Citation: Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia Fortalezas, Alejandro K. Samhan-Arias. The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation[J]. AIMS Molecular Science, 2016, 3(1): 12-29. doi: 10.3934/molsci.2016.1.12
[1] | Chiara De Santi, Sucharitha Gadi, Agnieszka Swiatecka-Urban, Catherine M. Greene . Identification of a novel functional miR-143-5p recognition element in the Cystic Fibrosis Transmembrane Conductance Regulator 3’UTR. AIMS Genetics, 2018, 5(1): 53-62. doi: 10.3934/genet.2018.1.53 |
[2] | Mohammad Hashemi, Fatemeh Bizhani, Hiva Danesh, Behzad Narouie, Mehdi Sotoudeh, Mohammad Hadi Radfar, Mehdi Honarkar Ramezani, Gholamreza Bahari, Mohsen Taheri, Saeid Ghavami . MiR-608 rs4919510 C>G polymorphism increased the risk of bladder cancer in an Iranian population. AIMS Genetics, 2016, 3(4): 212-218. doi: 10.3934/genet.2016.4.212 |
[3] | Tahereh Karamzadeh, Hamzeh Alipour, Marziae Shahriari-Namadi, Abbasali Raz, Kourosh Azizi, Masoumeh Bagheri, Mohammad D. Moemenbellah-Fard . Molecular characterization of the netrin-1 UNC-5 receptor in Lucilia sericata larvae. AIMS Genetics, 2019, 6(3): 46-54. doi: 10.3934/genet.2019.3.46 |
[4] | Huong Thi Thu Phung, Hoa Luong Hieu Nguyen, Dung Hoang Nguyen . The possible function of Flp1 in homologous recombination repair in Saccharomyces cerevisiae. AIMS Genetics, 2018, 5(2): 161-176. doi: 10.3934/genet.2018.2.161 |
[5] | Michael T. Fasullo, Mingzeng Sun . Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS Genetics, 2017, 4(2): 84-102. doi: 10.3934/genet.2017.2.84 |
[6] | Jeffrey M. Marcus . Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genetics, 2018, 5(1): 1-23. doi: 10.3934/genet.2018.1.1 |
[7] | Noel Pabalan, Neetu Singh, Eloisa Singian, Caio Parente Barbosa, Bianca Bianco, Hamdi Jarjanazi . Associations of CYP1A1 gene polymorphisms and risk of breast cancer in Indian women: a meta-analysis. AIMS Genetics, 2015, 2(4): 250-262. doi: 10.3934/genet.2015.4.250 |
[8] | Xiaojuan Wang, Jianghong Wu, Zhongren Yang, Fenglan Zhang, Hailian Sun, Xiao Qiu, Fengyan Yi, Ding Yang, Fengling Shi . Physiological responses and transcriptome analysis of the Kochia prostrata (L.) Schrad. to seedling drought stress. AIMS Genetics, 2019, 6(2): 17-35. doi: 10.3934/genet.2019.2.17 |
[9] | Jue Er Amanda Lee, Linda May Parsons, Leonie M. Quinn . MYC function and regulation in flies: how Drosophila has enlightened MYC cancer biology. AIMS Genetics, 2014, 1(1): 81-98. doi: 10.3934/genet.2014.1.81 |
[10] | John E. La Marca, Wayne Gregory Somers . The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS Genetics, 2014, 1(1): 55-80. doi: 10.3934/genet.2014.1.55 |
MicroRNAs (miRNAs) are distinctive regulatory member of the small RNAs that regulate gene silencing at post-transcriptional level. Gene silencing by miRNAs is an important, advance and exciting area of present regulatory RNA research. They are endogenous, non-coding in nature and about 18 to 26 nucleotides (nt) in size. They are the negative regulator at post-transcriptional stage of gene regulation [1]. Initially, a self-folded stable hair-pin/stem-loop secondary structure termed as precursor-miRNAs (pre-miRNAs) is generate from long single strand RNA known as primary miRNA (pri-miRNA). Later the pre-miRNAs give rise a small sized (18–26nt) functional RNA known as mature miRNA. This mature miRNA is integrate into argonaute protein and advanced into the RNA induced silencing complex (RISC) [2,3]. The RISC complex having mature miRNA triggers post-transcriptional gene suppression of the messenger RNA (mRNA) either by inhibiting protein encoding or by activating mRNA degradation. This inhibition and degradation capability of the miRNA depends on the scale of complementarity between miRNA and its targeted mRNA [4]. In case of partial pairing between miRNAs and its mRNA target causes its inhibition. While, the complete pairing of miRNAs with it mRNA target causes the mRNAs degradation [1,5]. They participate as gene regulator in almost each and every life activity, such as growth and development, foreign genes suppression, signal transduction, environmental stresses and as a defense against the attacking microbes in various living organisms [1,6,7,8,9]. Majority of the miRNAs show conserved behavior among various plant species. Many researchers, based on this conserved nature, have identified a huge number of miRNAs using comparative genomic approaches in a wide range of plant species, including cowpea [10], Brassicanapus [11], Glycinemax [12], cotton species [13,14], Zeamays [15], tobacco [16], switch grass [17], Phaseolus [18], tomato [19], eggplant [20] and chilli [21]. These reports strongly suggest that comparative genomic strategies are valid, highly efficient, convenient, and economical-friendly methods to identify new miRNAs.
Cowpea (Vigna unguiculata L.) is an important leguminous crop of Asia, Africa, Southern Europe and USA [22]. It is a good food due to the presence of carbohydrate and high protein contents. This makes it not only essential diet to the human, but also serve as fodder to livestock. Cowpea is also significant to grow under low soil fertility, heat and drought. It is a key constituent of low-input farming systems for farmers. Cowpea also play vital role in the nitrogen fixation which is necessary for the enhancement of soil productiveness [22,23]. Very little reports and data are available about the miRNAs in this important plant. According to the latest version of miRNA registry database (Version Rfam 21.0, released June, 2014) [24], only few miRNAs are available for cowpea. This situation demands to focus and profile new miRNAs and their targets in cowpea that will act as preliminary data to manage and understand the cowpea at molecular level.
Consequently, a total of 46 new miRNAs belonging to 45 families in cowpea were identified. In this study, one miRNA gene was also found as pre-miRNA cluster (vun-mir4414). Furthermore, these newly identified miRNAs were also validated for their protein targets.
A similar methodology [15] with a little modification as described by Barozai MYK, et al. [13] was applied to profile the potential miRNAs from cowpea expressed sequence tags (ESTs). As reference miRNAs, a total of 4739 known plant miRNA sequences, both precursors and matures, were downloaded from the microRNA registry database (Version Rfam 21.0 released June, 2014) [24], and subjected to basic local alignment search tool (BLAST) for alignment against publicly available 187487 ESTs of cowpea from the dbEST (database of EST), release 130101 at http://blast.ncbi.nlm.nih.gov/Blast.cgi, using BLASTn program [25].
The repeated ESTs from the same gene were eliminated and a single tone EST per miRNA was produced by using BLASTn program against the cowpea EST database with default parameters [25].
The initial potential miRNA sequences of cowpea, predicted by the mature source miRNAs, were checked for protein coding. The FASTA format of initial potential sequences were subjected against protein database at NCBI using BLASTX with default parameter [26] and the protein coding sequences were removed.
The initial potential candidate cowpea miRNA sequences, confirming as non-protein coding nature, having 0–4 mismatches with the reference miRNAs and representing single tone gene were subjected to generate hair-pen or secondary structures. Publicly available Zuker folding algorithm http://www.bioinfo.rpi.edu/applications/mfold/rna/form1.cgi, known as MFOLD (version 3.6) [27] was used to predict the secondary structures. The MFOLD parameters were adjusted same as published by various researchers for the identification of miRNAs in various plant and animal species [7,8,28]. For physical scrutinizing, the hair-pen structures either showing the lowest free energy ≤−18 kcal mol−1 or less than or equal to the lowest free energy of the reference miRNAs were preferred. The Ambros et al. [29] threshold values were applied as reference to finalize the potential miRNAs in cowpea. The stem regions of the stem-loop structures were checked and confirmed for the mature sequences with either at least 16 or equal to the reference miRNAs base pairing involved in Watson-Crick or G/U base pairing between the mature miRNA and the opposite strand (miRNA*).
The convergence and phylogenetic analysis was carried out for the one of conserved cowpea miRNA (vun-mir398). Simply, the vun-mir398, for its conserved behavior in different plant species was checked for convergence and phylogenetic investigation. The vun-mir398 alignment was created with Glycine max (gma), Nicotiana tabacum (nta) and Cucumis melo (cme) by the publicly accessible web logo: a sequence logo generator and ClustalW to produce cladogram tree using neighbor joining clustering method respectively. The results were saved.
Dual schemes were used to predict the potential targets for cowpea miRNAs. In the first scheme, the newly identified cowpea miRNAs were subjected to psRNATarget (http://bioinfo3.noble.org/psRNATarget), with default parameters [30]. The cowpea miRNAs that not produced potential targets through psRNATarget, were subjected to the second scheme as described by Barozai [31]. Briefly, the cowpea mature miRNA sequences were subjected as queries through BLASTn program. The parameters were adjusted as, database: reference mRNA sequences (refseq_rnat); organism: Vigna unguiculata (taxid:4072) and Program Selection: highly similar sequences (megablast). The mRNA sequences showing ≥75% query coverage were selected and further subjected to RNA hybrid—a miRNA target prediction tool [32]. Only targets, confirming stringent seed site located at either positions 2–7 and/or 8–13 from the 5′ end of the miRNAs along with the supplementary site and having minimum free energy (MFE) ≤−20 kcal mol−1 were selected. For more stringency, these targets were subjected to the NTNU microRNA target prediction tool available at http://tare.medisin.ntnu.no/mirna_target/search#results, to confirm the RNA hybrid results. These predicted targets were further analyzed through Gene Ontology (GO) on AmiGO website.
