.2470152
    [131] Signoretti S, Montironi R, Manola J, et al. (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92: 1918-1925.
    [132] Wen Y, Hu MC, Makino K, et al. (2000) HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 60: 6841-6845.
    [133] Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441: 431-436. doi: 10.1038/nature04870
    [134] Suh J, Payvandi F, Edelstein LC, et al. (2002) Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate 52: 183-200. doi: 10.1002/pros.10082
    [135] Zhang L, Altuwaijri S, Deng F, et al. (2009) NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol 175: 489-499. doi: 10.2353/ajpath.2009.080727
    [136] Nadiminty N, Lou W, Sun M, et al. (2010) Aberrant activation of the androgen receptor by NF-kappaB2/p52 in prostate cancer cells. Cancer Res 70: 3309-3319. doi: 10.1158/0008-5472.CAN-09-3703
    [137] Krijnen JL, Janssen PJ, Ruizeveld de Winter JA, et al. (1993) Do neuroendocrine cells in human prostate cancer express androgen receptor? Histochemistry 100: 393-398. doi: 10.1007/BF00268938
    [138] Bonkhoff H, Stein U, Remberger K (1995) Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum Pathol 26: 167-170. doi: 10.1016/0046-8177(95)90033-0
    [139] Li Q, Zhang CS, Zhang Y (2016) Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 28: 122-129.
    [140] Alberti C (2010) Neuroendocrine differentiation in prostate carcinoma: focusing on its pathophysiologic mechanisms and pathological features. G Chir 31: 568-574.
    [141] Yuan TC, Veeramani S, Lin FF, et al. (2006) Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 13: 151-167. doi: 10.1677/erc.1.01043
    [142] Jongsma J, Oomen MH, Noordzij MA, et al. (1999) Kinetics of neuroendocrine differentiation in an androgen-dependent human prostate xenograft model. Am J Pathol 154: 543-551. doi: 10.1016/S0002-9440(10)65300-X
    [143] Hirano D, Okada Y, Minei S, et al. (2004) Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 45: 586-592. doi: 10.1016/j.eururo.2003.11.032
    [144] Sagnak L, Topaloglu H, Ozok U, et al. (2011) Prognostic significance of neuroendocrine differentiation in prostate adenocarcinoma. Clin Genitourin Cancer 9: 73-80. doi: 10.1016/j.clgc.2011.07.003
    [145] Qiu Y, Robinson D, Pretlow TG, et al. (1998) Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A 95: 3644-3649. doi: 10.1073/pnas.95.7.3644
    [146] Spiotto MT, Chung TD (2000) STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 42: 186-195.
    [147] Moritz T, Venz S, Junker H, et al. (2016) Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Tumour Biol in press.
    [148] Gururajan M, Cavassani KA, Sievert M, et al. (2015) SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget 6: 44072-44083.
    [149] Uysal-Onganer P, Kawano Y, Caro M, et al. (2010) Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol Cancer 9: 55. doi: 10.1186/1476-4598-9-55
    [150] Wu C, Huang J (2007) Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem 282: 3571-3583.
    [151] Kowalska K, Piastowska-Ciesielska AW (2016) Oestrogens and oestrogen receptors in prostate cancer. Springerplus 5: 522. doi: 10.1186/s40064-016-2185-6
    [152] Thompson VC, Morris TG, Cochrane DR, et al. (2006) Relaxin becomes upregulated during prostate cancer progression to androgen independence and is negatively regulated by androgens. Prostate 66: 1698-1709. doi: 10.1002/pros.20423
    [153] Liu S, Vinall RL, Tepper C, et al. (2008) Inappropriate activation of androgen receptor by relaxin via beta-catenin pathway. Oncogene 27: 499-505. doi: 10.1038/sj.onc.1210671
    [154] Yu S, Xia S, Yang D, et al. (2013) Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol 30: 674. doi: 10.1007/s12032-013-0674-9
    [155] Roberts AB, Anzano MA, Wakefield LM, et al. (1985) Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A 82: 119-123. doi: 10.1073/pnas.82.1.119
    [156] Fuzio P, Ditonno P, Rutigliano M, et al. (2012) Regulation of TGF-beta1 expression by androgen deprivation therapy of prostate cancer. Cancer Lett 318: 135-144. doi: 10.1016/j.canlet.2011.08.034
    [157] Yang F, Tuxhorn JA, Ressler SJ, et al. (2005) Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 65: 8887-8895. doi: 10.1158/0008-5472.CAN-05-1702
    [158] Yang F, Chen Y, Shen T, et al. (2014) Stromal TGF-beta signaling induces AR activation in prostate cancer. Oncotarget 5: 10854-10869. doi: 10.18632/oncotarget.2536
  • This article has been cited by:

    1. Harald Garcke, Kei Fong Lam, Elisabetta Rocca, Optimal Control of Treatment Time in a Diffuse Interface Model of Tumor Growth, 2018, 78, 0095-4616, 495, 10.1007/s00245-017-9414-4
    2. Andrea Giorgini, Maurizio Grasselli, Hao Wu, The Cahn–Hilliard–Hele–Shaw system with singular potential, 2018, 35, 02941449, 1079, 10.1016/j.anihpc.2017.10.002
    3. Harald Garcke, Kei Fong Lam, Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, 2017, 37, 1553-5231, 4277, 10.3934/dcds.2017183
    4. Alain Miranville, Elisabetta Rocca, Giulio Schimperna, On the long time behavior of a tumor growth model, 2019, 267, 00220396, 2616, 10.1016/j.jde.2019.03.028
    5. Andrea Signori, Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential, 2021, 41, 1553-5231, 2519, 10.3934/dcds.2020373
    6. Harald Garcke, Kei Fong Lam, 2018, Chapter 12, 978-3-319-75939-5, 243, 10.1007/978-3-319-75940-1_12
    7. KEI FONG LAM, HAO WU, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, 2018, 29, 0956-7925, 595, 10.1017/S0956792517000298
    8. Matthias Ebenbeck, Harald Garcke, On a Cahn--Hilliard--Brinkman Model for Tumor Growth and Its Singular Limits, 2019, 51, 0036-1410, 1868, 10.1137/18M1228104
    9. Luca Dedè, Alfio Quarteroni, Isogeometric Analysis of a Phase Field Model for Darcy Flows with Discontinuous Data, 2018, 39, 0252-9599, 487, 10.1007/s11401-018-0079-3
    10. Andrea Signori, Optimal Distributed Control of an Extended Model of Tumor Growth with Logarithmic Potential, 2020, 82, 0095-4616, 517, 10.1007/s00245-018-9538-1
    11. Marvin Fritz, Ernesto A. B. F. Lima, Vanja Nikolić, J. Tinsley Oden, Barbara Wohlmuth, Local and nonlocal phase-field models of tumor growth and invasion due to ECM degradation, 2019, 29, 0218-2025, 2433, 10.1142/S0218202519500519
    12. Matthias Ebenbeck, Harald Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, 2019, 266, 00220396, 5998, 10.1016/j.jde.2018.10.045
    13. Cecilia Cavaterra, Elisabetta Rocca, Hao Wu, Long-Time Dynamics and Optimal Control of a Diffuse Interface Model for Tumor Growth, 2019, 0095-4616, 10.1007/s00245-019-09562-5
    14. Michele Colturato, Sliding mode control for a diffuse interface tumor growth model coupling a Cahn–Hilliard equation with a reaction–diffusion equation, 2020, 43, 0170-4214, 6598, 10.1002/mma.6403
    15. Harald Garcke, Kei Fong Lam, Andrea Signori, On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects, 2021, 57, 14681218, 103192, 10.1016/j.nonrwa.2020.103192
    16. Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels, A Distributed Control Problem for a Fractional Tumor Growth Model, 2019, 7, 2227-7390, 792, 10.3390/math7090792
    17. Andrea Signori, Vanishing parameter for an optimal control problem modeling tumor growth, 2020, 117, 18758576, 43, 10.3233/ASY-191546
    18. Sergio Frigeri, Kei Fong Lam, Elisabetta Rocca, 2017, Chapter 9, 978-3-319-64488-2, 217, 10.1007/978-3-319-64489-9_9
    19. Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels, Asymptotic analysis of a tumor growth model with fractional operators, 2020, 120, 18758576, 41, 10.3233/ASY-191578
    20. Matthias Ebenbeck, Kei Fong Lam, Weak and stationary solutions to a Cahn–Hilliard–Brinkman model with singular potentials and source terms, 2020, 10, 2191-950X, 24, 10.1515/anona-2020-0100
    21. Jürgen Sprekels, Hao Wu, Optimal Distributed Control of a Cahn–Hilliard–Darcy System with Mass Sources, 2021, 83, 0095-4616, 489, 10.1007/s00245-019-09555-4
    22. Matthias Ebenbeck, Patrik Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation, 2019, 58, 0944-2669, 10.1007/s00526-019-1579-z
    23. Marvin Fritz, Ernesto A. B. F. Lima, J. Tinsley Oden, Barbara Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, 2019, 29, 0218-2025, 1691, 10.1142/S0218202519500325
    24. Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Optimal Control of a Phase Field System Modelling Tumor Growth with Chemotaxis and Singular Potentials, 2019, 0095-4616, 10.1007/s00245-019-09618-6
    25. Luca Dedè, Harald Garcke, Kei Fong Lam, A Hele–Shaw–Cahn–Hilliard Model for Incompressible Two-Phase Flows with Different Densities, 2018, 20, 1422-6928, 531, 10.1007/s00021-017-0334-5
    26. Harald Garcke, Sema Yayla, Long-time dynamics for a Cahn–Hilliard tumor growth model with chemotaxis, 2020, 71, 0044-2275, 10.1007/s00033-020-01351-3