In order to identify and characterize the potential miRNAs in cowpea, a comparative genomic approach was applied using bioinformatics tools. This is in agreement with the previous reports [8,28,31] that the homology based search by applying comparative genomics is a valid and logical approach to find interesting findings in plants at genomic level. The current study resulted a total of 46 new conserved miRNAs from the analyses of 187487 cowpea ESTs using bioinformatics tools (Table 1). The 46 potential cowpea miRNAs belong to 45 families (vun-miR: 398,413,435,834,1512,1514,1525,1848,2095,2606,2609,2622,2630,2636,2657,2678,2950,3434,4351,4392,4408,4414 (cluster), 4992,4996,5012,5043,5215,5216,5219,5227,5241,5246,5255,5261,5280,5290,5298,5376,5561,5758,5770,6252,7696,8182,9748). The vun-miR4414 family is observed as cluster pre-miRNA. Available miRNAs literature revealed that all these 46 miRNAs are profiled for the first time in cowpea. In the light of the empirical formula for biogenesis and expression of the miRNAs suggested by Ambros et al. [29], these miRNAs are considered as a valid candidate after justifying the criteria B, C and D. According to Ambros et al. [29] only the criterion D is enough for homologous sequences to validate as potential miRNAs in other species. The present study is in agreement with the other research groups [21,33,34,35,36] where similarity based search by applying comparative genomics has produced novel and interesting findings in plants genomics.
vun miRNAs | Ref. miRNAs | PL | MFE | MS | NM | ML | SE # | MSA | GC% | SL | OE |
vun-mir398 | mtr-mir398a | 131 | −32.24 | TGTGTTCTCAGGTCGCCCCTG | 2 | 21 | FF542932 | 5' | 61.90 | + | leaves |
vun-mir413 | ath-mir413 | 353 | −88.55 | TTAGTTTCTCTTGTTCTGCTT | 2 | 21 | FG940215 | 5' | 33.33 | + | mixed |
vun-mir435 | osa-mir435 | 347 | −124.38 | TTATGAGGCTTTGGAGTTGA | 4 | 20 | FG811172 | 3' | 40.00 | + | mixed |
vun-mir834 | ath-mir834 | 135 | −52.95 | TGGTAGCAGTGGCGGTGGTGG | 3 | 21 | FG822669 | 3' | 66.66 | − | mixed |
vun-mir1512 | gma-mir1512a | 46 | −10.60 | CCTTTAAGAATTTCA-TTA-- | 4 | 18 | FG880488 | 3' | 22.22 | − | mixed |
vun-mir1514 | gma-mir1514 | 127 | −31.70 | TTCATTTCTAAAATAGGCATC | 2 | 21 | FF388166 | 5' | 28.57 | − | root |
vun-mir1525 | gma-mir1525 | 78 | −14.10 | GGGGTTAAATATGTTTTTAGT | 3 | 21 | FG845219 | 5' | 28.57 | + | mixed |
vun-mir1848 | osa-mir1848 | 77 | −32.20 | CGCTCGCCGGCGCGCGCGTCCA | 2 | 22 | FG920123 | 3' | 86.36 | + | mixed |
vun-mir2095 | osa-mir2095 | 57 | −17.20 | CTTCCATTTATGACATGTTT | 3 | 20 | FG838629 | 5' | 30.00 | − | mixed |
vun-mir2606 | mtr-mir2606a | 69 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2609 | mtr-mir2609a | 70 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2622 | mtr-mir2622 | 210 | −36.85 | CTTGTGTGCCATTGTGAGCTTA | 3 | 22 | FG900047 | 3' | 42.85 | − | mixed |
vun-mir2630 | mtr-mir2630a | 114 | −24.70 | TGGTTTTGGTCTTTGGTTTTA | 3 | 21 | FF391380 | 5' | 33.33 | + | root |
vun-mir2636 | mtr-mit2636 | 191 | −29.40 | GGATGTTAGTGTGCTGAATAT | 4 | 21 | FG814033 | 5' | 38.09 | − | mixed |
vun-mir2657 | mtr-mir2657 | 156 | −35.38 | TTTTATTGTATTGATTTTGTTG | 4 | 22 | FG926034 | 5' | 18.18 | − | mixed |
vun-mir2678 | mtr-mir2678 | 136 | −39.32 | TAAAGTTGTTGCGCGTGTC | 3 | 19 | FF389500 | 3' | 47.36 | − | root |
vun-mir2950 | mes-mir2950 | 347 | −83.20 | TTCCATCTCTTGCAGACTGAA | 2 | 21 | FG872933 | 5' | 42.85 | − | mixed |
vun-mir3434 | ath-mir3434 | 78 | −17.40 | TGAGAGTATCAGCCATGAGA | 2 | 20 | FF392538 | 3' | 45.00 | − | root |
vun-mir4351 | gma-mir4351 | 148 | −63.30 | GTTAGGGTTCAGTTGGAGTTGG | 3 | 22 | FG936300 | 3' | 50.00 | − | mixed |
vun-mir4392 | gma-mir4392 | 306 | −80.53 | TCTGTGAGAACGTGATTTCGGA | 3 | 22 | FG857306 | 5' | 45.45 | + | mixed |
vun-mir4408 | gma-mir4408 | 66 | −20.70 | CAACAACATTGGATGAGTATAGGA | 4 | 24 | FG894682 | 3' | 37.5 | + | mixed |
vun-mir4414a vun-mir4414b | mtr-mir4414a | 120 | −42.20 | AGCTGCTGACTCGTTGGTTCAATTCAACGATGCGGGAGCTGC | 0 1 | 21 21 | FF537171 | 5' 3' | 52.38 57.14 | + + | leaves |
vun-mir4992 | gma-mir4992 | 63 | −21.20 | CATCTAAGATGGTTTTTTTCAG | 4 | 22 | FG926352 | 3' | 31.81 | − | mixed |
vun-mir4996 | gma-mir4996 | 163 | −49.83 | TAGAAGTTACCCATGTTCTC | 2 | 20 | FF388735 | 3' | 40.00 | − | root |
vun-mir5012 | ath-mir5012 | 172 | −43.44 | TTTTGCTGCTCCGTGTGTTCC | 3 | 21 | FG809429 | 3' | 52.38 | + | mixed |
vun-mir5043 | gma-mir5043 | 125 | −48.20 | CTTCTCCTTCTCTGCACCACC | 3 | 21 | FG810406 | 5' | 57.14 | + | mixed |
vun-mir5215 | mtr-mir5215 | 181 | −49.63 | AGGAGGATGAGCTAGTTGATT | 3 | 21 | FG939979 | 5' | 42.85 | + | mixed |
vun-mir5216 | mtr-mir5216a | 124 | −27.58 | TTGGGAGTGAAAAACAGTGGAA | 2 | 22 | FF399948 | 5' | 40.90 | + | root |
vun-mir5219 | mtr-mir5219 | 107 | −25.23 | TCATGGAATCTCAGCTGCAGCAG | 1 | 23 | FG850600 | 3' | 52.17 | − | mixed |
vun-mir5227 | mtr-mir5227 | 140 | −18.04 | AGAACAGAAGAAGATTGAAGAA | 3 | 22 | FG915684 | 5' | 31.81 | − | mixed |
vun-mir5241 | mtr-mir5241a | 381 | W#8722;119.80 | TGGGTGAATGGAAGAGTGAAT | 3 | 21 | FG904590 | 3' | 42.85 | + | mixed |
vun-mir5246 | mtr-mir5246 | 68 | −18.70 | CACCAGAGAGCTTTGAAGGTT | 4 | 21 | FG856911 | 3' | 47.61 | + | mixed |
vun-mir5255 | mtr-mir5255 | 54 | −10.40 | TGACAGGATAGAGGACATGAC | 4 | 21 | FG910302 | 5' | 47.61 | − | mixed |
vun-mir5261 | mtr-mir5261 | 311 | −71.81 | CGATTGTAGATGGCTTTGGCT | 3 | 21 | FG838847 | 5' | 47.61 | − | mixed |
vun-mir5280 | mtr-mir5280 | 90 | −20.22 | TAAGTAGAAACGGGCCGAGATCGGGG | 4 | 26 | FG915361 | 5' | 57.69 | − | mixed |
vun-mir5290 | mtr-mir5290 | 217 | −30.24 | AAAGTAGAGAGAGAAAGACACATA | 4 | 24 | FG852502 | 5' | 33.33 | + | mixed |
vun-mir5298 | mtr-mir5298a | 192 | −36.58 | TGGATTTCAAGATGAAGATGAAGAA | 4 | 25 | FF402284 | 3' | 32.00 | − | root |
vun-mir5376 | gma-mir5376 | 341 | −132.02 | TGGAGATTGTGAAGAATTTGAGA | 3 | 23 | FG872123 | 3' | 34.78 | + | mixed |
vun-mir5561 | mtr-mir5561 | 346 | −69.34 | ATCTCTCTCTCTCTAAATGTA | 3 | 21 | FF390124 | 5' | 33.33 | − | root |
vun-mir5758 | mtr-mir5758 | 91 | −22.60 | TAAGTTGGATCTATGTATTTG | 3 | 21 | FG893334 | 3' | 28.57 | + | mixed |
vun-mir5770 | gma-mir5770a | 98 | −30.40 | TTAGGACTATGGTTTGGATGA | 1 | 21 | FG937135 | 3' | 38.09 | − | mixed |
vun-mir6252 | osa-mir6252 | 90 | −20.90 | ATGAGTTGTGTTGAGAGAGGGTT | 4 | 23 | FG841373 | 3' | 43.47 | − | mixed |
vun-mir7696 | mtr-mir7696a | 173 | −33.67 | ACAAGTACTTA-AATTCAAAA | 4 | 20 | FG864277 | 3' | 20.00 | − | mixed |
vun-mir8182 | ath-mir8182 | 170 | −31.80 | TTGTGTTGCGTTTGTGATGACT | 3 | 22 | FG942892 | 5' | 40.90 | − | mixed |
vun-mir9748 | gma-mir9748 | 98 | −32.45 | GAAGGAAGTGTTGAGGGAGGAG | 3 | 22 | FG921211 | 5' | 54.54 | + | mixed |
Characterization of newly identified candidate miRNAs is a set crucial step for their validation, as reported earlier [16,17,37]. The pre-miRNA length of the profiled cowpea miRNAs ranges from 46 to 381 nt with an average of 159 nt. The pre-miRNAs were further illustrated on the basis of their length (Figure 1). The minimum folding free energy (MFE) of pre-miRNA is a vital and valid term of characterization. The newly identified potential cowpea pre-miRNAs have shown MFEs in range from −10 to −132 kcal mol−1 with an average of −40 kcal mol−1 as shown in Figure 2. The numbers of mismatches of mature sequences with their reference sequences were observed in a range of 0–4 with an average of three mismatches as categorized in Figure 3. These values are matched with the previously reported values in different plants [21,37,38,39]. Mature miRNA sequences lengths were observed from 18 to 26 nt with an average of 21 nt as explained in Figure 4. These findings of mature sequences length are in agreement to prior published data in other plant species [16,17,18,36]. The 52% cowpea miRNAs sequences were found at 5′ arm, while 48% were at 3′ arm (Figure 5(A), 6). The GC content was found from 18 to 86% with an average of 42% as shown in Figure 7. Strand orientation is another important character for the generation of mature miRNAs transcripts. In this study, 24 mature miRNAs were found on minus strand while 22 were observed on plus strand of the transcripts (Figure 8). The same results for plus and minus strand orientation of mature miRNAs are in agreement with the earlier research work [40]. The identified conserved cowpea miRNAs were also characterized on the basis of their organ of expression as presented in Figure 9. These findings are similar with the earlier reports [37] and suggesting organ dependent expression pattern of miRNAs in cowpea. The miRNA organ specific expression would be utilized to manage the organogenesis in cowpea. The secondary self-folded stem-loop structures of the cowpea pre-miRNAs are observed with at least 17 nucleotides engaged in Watson-Crick or G/U base pairing between the mature miRNA and the opposite arms (miRNAs*) in the stem region (Figure 10). Except few where the reference miRNAs have also less base pairing and these precursors do not contain large internal loops or bulges. The mature miRNA sequences are observed in the double stranded stem region of the pre-miRNA secondary structures, as shown in Figure 5(A). Almost similar findings for various plant and animal species were reported by many researchers [16,17,20,37,41,42]. Furthermore, the newly identified cowpea miRNAs were also confirmed as non-protein coding nature by showing no significant similarity with known proteins. This validation strengthens the expressed nature for computationally identified miRNAs as non-coding RNAs. Similar results were observed in various research papers by many groups [16,43,44].
In animals, a large number of miRNAs have been found in clusters and have been predicted to have similar expression profiles and functions [45]. The miRNA clusters have rarely been detected in plants. They were first reported by Jones-Rhoades and Bartel [46]. In this study, we also identified one pre-miRNA (mir4414) as cluster in cowpea having two mature miRNAs within Figure 5(B). On the basis of current available literature, this miRNA family (miR4414) was found for the first time in cowpea as a cluster.
The newly characterized cowpea miRNA vun-mir398, due to its conserved nature, was investigated for convergence and phylogeny. Simply, the cowpea miRNA vun-mir398 alignment and cladogram tree, using neighbour joining clustering method, were created with Glycine max (gma), Nicotiana tabacum (nta) and Cucumis melo (cme) by the publicly available Web-Logo, a sequence logo generator [47] and ClustalW, a multiple sequence alignment tool [48]. The cowpea miRNA vun-mir398 is observed in convergence with Glycine max (gma), Nicotiana tabacum (nta) and Cucumis melo (cme) as shown in Figure 11(A). The Phylogenetic cladogram tree, as illustrated in Figure 11(B), clearly showed that on the basis of sharing a more recent common ancestor the cowpea miRNA is more closely related to Glycine max (gma) than Nicotiana tabacum (nta) and Cucumis melo (cme). Zeng et al. [49] have also reported conserved nature in Euphorbiaceous plants.
Profiling the potential cowpea miRNAs targeted genes is a vital step for validation of the computationally identified miRNAs. A total of 138 targeted genes were predicted for the 46 potential cowpea miRNAs. The detail description is mentioned in Table 2. Different cowpea miRNAs targeting same proteins and vice versa were predicted here. This showed that one miRNA target more than one mRNAs and a single mRNA targets by many miRNAs [50]. The profiled targeted genes are categories as, 27% (37 of 138) are engaged in metabolism, 26% (36 of 138) are playing role as transcription factors, 11% (15 of 138) are involved in transport activities, 11% (15 of 138) are shown with stress related, and the rest are engaged in hypothetical protein, signal transduction, growth and development, structural proteins and diseases related. Almost all of these targets were already reported as miRNA targets in other plants [7,16,17].
miRNA | Target Acc. | Target Description | Function | Alignment |
vun-mir398 | TC8412 | Predicted protein | Hypothetical protein | miRNA 21 GUCCCCGCUGGACUCUUGUGU 1 ::::::::.:::: :::::: Target 24 CAGGGACGAUCUGAUAACACA 44 |
vun-mir413 | TC18010 | H/ACA ribonucleoprotein complex | Transcription factor | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 ::::::::::::::::::::: Target 432 AAGCAGAACAAGAGAAACUAA 452 |
vun-mir413 | FF538223 | Tropinone reductase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:::::::.::.:.:::::: Target 321 GAGCAGAAUAAUGGGAACUAA 341 |
vun-mir413 | TC16544 | Valyl-tRNA synthetase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 :.::::::::::.:::. ::: Target 1013 AGGCAGAACAAGGGAAGAUAA 1033 |
vun-mir413 | TC9044 | Uroporphyrinogen decarboxylase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:: :::: :::::::.::.: Target 59 GAGAAGAAGAAGAGAAGCUGA 79 |
vun-mir435 | TC9534 | Chromosome chr12 scaffold_238, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :::::::::: :..::::.: Target 242 UCAACUCCAAUGUUUCAUGA 261 |
vun-mir435 | FF387447 | Chromosome chr9 scaffold_7, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::::.:.:::.::::: ::: Target 386 UCAAUUUCAAGGCCUCCUAA 405 |
vun-mir435 | TC16349 | Ripening related protein | Growth and development | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :.::::::::: :.:.::.: Target 523 UUAACUCCAAAACUUUAUGA 542 |
vun-mir435 | FG810938 | Protein kinase | Signal transduction | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::: :::::: :::::.::. Target 474 UCACCUCCAAUGCCUCGUAG 493 |
vun-mir834 | TC4272 | SCOF-1 | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.::::::: :.::::: Target 281 CCACCGCCGCCACCGUUACCA 301 |
vun-mir834 | TC8566 | Cytochrome P450 monooxygenase CYP83E9 | Metabolism | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ::::: : :::::::::::: Target 465 CACCAACACCACUGCUACCA 484 |
vun-mir834 | TC7191 | DnaJ-like protein | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::.::::::::::::: :::. Target 173 CCGCCACCGCCACUGCAACCG 193 |
vun-mir834 | FG876294 | Zinc finger-like protein | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::::::::::::: :: :::: Target 138 CCACCACCGCCACCGCCACCA 158 |
vun-mir834 | TC4023 | GroEL-like chaperone, ATPase | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :: ::.:::::.:::::.::: Target 78 CCUCCGCCGCCGCUGCUGCCA 98 |
vun-mir834 | TC7031 | Oxophytodienoate reductase | Metabolism | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 .::.::.:::::::::: ::: Target 19 UCAUCAUCGCCACUGCUUCCA 39 |
vun-mir834 | TC15421 | MYB | Transcription factor | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ..:.::.::.:::::::::: Target 955 UGCUACUGCUACUGCUACCA 974 |
vun-mir834 | GH622195 | Ribosomal protein | Structural protein | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.:::::::: ::::: Target 110 CCACCGCCGCCACUUCUACCU 130 |
vun-mir834 | TC7768 | Calcium-binding EF-hand) | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ..::.::.:..::::.::::: Target 470 UUACUACUGUUACUGUUACCA 490 |
vun-mir1512 | XM_013230906 | Biomphalaria glabrata dual oxidase | Metabolism | target 5' C U 3' AAUGAAAUUCUUAAAGG UUACUUUAAGAAUUUCC miRNA 3' A 5' |
vun-mir1512 | XM_006957329 | Nucleoside triphosphate hydrolase protein | Transcription factor | target 5' U A 3' UAAUGAAAUUCUUAAAG AUUACUUUAAGAAUUUC miRNA 3' C 5' |
vun-mir1512 | KC463855 | NB-LRR receptor (RSG3-301) | Transcription factor | target 5' C CCC GG U 3' AAUGA AA CUUGAAGG UUACU UU GAAUUUCC miRNA 3' A AA 5' |
vun-mir1512 | EF076031 | Phosphatidic acid phosphatase alpha (PAPa) | Metabolism | target 5' A AAGGGG G A 3' UGGUGAAA UC UAAAGG AUUACUUU AG AUUUCC miRNA 3' A A 5' |
vun-mir1512 | AF413209 | Dolichos biflorus chloroplast ribulose-1, 5-bisphosphate carboxylase | Metabolism | target 5' C G 3' UGGUGAAAU UAAAGG AUUACUUUA AUUUCC miRNA 3' AGA 5' |
vun-mir1514 | FF388166 | NAC domain-containing protein 78 | Transcription factor | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 ::::::::::::::::::::: Target 687 GAUGCCUAUUUUAGAAAUGAA 707 |
vun-mir1514 | FF540114 | Phosphate transporter family protein | transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 461 AUGCCUGUUUUGGAAAUGAA 480 |
vun-mir1514 | TC15423 | NAM-like protein | Transcription factor | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 589 AUGCCUGUUUUGGAAAUGAA 608 |
vun-mir1514 | TC869 | ATP-binding cassette sub-family f member 2 | Transporter | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 :: ::.:::: :::::::::: Target 733 GAGGCUUAUUCUAGAAAUGAA 753 |
vun-mir1514 | FG830151 | Starch branching enzyme | Metabolism | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::: ::::::::.:::: Target 314 AUGCCAAUUUUAGAGAUGAU 333 |
vun-mir1514 | TC5197 | Cytochrome c biogenesis protein-like | Transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::.::::::::::.:::: Target 749 AUAUCUAUUUUAGAGAUGAU 768 |
vun-mir1525 | TC17248 | Salt-tolerance protein | Stress related | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::::::::::::.:. Target 306 ACUAAAAACAUAUUUAACUCU 326 |
vun-mir1525 | FG915097 | UDP-N-acetylmuramoylalanine-D-glutamate ligase | Transcription factor | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::.::::::.:::: Target 468 ACUAAAAAUAUAUUUGACCCA 488 |
vun-mir1525 | TC14268 | Non-specific lipid-transfer protein | transporter | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 ::.:::...:::::::::.: Target 505 CUGAAAGUGUAUUUAACCUC 524 |
vun-mir1525 | TC18336 | Heat shock protein | Stress related | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 .:.:..:.::::::.::::: Target 166 UUGAGGAUAUAUUUGACCCC 185 |
vun-mir1848 | EG424245 | Radical SAM domain protein | Metabolism | miRNA 20 CUGCGCGCGCGGCCGCUCGC 1 :: ::: :::: :::::::: Target 110 GAAGCGAGCGCAGGCGAGCG 129 |
vun-mir2095 | FF402667 | Resistance protein MG55 | Stress related | miRNA 20 UUUGUACAGUAUUUACCUUC 1 .: :.:::::::::::::: Target 592 GAUCGUGUCAUAAAUGGAAU 611 |
vun-mir2095 | TC2784 | Vacuolar protein sorting-associated protein 26-like protein | transporter | miRNA 20 UUUGUACAGUAUUUACCUUC 1 :::::::::::.: ::::: Target 824 AAACAUGUCAUCGAAGGAAG 843 |
vun-mir2606 | TC406838 | SNF1 related protein kinase | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2606 | TC401737 | ATP binding protein | Transcription factor | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2606 | NP305366 | Hypothetical protein | Hypothetical protein | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::::::.:.::.::::::. Target 420 ACUGAGAAUCGAGUACUUCAG 440 |
vun-mir2609 | NP038997 | Jasmonate induced protein | Stress related | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::.:: ::::::::::::: Target 220 ACUGGGAUCCAAGCACUUCAA 240 |
vun-mir2609 | NP568563 | SEC14-like protein | Transcription factor | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 :: :::::::::: ::::.:: Target 417 AGCGAGAACCAAGGACUUUAA 437 |
vun-mir2609 | TC406838 | SNF1 related protein kinase-like protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2609 | TC401737 | ATP binding protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2622 | TC9003 | Alpha-expansin 2 | Metabolism | miRNA 22 AUUCGAGUGUUACCGUGUGUUC 1 :::::::::::::::::::::: Target 64 UAAGCUCACAAUGGCACACAAG 85 |
vun-mir2630 | TC15462 | Auxin influx transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::::::: ::::::::: Target 293 AAAACCAAAAACCAAAACCU 312 |
vun-mir2630 | FF390661 | Serine/arginine repetitive matrix 1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::: ::: :::::::::: Target 349 AAAACAAAAAACCAAAACCA 368 |
vun-mir2630 | FG865319 | Monosaccharid transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::.:::::::.::.:::: Target 109 UAAAUCAAAGACUAAGACCA 128 |
vun-mir2630 | TC4441 | Ras-related protein RAB8-1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::.:::: :::::::::: Target 75 AAAAUCAAA-ACCAAAACCA 93 |
vun-mir2630 | TC1550 | Homeodomain leucine zipper protein HDZ3 | Transcription factor | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :.::::..:. :::::::::: Target 1253 UGAAACUGAGAACCAAAACCA 1273 |
vun-mir2630 | FC457466 | Pseudouridylate synthase | Metabolism | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :::::. :..:::.::::::: Target 504 UAAAAUGAGGGACUAAAACCA 524 |
vun-mir2630 | TC6720 | Ubiquitin carrier protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::::::::: :::::.:: Target 685 AAAACCAAAGCCCAAAUUCA 704 |
vun-mir2636 | TC7750 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 21 UAUAAGUCGUGUGAUUGUAGG 1 :::::.::::::::::.:.: Target 225 AUAUUUAGCACACUAAUAAUC 245 |
vun-mir2636 | FF537611 | Na+/H+ antiporter | Metabolism | miRNA 20 AUAAGUCGUGUGAUUGUAGG 1 : :::::::::::..:::.. Target 25 UCUUCAGCACACUGGCAUUU 44 |
vun-mir2636 | TC1711 | Beta-1, 3-glucanase-like protein | Metabolism | miRNA 19 UAAGUCGU-GUGAUUGUAGG 1 : :::::: ::::::::::: Target 1279 AAUCAGCAACACUAACAUCC 1298 |
vun-mir2657 | TC7897 | Proteinase inhibitor 20 | Metabolism | miRNA 20 UGUUUUAGUUAUGUUAUUUU 1 :.::::: ::::.::::::: Target 934 AUAAAAUAAAUAUAAUAAAA 953 |
vun-mir2657 | FG852576 | Heat shock protein 70 cognate | Stress related | miRNA 22 GUUGUUUUAGUUAUGUUAUUUU 1 :::.:.:::::::. :::.::: Target 77 CAAUAGAAUCAAUGAAAUGAAA 98 |
vun-mir2657 | TC5942 | 2, 4-D inducible glutathione S-transferase | Metabolism | miRNA 21 UUGUUUUAGUUAUGUUAUUUU 1 ::.:::::. ::..::::::: Target 745 AAUAAAAUUUAUGUAAUAAAA 765 |
vun-mir2678 | EF472252 | Bound starch synthase | Metabolism | target 5' U UG UG A 3' GGC G GCA GAC CUG C CGU UUG miRNA 3' UG G UG AAAU 5' |
vun-mir2678 | D88122 | CPRD46 protein | Stress related | target 5' U C G 3' GCGCGUA CAACUU UGCGCGU GUUGAA miRNA 3' CUG U AU 5' |
vun-mir2678 | AY466858 | Peroxisomal ascorbate peroxidase | Metabolism | target 5' U A C A 3' GGCACG UG CGGC ACUU CUGUGC GC GUUG UGAA miRNA 3' U AU 5' |
vun-mir2678 | AB028025 | YLD mRNA for regulatory protein | Metabolism | target 5' A CCA C G 3' GCGC GCG CGGCGAC UGUG CGC GUUGUUG miRNA 3' C AAAU 5' |
vun-mir2950 | TC11773 | F-box/Kelch-repeat protein | Transcription factor | miRNA 21 AAGUCAGACGUUCUCUACCUU 1 ::::::::::::::::::::: Target 614 UUCAGUCUGCAAGAGAUGGAA 634 |
vun-mir2950 | TC2831 | Ethylene responsive protein | Stress related | miRNA 20 AGUCAGACGUUCUCUACCUU 1 :..:: ::.::::::::::. Target 1700 UUGGUAUGUAAGAGAUGGAG 1719 |
vun-mir3434 | TC7167 | Protein transport protein Sec24-like At3g07100 | Transporter | miRNA 20 AGAGUACCGACUAUGAGAGU 1 :::.::::.:::: ::.::: Target 662 UCUUAUGGUUGAUUCUUUCA 681 |
vun-mir4351 | TC5899 | Expressed protein | Hypothetical protein | miRNA 22 GGUUGAGGUUGACUUGGGAUUG 1 :::::::::::::::::::::: Target 27 CCAACUCCAACUGAACCCUAAC 48 |
vun-mir4351 | FF391835 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 20 UUGAGGUUGACUUGGGAUUG 1 ::: ::::.: ::::::::. Target 22 AACCCCAAUUAAACCCUAAU 41 |
vun-mir4392 | TC14606 | AKIN beta1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 791 UGCUAAAUCACGUCUUCAUAGA 812 |
vun-mir4392 | TC9038 | SNF1-related protein kinase regulatory beta subunit 1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 979 UGCUAAAUCACGUCUUCAUAGA 1000 |
vun-mir4408 | TC2049 | Monooxygenase | Metabolism | miRNA 24 AGGAUAUGAGUAGGUUACAACAAC 1 :: :::.::::: :: ::::::: Target 369 UCAGAUAUUCAUCAAAAGUUGUUG 392 |
vun-mir4992 | FG809835 | TfIIE | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::::::::::::::::: Target 247 CUGAAAAAAACCAUCUUAGAUG 268 |
vun-mir4992 | TC11468 | Uncharacterized protein At2g03890.2 | Hypothetical protein | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::: :::::.::::::: Target 836 CUGAAAAAUACCAUUUUAGAUG 857 |
vun-mir4992 | TC414 | Zinc finger protein 7 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 739 UUGAGAGAAACCAUUUUGGAUC 760 |
vun-mir4992 | TC2268 | Zinc finger protein 4 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 857 UUGAGAGAAACCAUUUUGGAUC 878 |
vun-mir5012 | TC1335 | Ribosomal protein L30 | Structural protein | miRNA 21 CCUUGUGUGCCUCGUCGUUUU 1 ::::.::. :::::::::::: Target 209 GGAAUACGAGGAGCAGCAAAA 229 |
vun-mir5012 | TC59 | Acireductone dioxygenase | Metabolism | miRNA 21 CCUUGUGUGCC-UCGUCGUUUU 1 ::::::::: : :::::::::: Target 19 GGAACACACUGUAGCAGCAAAA 40 |
vun-mir5012 | TC12731 | Mn-specific cation diffusion facilitator transporter | Transporter | miRNA 20 CUUGUGUGCCUCGUCGUUUU 1 ::.::::::::: :::::. Target 186 GAGCACACGGAGAAGCAAGU 205 |
vun-mir5043 | FF401363 | Ran-specific GTPase-activating protein | Transcription factor | miRNA 21 CCACCACGUC-UCUUCCUCUUC 1 : :::::::: :::.::::::: Target 444 GAUGGUGCAGGAGAGGGAGAAG 465 |
vun-mir5215 | FG909052 | Ferredoxin Ⅰ precursor | Metabolism | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::::::::::::::: Target 179 AAUCAACUAGCUCAUCCUCCU 199 |
vun-mir5215 | GH620837 | L-lactate dehydrogenase | Metabolism | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 :::.:: :::::.::::::: Target 491 AUCGACGAGCUCGUCCUCCU 510 |
vun-mir5215 | TC8326 | 50S ribosomal protein L21 | Structural protein | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 :::.::.:.:::.::::::.: Target 943 AAUUAAUUGGCUUAUCCUCUU 963 |
vun-mir5215 | FG849457 | Vancomycin resistance protein | Stress related | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 ::::::.:::::::::.: Target 340 AUCAACAGGCUCAUCCUUCG 359 |
vun-mir5215 | TC6816 | General substrate transporter | Transporter | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::.:::: :.::::: Target 1035 AAUCAACUGGCUC-UUCUCCU 1054 |
vun-mir5216 | FG851044 | Metal ion binding | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :.:::: :::::.:::.:::: Target 227 UAUCACUUUUUUUUACUUCCAA 248 |
vun-mir5216 | FG841236 | T5I8.13 | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :::::.: :: ::::.:::::: Target 132 UUCCAUUCUUCUUCAUUCCCAA 153 |
vun-mir5216 | FG931306 | Predicted protein | Hypothetical protein | miRNA 21 AGGUGACAAAAAGUGAGGGUU 1 :.:::::::: ::..:.:::: Target 2 UUCACUGUUUCUCGUUUCCAA 22 |
vun-mir5219 | TC16320 | Tumor-related protein | Growth and development | miRNA 20 GACGUCGACUCUAAGGUACU 1 ::::: :::::.:: ::::: Target 141 CUGCACCUGAGGUUACAUGA 160 |
vun-mir5227 | TC9947 | TINY-like protein | Transcription factor | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 ::.::::: ::::::.:::::: Target 1075 UUUUUCAA-CUUCUUUUGUUCU 1095 |
vun-mir5227 | FG842691 | HMG1/2-like protein | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.::.:::: ::.: Target 27 CUUCAAUUUUUUUCUAUUUU 46 |
vun-mir5227 | FG886406 | Probable intracellular septation protein | Growth & development | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 :.::::: :::.::.::::.: Target 48 UGUUUCAACCUUUUUUUGUUUU 69 |
vun-mir5227 | TC17852 | Glutathione S-transferase PM24 | Metabolism | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.:::: :::::: Target 1044 CUUCAAUUUUCUCGUGUUCU 1063 |
vun-mir5227 | TC10272 | DNA-directed RNA polymerase subunit | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::: ::.::.:::::: Target 288 CUUCAAGAUUUUUUUGUUCU 307 |
vun-mir5241 | TC10790 | VDAC-like porin | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::::::::..:: Target 201 UUCACUCUUCCAUUCAUUCA 220 |
vun-mir5241 | TC18525 | Peptidyl-prolyl cis-trans isomerase | Metabolism | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::..::::::.::::::.: Target 58 UUCGUUCUUCCGUUCACCUA 77 |
vun-mir5241 | FG863193 | Probable plastid-lipid-associated protein 13 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:: :.:::::::.:: Target 158 UUCAUUCAUUCAUUCACUCA 177 |
vun-mir5241 | TC7362 | Serine/threonine protein kinase | Signal transduction | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::..::.:::.:::::..:: Target 934 UUUGCUUUUCUAUUCAUUCA 953 |
vun-mir5241 | TC16629 | Multidrug resistance protein | Disease related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::::::::::: :: :.:: Target 915 UUCACUCUUCCAGUCUCUCA 934 |
vun-mir5241 | TC2781 | Non-specific lipid-transfer protein | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::: ::: :.:: Target 20 UUCACUCUUCCUUUCUCUCA 39 |
vun-mir5241 | TC212 | Chaperone GrpE type 2 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:::.: :::::::: Target 207 UUCAUUCUCUCCUUCACCCA 226 |
vun-mir5255 | TC8912 | Pyruvate kinase | Signal transduction | miRNA 20 AGUACAGGAGAUAGGACAGU 1 :.:::::.:::.::.:::.: Target 71 UUAUGUCUUCUGUCUUGUUA 90 |
vun-mir5255 | TC18327 | Cysteine protease | Metabolism | miRNA 20 AGUACAGGAGAUAGGACAGU 1 ::: :::::. ::.:::::: Target 605 UCAAGUCCUUGAUUCUGUCA 624 |
vun-mir5261 | FG838847 | Chromosome undetermined scaffold_221 | Hypothetical protein | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::::::::::::::: Target 540 AGCCAAAGCCAUCUACAAUCG 560 |
vun-mir5261 | FF398912 | TIR | Stress related | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::.:::::::::::: Target 413 AGCCAAAGUCAUCUACAAUCG 433 |
vun-mir5290 | TC3168 | Hydroxyproline-rich glycoprotein | Disease related | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::::.::::.::: Target 82 UCUCUUUCUUUCUCUUUCUAUUUU 105 |
vun-mir5290 | FG844083 | PAS sensor protein | Signal transduction | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::.:::.::.::: Target 99 UUUCUCUCUUUCUUUCUUUAUUUU 122 |
vun-mir5290 | FG871448 | Eco57I restriction endonuclease | Metabolism | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : ::::::::::::: :::: Target 42 UCUCUUUCUCUCUCUCCUUU 61 |
vun-mir5290 | TC11392 | Ribonuclease Ⅲ | Transcription factor | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 ::: :: ::: ::::.:.:::::: Target 841 UAUAUGACUUCCUCUUUUUACUUU 864 |
vun-mir5290 | TC12655 | Calcium dependent protein kinase | Signal transduction | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 ::::::.:.:::.:.:::: Target 1254 GGUCUUUUUUUCUUUGCUUU 1273 |
vun-mir5290 | TC4908 | ACC oxidase | Growth & development | miRNA 22 ACACAGAAAGAGAGAGAUGAAA 1 : : ::::::::::::::. :: Target 1376 UCUCUCUUUCUCUCUCUAUCUU 1397 |
vun-mir5290 | FG874464 | RNA-binding protein | Transcription factor | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : :::::::::::::.::: Target 14 UCUCUUUCUCUCUCUCUUUU 33 |
vun-mir5298 | TC16082 | Translation initiation factor IF | Transcription factor | miRNA 25 AAGAAGUAGAAG-UAGAACUUUAGGU 1 :.::::::::: : ::::::::::: Target 34 UCUUUCAUCUUCGAACUUGAAAUCCA 59 |
vun-mir5298 | TC11481 | Non-specific lipid-transfer protein | Transporter | miRNA 24 AGAAGUAGAAGUAGAACUUUAGGU 1 :.: ::: ::.:::::::.::..: Target 614 UUUACAUGUUUAUCUUGAGAUUUA 637 |
vun-mir5298 | TC16211 | (Iso) Flavonoid glycosyltransferase | Metabolism | miRNA 25 AAGAAGUAGAAGUAGAACUUUAGGU 1 : ::.. :::: :::::::::::: Target 233 UCCUCUGCCUUCUUCUUGAAAUCCA 257 |
vun-mir5376 | TC18575 | Zgc:158399 protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 ::::::::::::::::::::::: Target 517 UCUCAAAUUCUUCACAAUCUCCA 539 |
vun-mir5376 | TC16446 | Predicted protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 :::::::::::::: :::.: :: Target 687 UCUCAAAUUCUUCAGAAUUUACA 709 |
vun-mir5376 | FC457472 | Chromosome chr1 scaffold_135 | Hypothetical protein | miRNA 20 GUUUAAGAAGUGUUAGAGGU 1 .: ::::::::::::::.: Target 141 AGAUUUCUUCACAAUCUCUA 160 |
vun-mir5561 | TC1062 | H+/Ca2+ exchanger 2 | Transporter | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 : ::::::::::::::::: Target 8 AGAUUUAGAGAGAGAGAGAG 27 |
vun-mir5561 | TC8162 | GTPase | Metabolism | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 :..: :::::::::::::: Target 102 AUGUAUAGAGAGAGAGAGAG 121 |
vun-mir5561 | TC11798 | Cold shock domain | Stress related | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 ::: : : :::::::::::: Target 2 ACAGUGACAGAGAGAGAGAU 21 |
vun-mir5758 | TC975 | Chromosome chr11 scaffold_13 | Hypothetical protein | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 ::::::::::::::::::::: Target 213 CAAAUACAUAGAUCCAACUUA 233 |
vun-mir5758 | TC5742 | Pyrophosphate-dependent phosphofructo-1-kinase | Signal transduction | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 .:::::.::::::::::: :: Target 306 UAAAUAUAUAGAUCCAACCUA 326 |
vun-mir5758 | TC16939 | Chromosome undetermined scaffold_310 | Hypothetical protein | miRNA 20 UUUAUGUAUCUAGGUUGAAU 1 :::::::: :::::::: :: Target 509 AAAUACAUUGAUCCAACGUA 528 |
vun-mir5770 | TC1925 | Amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 ::::::::::::::::::::: Target 165 UCAUCCAAACCAUAGUCCUAA 185 |
vun-mir5770 | TC5168 | Copper amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 :..::::::::::::::: :: Target 148 UUGUCCAAACCAUAGUCCAAA 168 |
vun-mir5770 | TC18480 | Ribonuclease H | Transcription factor | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 :::.:::.:.:::::..::: Target 613 CAUUCAAGCUAUAGUUUUAA 632 |
vun-mir5770 | TC1738 | Allyl alcohol dehydrogenase | Metabolism | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 ::::.::::. ::::.::.: Target 766 CAUCUAAACUUUAGUUCUGA 785 |
vun-mir6252 | FG841373 | Nucleoporin-like protein | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 ::::::::::::::::::::::: Target 24 AACCCUCUCUCAACACAACUCAU 46 |
vun-mir6252 | FG857360 | Membrane protein | Transporters | miRNA 21 GGGAGAGAGUUGUGUUGAGUA 1 .::::::::::::: ::::: Target 247 UCCUCUCUCAACACUCCUCAU 267 |
vun-mir6252 | TC15301 | Homeobox domain, ZF-HD class | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 : : :::::::::: ::::::: Target 9 AUCACUCUCUCAACUCAACUCAA 31 |
vun-mir7696 | FG864277 | BZIP transcription | Transcription factor | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::::::::::::::::::: Target 17 UUUUGAAUUUAAGUACUUGU 36 |
vun-mir7696 | FF383199 | Olfactory receptor | Signal transduction | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::: : :::::::::::: Target 141 UUUUUAUUUUAAGUACUUGG 160 |
vun-mir8182 | TC3507 | Pectin methylesterase | Metabolism | miRNA 21 CAGUAGUGUUUGCGUUGUGUU 1 ::::::::::..:::::: :. Target 654 GUCAUCACAAGUGCAACAGAG 674 |
vun-mir9748 | TC16306 | Lectin-like protein kinase | Signal transduction | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :.:::..:::::::::::::. Target 17 CGUCUCUUUCAACACUUCCUUU 38 |
vun-mir9748 | TC1064 | Zinc finger, RING-type: Thioredoxin-related | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .:::::.::::::.::.:::: Target 16 UUCCUCUCUCAACUUUUUCUUC 37 |
vun-mir9748 | TC9843 | Beta-xylosidase/alpha-L-arabinosidase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 :.::..::::::::::::: Target 478 CUUCUUUCAACACUUCCUUG 497 |
vun-mir9748 | TC15743 | Heat shock protein | Stress related | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :::.:::::::::.::.:::: Target 244 CUCUUCCCUCAACGCUCUCUUC 265 |
vun-mir9748 | TC15591 | Transcription factor AHAP2 | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .::.:::::::: :::::: :: Target 64 UUCUUCCCUCAAGACUUCCAUC 85 |
vun-mir9748 | TC298 | Glutathione reductase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 .:::.:::::::::.:::: Target 95 UCUCUCUCAACACUCUCUUC 114 |
vun-mir9748 | TC1040 | Glycine-rich protein 2b | Transcription factor | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 ::.::::.:::::::::: Target 567 ACUUCCUCUGCACUUCCUUC 586 |
Majority (27%) of the newly characterized cowpea miRNAs are observed to regulate the metabolic proteins. Such findings regarding metabolism related genes targeted by miRNAs are similar with the prior publications in plants and animals [28,43,44]. Pectin methylesterase (PME) is an important enzyme that acts on pectin, a major component of plant cell wall. PME catalyzes reactions according to the double-displacement mechanism [51]. In this study, the PME is predicted as a putative target for vun-miR1882. Thus the vun-miR1882 is a valuable resource to regulate cell wall. Another important enzyme ribulose-1, 5-bisphosphate carboxylase (Rubisco) is a key enzyme in photosynthesis and photorespiration, where it catalyzes the fixation of CO2 and O2, respectively. Due to its rate-limiting property in photosynthesis, it is the prime focus of improving the plant productivity [52]. The cowpea miRNA (vun-miR2657) is predicted to target this important enzyme which is the potential resource to modify Rubisco expression and ultimately plant productivity.
The transcription factor myeloblastosis (MYB) is an important regulator of many developmental and physiological processes in plants. Ballester et al. [53], suggested that the MYB also plays a significant role in regulating the flavonoid pathway in plants. The newly identified cowpea miRNA family vun-834 is found to target the MYB transcription factors. Thus this miRNA is an important resource to fine tune the MYB regulation for the desirable traits in cowpea fruit. The transcription factor, zinc finger is believed to be involved in many biotic and abiotic stresses as responding gene to manage the plant under these stresses [54]. The same family of transcription factor is also reported to play a crucial role in plant development [55]. The newly identified cowpea miRNA families vun-miR834 and 4992 are found to target this zinc finger transcription factor family. These miRNAs are important resources to regulate the zinc finger family proteins for the betterment of cowpea under various biotic and abiotic stresses and fruit development.
Similarly 12% targeted genes by cowpea miRNAs are engaged in transport activities. ATP-binding cassette transporters comprise a highly conserved family of ATP-binding proteins that are involved in transporting of various molecules across plasma membrane. Here vun-miR1514 is identified to target ATP-binding cassette transporters. Such findings are in agreement with the other workers in the miRNA field [37,43].
Biotic and abiotic stresses like salinity, drought, temperature extremities, heavy metals, pathogen attacks, and pollution cause huge yield reductions in plants [56]. Naturally plants have various systems to protect themselves from these stresses that occur at various levels, i.e., at whole plant, tissue, cellular, sub-cellular, genetic and molecular levels [56,57,58,59,60]. Many studies suggest that plant miRNAs are involved in these stresses [9,17,61]. In this study identified miRNAs such as vun-miR1525,2657 and 9748 also targeted heat shock proteins that expressed in response of heat stress. This suggests the role of these miRNAs during the heat stressed condition of plants. Similar findings were reported in switch grass [17].
Some miRNAs of cowpea were observed to target the protein functioning in the process of cell signal transduction. Almost similar findings were observed by many researchers in various organisms [42,43]. Protein kinases are key regulators of cell function and play crucial role in protein phosphorylation and dephosphorylation that are major signaling pathways induced by osmotic stress in higher plants. Similarly, SNF1 (sucrose non-fermenting-1) is an osmotic-stress-activated protein kinase in Arabidopsis thaliana that can significantly impact drought tolerance of Arabidopsis thaliana plants [62]. These two important proteins were targeted by cowpea miRNAs families, like vun-miR435,2606,2609 and 4392 respectively. Serine/threonine protein kinase (STPKs) is another protein kinase that is targeted by miRNA family (miR5241), act as sensors of environmental signals and regulate different developmental changes and also host pathogen interactions [63].
In this study, newly profiled cowpea miRNAs were also observed to target hypothetical proteins, growth and development, structural proteins and disease related proteins. Such findings were also published earlier [19,21,37].
The current study is resulted 46 new miRNAs and their 138 targeted genes in an important commercial plant cowpea. All these miRNAs are profiled for the first time in cowpea. These findings will serve as resources to fine tune cowpea plant at micro-molecular level. This will help us to enhance the production ability of cowpea against biotic and abiotic stress tolerance. Furthermore these miRNAs and their targets are also powerful functional genomic resources in the Kingdom plantae.
The authors declare that there is no conflict of interest regarding the publication of this article.
[1] |
Contestabile A (2002) Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. The Cerebellum 1: 41-55. doi: 10.1080/147342202753203087
![]() |
[2] | Gallo V, Kingsbury A, Balazs R, et al. (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 7: 2203-2213. |
[3] |
Balazs R, Gallo V, Kingsbury A (1988) Effect of depolarization on the maturation of cerebellar granule cells in culture. Devel Brain Res 40: 269-276. doi: 10.1016/0165-3806(88)90139-3
![]() |
[4] |
D’Mello SR, Galli C, Ciotti T, et al. (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90: 10989-10993. doi: 10.1073/pnas.90.23.10989
![]() |
[5] | Copani A, Bruno VMG, Barresi V, et al. (1994) Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J Neurochem 64: 101-108. |
[6] |
Ciani E, Rizzi S, Paulsen RE, et al. (1997) Chronic pre-explant blockade of the NMDA receptor affects survival of cerebellar granule cells explanted in vitro. Devel Brain Res 99: 112-117. doi: 10.1016/S0165-3806(96)00187-3
![]() |
[7] | Sparapani M, Virgili M, Bardi G (1998) Ornithine decarboxylase activity during development of cerebellar granule neurons. J Neurochem 71: 1898-1904. |
[8] | Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (1996) Involvement of free radicals in signaling of low-potassium induced apoptosis in cultured cerebellar granule cells. Int J Dev Biol Suppl.1: 197S-198S. |
[9] |
Martin-Romero FJ, Garcia-Martin E, Gutierrez-Merino C (2002) Inhibition of the oxidative stress produced by plasma membrane NADH oxidase delays low-potassium induced apoptosis of cerebellar granule cells. J Neurochem 82: 705-715. doi: 10.1046/j.1471-4159.2002.01023.x
![]() |
[10] | Nardi N, Avidan G, Daily D, et al. (1997) Biochemical and temporal analysis of events associated with apoptosis induced by lowering the extracellular potassium concentration in mouse cerebellar granule neurons. J Neurochem 68: 750-759. |
[11] | Schulz JB, Beinroth S, Weller M, et al. (1998) Endonucleolytic DNA fragmentation is not required for apoptosis of cultured rat cerebellar granule neurons. Neurosci Lett 27: 9-12. |
[12] | Marks N, Berg MJ, Guidotti A, et al. (1998) Activation of caspase-3 and apoptosis in cerebellar granule cells. J Neurosci Res 52: 334-341. |
[13] |
Allsopp TE, McLuckie J, Kerr LE, et al. (2000) Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death Differ 7: 984-993. doi: 10.1038/sj.cdd.4400733
![]() |
[14] | Eldadah BA, Ren RF, Faden AI (2000) Ribozyme-mediated inhibition of caspase-3 protects cerebellar granule cells from apoptosis induced by serum-potassium deprivation. J Neurosci 20: 179-186. |
[15] |
Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9: 1046-1056. doi: 10.1038/sj.cdd.4401065
![]() |
[16] |
Valencia A, Morán J (2001) Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule neurons. J Neurosci Res 64: 284-297. doi: 10.1002/jnr.1077
![]() |
[17] | Simons M, Beinroth S, Gleichmann M, et al. (1999) Adenovirus-mediated gene transfer of inhibitors of apoptosis protein delays apoptosis in cerebellar granule neurons. J Neurochem 72: 292-301. |
[18] | Wigdal SS, Kirkland RA, Franklin JL, et al. (2002) Cytochrome c release precedes mitochondrial membrane potential loss in cerebellar granule neurons apoptosis: lack of mitochondrial swelling. J Neurochem 82: 1029-1038. |
[19] |
Samhan-Arias AK, Marques-da-Silva D, Yanamala N, et al. (2012) Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J Proteomics 75: 2934-2949. doi: 10.1016/j.jprot.2011.12.007
![]() |
[20] |
Bobba A, Atlante A, Giannattasio S, et al. (1999) Early release and subsequent caspase-mediated degradation of cytochrome c in apoptotic cerebellar granule neurons. FEBS Lett 457: 126-130. doi: 10.1016/S0014-5793(99)01018-2
![]() |
[21] | McGinnis KM, Gnegy ME, Wang KK (1999) Endogenous bax translocation in SH-SY5Y human neuroblastoma cells and cerebellar granule neurons undergoing apoptosis. J Neurochem 72: 1899-1906. |
[22] |
Miller TM, Moulder KL, Knudson CM, et al. (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol 139: 205-217. doi: 10.1083/jcb.139.1.205
![]() |
[23] | Cregan SP, MacLaurin JG, Craig CG, et al. (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19: 7860-7869. |
[24] |
Tanabe H, Eguchi Y, Kamada S, et al. (1997) Susceptibility of cerebellar granule neurons derived from Bcl-2- deficient and transgenic mice to cell death. Eur J Neurosci 9: 848-856. doi: 10.1111/j.1460-9568.1997.tb01434.x
![]() |
[25] |
Gleichmann M, Beinroth S, Reed JC, et al. (1998) Potassium deprivation-induced apoptosis of cerebellar granule neurons: cytochrome c release in the absence of altered expression of Bcl-2 family proteins. Cell Physiol Biochem 8: 194-201. doi: 10.1159/000016282
![]() |
[26] | Galli C, Meucci O, Scorziello A, et al. (1995) Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin and IGF-I through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 15: 1172-1179. |
[27] |
Kubo T, Nonomura T, Enokido Y, et al. (1995) Brain derived neurotrophic factor (BDNF) can prevent apoptosis of rat cerebellar granule neurons in culture. Devel Brain Res 85: 249-258. doi: 10.1016/0165-3806(94)00220-T
![]() |
[28] |
Chang JY, Korolev VV, Wang JZ (1996) Cyclic AMP and pituitary adenylate cyclase-activating polypeptide (PACAP) prevent programmed cell death of cultured cerebellar granule cells. Neurosci Lett 206: 181-184. doi: 10.1016/S0304-3940(96)12468-X
![]() |
[29] |
Campard PK, Crochemore C, Rene F, et al. (1997) PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol 16: 323-333. doi: 10.1089/dna.1997.16.323
![]() |
[30] | Ikeuchi T, Shimoke K, Kubo T, et al. (1998) Apoptosis- inducing and -preventing signal transduction pathways in cultured cerebellar granule neurons. Hum Cell 11: 125-140. |
[31] |
Koulich E, Nguyen T, Johnson K, et al. (2001) NFkappaB is involved in the survival of cerebellar granule neurons: association of NF-kappabeta phosphorylation with cell survival. J Neurochem 76: 1188-1198. doi: 10.1046/j.1471-4159.2001.00134.x
![]() |
[32] | D’Mello SR, Borodezt K, Soltoff SP (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-I signaling. J Neurosci 17: 1548-1560. |
[33] |
Dudek H, Datta SR, Franke TF, et al. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275: 661-665. doi: 10.1126/science.275.5300.661
![]() |
[34] |
Shimoke K, Kubo T, Numakawa T, et al. (1997) Involvement of phosphatidylinositol- 3 kinase in prevention of low K+-induced apoptosis of cerebellar granule neurons. Devel Brain Res 101: 197-206. doi: 10.1016/S0165-3806(97)00065-5
![]() |
[35] | Bhave SV, Ghoda L, Hoffman PL (1999) Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascade and site of ethanol action. J Neurosci 19: 3277-3286. |
[36] |
Shimoke K, Yamagishi S, Yamada M, et al. (1999) Inhibition of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity in apoptosis of cultured cerebellar granule neurons. Devel Brain Res 112: 245-253. doi: 10.1016/S0165-3806(98)00172-2
![]() |
[37] |
Le-Niculescu H, Bonfoco E, Kasuya Y, et al. (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19: 751-763. doi: 10.1128/MCB.19.1.751
![]() |
[38] | Vaudry D, Gonzalez BJ, Basille M, et al. (2000) PACAP acts as a neurotrophic factor during histogenesis of the rat cerebellar cortex. Ann N Y Acad Sci 921: 293-299. |
[39] | Cavallaro S, Copani A, D’Agata V, et al. (1996) Pituitary adenylate cyclase activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Mol Pharmacol 50: 60-66. |
[40] | Villalba M, Bockaert J, Journot L (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci 17: 83-90. |
[41] |
Journot L, Villalba M, Bockaert J (1998) PACAP-38 protects cerebellar granule cells from apoptosis. Ann N Y Acad Sci 865: 100-110. doi: 10.1111/j.1749-6632.1998.tb11168.x
![]() |
[42] |
Franklin JL, Johnson Jr EM (1992) Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci 15: 501-508. doi: 10.1016/0166-2236(92)90103-F
![]() |
[43] |
Franklin JL, Johnson Jr EM (1994) Block of neuronal apoptosis by a sustained increase of steady-state free Ca2+ concentration. Philos Trans R Soc Lond B Biol Sci 345: 251-256. doi: 10.1098/rstb.1994.0102
![]() |
[44] |
Gutierrez-Martin Y, Martin-Romero FJ, Henao F, et al. (2005) Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J Neurochem 92: 973-989. doi: 10.1111/j.1471-4159.2004.02964.x
![]() |
[45] |
Copani A, Casabona V, Bruno A, et al. (1998) The metabotropic glutamate receptor mGlu5 controls the onset of developmental apoptosis in cultured cerebellar neurons. Eur J Neurosci 10: 2173-2184. doi: 10.1046/j.1460-9568.1998.00230.x
![]() |
[46] | Borodetz K, D’Mello SRD (1998) Decreased expression of the metabotropic glutamate receptor-4 gene is associated with neuronal apoptosis. J Neurosci Res 53: 531-541. |
[47] |
Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, et al. (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+ channels. Antioxid Redox Signal 10: 31-42. doi: 10.1089/ars.2007.1656
![]() |
[48] |
Balazs R, Jorgensen OS, Hack N (1988) N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27: 437-451. doi: 10.1016/0306-4522(88)90279-5
![]() |
[49] |
Balazs A, Hack N, Jorgensen OS (1990) Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: Effect of kainic acid. Neuroscience 37: 251-258. doi: 10.1016/0306-4522(90)90211-L
![]() |
[50] |
Balazs R, Hack N, Jorgensen OS (1990) Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture. Int J Devel Neurosci 8: 347-359. doi: 10.1016/0736-5748(90)90068-D
![]() |
[51] | Yan GM, Lin SZ, Irwin RP, et al. (1995) Activation of muscarinic cholinergic receptor blocks apoptosis of cultured cerebellar granule neurons. Mol Pharmacol 47: 248-257. |
[52] | Mattson MP (1996) Calcium and free radicals: mediators of neurotrophic factor and excitatory transmitter-regulated developmental plasticity and cell death. Perspect Dev Neurobiol 3: 79-91. |
[53] |
Altman J (1982) Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res Suppl 6: 8-49. doi: 10.1007/978-3-642-68560-6_2
![]() |
[54] |
Burgoyne RD, Graham ME, Cambray-Deakin M (1993) Neurotrophic effects of NMDA receptor activation on developing cerebellar granule cells. J Neurocytol 22: 689-695. doi: 10.1007/BF01181314
![]() |
[55] |
Monti B, Contestabile A (2000) Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci 12: 3117-3123. doi: 10.1046/j.1460-9568.2000.00189.x
![]() |
[56] |
Hack N, Hidaka H, Wakefield MJ, et al. (1993) Promotion of granule cell survival by high K+ or excitatory amino acid treatment and Ca2+/calmodulin-dependent protein kinase activity. Neuroscience 57: 9-20. doi: 10.1016/0306-4522(93)90108-R
![]() |
[57] |
See V, Boutillier AR, Bito H, et al. (2001) Calcium/calmodulin-dependent protein kinase IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons. FASEB J 15: 134-144. doi: 10.1096/fj.00-0106com
![]() |
[58] |
Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for the plasma membrane NADH oxidase activity in the commitment to apoptosis. Free Radic Biol Med 37: 48-61. doi: 10.1016/j.freeradbiomed.2004.04.002
![]() |
[59] | Schulz JB, Weller M, Klockgether T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci 16: 4696-4706. |
[60] |
Atlante A, Gagliardi S, Marra E, et al. (1998) Neuronal apoptosis in rats is accompanied by rapid impairment of cellular respiration and is prevented by scavengers of reactive oxygen species. Neurosci Lett 245: 127-130. doi: 10.1016/S0304-3940(98)00195-5
![]() |
[61] |
Hockenbery DM, Oltvai ZN, Yin X-M, et al. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251. doi: 10.1016/0092-8674(93)80066-N
![]() |
[62] |
Kane DJ, Sarafian TA, Anton R, et al. (1993) Bcl-2 inhibition of neuronal death: decreased generation of reactive oxygen species. Science 262: 1274-1277. doi: 10.1126/science.8235659
![]() |
[63] |
Mao GD, Poznansky MJ (1992) Electron spin resonance study on the permeability of superoxide radicals in lipid bilayers and biological membranes. FEBS Lett 305: 233-236. doi: 10.1016/0014-5793(92)80675-7
![]() |
[64] |
Samhan-Arias AK, Garcia-Bereguiain MA, Martin-Romero FJ, et al. (2009) Clustering of plasma membrane-bound cytochrome b5 reductase within ‘lipid rafts’ microdomains of the neuronal plasma membrane. Mol Cell Neurosci 40: 14-26. doi: 10.1016/j.mcn.2008.08.013
![]() |
[65] | Borgese N, Meldolesi J (1980) Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. I. Distribution of the enzyme activity in microsomes, mitochondria, and Golgi complex. J Cell Biol 85: 501-515. |
[66] |
Chatenay-Rivauday C, Cakar ZP, Jenö P, et al. (2004) Caveolae: biochemical analysis. Mol Biol Rep 31: 67-84. doi: 10.1023/B:MOLE.0000031352.51910.e9
![]() |
[67] | May JM (1999) Is ascorbic acid an antioxidant for the plasma membrane? FASEB J 13: 995-1006. |
[68] |
Martin-Romero FJ, Gutierrez-Martin Y, Henao F, et al. (2002) The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite. J Neurochem 82: 604-614. doi: 10.1046/j.1471-4159.2002.00983.x
![]() |
[69] |
Samhan-Arias AK, Duarte RO, Martin-Romero FJ, et al. (2008) Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain. Arch Biochem Biophys 469: 243-254. doi: 10.1016/j.abb.2007.10.004
![]() |
[70] | Samhan-Arias AK, Gutierrez-Merino C (2014) Cytochrome b5 as a pleiotropic metabolic modulator in mammalian cells, In: Thom R. Editor, Cytochromes b and c: Biochemical properties, biological functions and electrochemical analysis, 1 Ed., New York (USA): Hauppauge, Chapter 2: 39-80. |
[71] | Samhan-Arias AK, López-Sánchez C, Marques-da-Silva D, et al. (2015) High expression of cytochrome b5 reductase isoform 3/cytochrome b5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct 1-16. |
[72] | Percy MJ, Lappin TR (2008) Recessive congenital methaemoglobinaemia: cytochrome b5 reductase deficiency. Br J Haematol 141: 298-308. |
[73] |
Ewenczyk C, Leroux A, Roubergue A, et al. (2008) Recessive hereditary methaemoglobinaemia, type II: delineation of the clinical spectrum. Brain 131: 760-761. doi: 10.1093/brain/awm337
![]() |
[74] |
Huang YH, Tai CL, Lu YH, et al. (2012) Recessive congenital methemoglobinemia caused by a rare mechanism: Maternal uniparental heterodisomy with segmental isodisomy of a chromosome 22. Blood Cells Mol Dis 49: 114-117. doi: 10.1016/j.bcmd.2012.05.005
![]() |
[75] |
Leroux A, Junien C, Kaplan J, et al. (1975) Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation. Nature 258: 619-620. doi: 10.1038/258619a0
![]() |
[76] |
Toelle SP, Boltshauser E, Mössner E, et al. (2004) Severe neurological impairment in hereditary methaemoglobinaemia type 2. Eur J Pediatr 163: 207-209. doi: 10.1007/s00431-004-1409-x
![]() |
[77] | Aalfs CM, Salieb-Beugelaar GB, Wanders RJA, et al. (2000) A case of methemoglobinemia type II due to NADH-cytochrome b5 reductase deficiency: determination of the molecular basis. Hum Mutat 16: 18-22 |
[78] | Marques-da-Silva D, Gutierrez-Merino C (2014) Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 56: 108-123. |
[79] | Gutierrez-Merino C, Marques-da-Silva D, Fortalezas S, et al. (2014) Cytosolic calcium homeostasis in neurons: Control systems, modulation by reactive oxygen and nitrogen species, and space and time fluctuations, In: Heinbockel T. Editor, Neurochemistry, 1 Ed., Rijeka (Craotia): InTech, Chapter 3: 59-110. |
[80] |
Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47: 1597-1598. doi: 10.1194/jlr.E600002-JLR200
![]() |
[81] |
O’Connell KMM, Martens JR, Tamkun MM (2004) Localization of ion channels to lipid raft domains within the cardiovascular system. Trends Cardiovasc Med 14: 37-42. doi: 10.1016/j.tcm.2003.10.002
![]() |
[82] |
Head BP, Insel PA (2007) Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol 17: 51-57. doi: 10.1016/j.tcb.2006.11.008
![]() |
[83] | Wu G, Lu ZH, Nakamura K, et al. (1996) Trophic effect of cholera toxin B subunit in cultured cerebellar granule neurons: modulation of intracellular calcium by GM1 ganglioside. J Neurosci Res 44: 243-254. |
[84] |
Wu G, Xie X, Lu ZH, et al. (2001) Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci USA 98: 307-312. doi: 10.1073/pnas.98.1.307
![]() |
[85] |
Marques-da-Silva D, Samhan-Arias AK, Tiago T, et al. (2010) L-type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. J Proteomics 73: 1502-1510. doi: 10.1016/j.jprot.2010.02.014
![]() |
[86] |
Davare MA, Dong F, Rubin CS, et al. (1999) The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J Biol Chem 274: 30280-30287. doi: 10.1074/jbc.274.42.30280
![]() |
[87] |
Razani B, Rubin CS, Lisanti MP (1999) Regulation of cAMP-mediated Signal Transduction via Interaction of Caveolins with the Catalytic Subunit of Protein Kinase A. J Biol Chem 274: 26353-26360. doi: 10.1074/jbc.274.37.26353
![]() |
[88] | Suzuki T, Du F, Tian Q-B, et al. (2008) Ca2+/calmodulin-dependent protein kinase IIα clusters are associated with stable lipid rafts and their formation traps PSD-95. J Neurochem 104: 596-610. |
[89] | Pinard CR, Mascagni F, McDonald AJ (2005) Neuronal localization of Cav1.2 L-type calcium channels in the rat