    27. Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi, Elisabetta Rocca, Sliding Mode Control for a Phase Field System Related to Tumor Growth, 2019, 79, 0095-4616, 647, 10.1007/s00245-017-9451-z
    28. Harald Garcke, Kei Fong Lam, Robert Nürnberg, Emanuel Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, 2018, 28, 0218-2025, 525, 10.1142/S0218202518500148
    29. Matthias Ebenbeck, Harald Garcke, Robert Nürnberg, Cahn–Hilliard–Brinkman systems for tumour growth, 2021, 0, 1937-1179, 0, 10.3934/dcdss.2021034
    30. Marvin Fritz, Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Barbara Wohlmuth, Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network, 2021, 61, 14681218, 103331, 10.1016/j.nonrwa.2021.103331
    31. Cecilia Cavaterra, Sergio Frigeri, Maurizio Grasselli, Nonlocal Cahn–Hilliard–Hele–Shaw Systems with Singular Potential and Degenerate Mobility, 2022, 24, 1422-6928, 10.1007/s00021-021-00648-1
    32. Luca Scarpa, Andrea Signori, On a class of non-local phase-field models for tumor growth with possibly singular potentials, chemotaxis, and active transport, 2021, 34, 0951-7715, 3199, 10.1088/1361-6544/abe75d
    33. Patrik Knopf, Andrea Signori, Existence of weak solutions to multiphase Cahn–Hilliard–Darcy and Cahn–Hilliard–Brinkman models for stratified tumor growth with chemotaxis and general source terms, 2022, 47, 0360-5302, 233, 10.1080/03605302.2021.1966803
    34. Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Optimal Control Problems with Sparsity for Tumor Growth Models Involving Variational Inequalities, 2022, 194, 0022-3239, 25, 10.1007/s10957-022-02000-7
    35. Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels, Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term, 2022, 15, 1937-1632, 2135, 10.3934/dcdss.2022001
    36. Andrea Giorgini, Kei Fong Lam, Elisabetta Rocca, Giulio Schimperna, On the Existence of Strong Solutions to the Cahn--Hilliard--Darcy System with Mass Source, 2022, 54, 0036-1410, 737, 10.1137/20M1376443
    37. Pierluigi Colli, Andrea Signori, Jürgen Sprekels, Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis, 2021, 27, 1292-8119, 73, 10.1051/cocv/2021072
    38. Mostafa Bendahmane, Kenneth H. Karlsen, Martingale solutions of stochastic nonlocal cross-diffusion systems, 2022, 17, 1556-1801, 719, 10.3934/nhm.2022024
    39. Tania Biswas, Elisabetta Rocca, Long time dynamics of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, 2022, 27, 1531-3492, 2455, 10.3934/dcdsb.2021140
    40. Elisabetta Rocca, Luca Scarpa, Andrea Signori, Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis, 2021, 31, 0218-2025, 2643, 10.1142/S0218202521500585
    41. Giulio Schimperna, On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential, 2022, 15, 1937-1632, 2305, 10.3934/dcdss.2022008
    42. Xiaopeng Zhao, Optimal Distributed Control of Two-Dimensional Navier–Stokes–Cahn–Hilliard System with Chemotaxis and Singular Potential, 2023, 88, 0095-4616, 10.1007/s00245-023-09976-2
    43. Marvin Fritz, Tumor Evolution Models of Phase-Field Type with Nonlocal Effects and Angiogenesis, 2023, 85, 0092-8240, 10.1007/s11538-023-01151-6
    44. Christoph Helmer, Ansgar Jüngel, Existence analysis for a reaction-diffusion Cahn–Hilliard-type system with degenerate mobility and singular potential modeling biofilm growth, 2023, 0, 1078-0947, 0, 10.3934/dcds.2023069
    45. Jürgen Sprekels, Fredi Tröltzsch, Second-Order Sufficient Conditions in the Sparse Optimal Control of a Phase Field Tumor Growth Model with Logarithmic Potential, 2024, 30, 1292-8119, 13, 10.1051/cocv/2023084
    46. Helmut Abels, Harald Garcke, Jonas Haselböck, Existence of weak solutions to a Cahn–Hilliard–Biot system, 2025, 81, 14681218, 104194, 10.1016/j.nonrwa.2024.104194
    47. Cecilia Cavaterra, Sergio Frigeri, Maurizio Grasselli, A Nonlocal Cahn–Hilliard–Darcy System with Singular Potential, Degenerate Mobility, and Sources, 2025, 91, 0095-4616, 10.1007/s00245-025-10239-5
    48. Cedric Riethmüller, Erlend Storvik, Jakub Wiktor Both, Florin Adrian Radu, Well-posedness analysis of the Cahn–Hilliard–Biot model, 2025, 84, 14681218, 104271, 10.1016/j.nonrwa.2024.104271
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9985) PDF downloads(1441) Cited by(22)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog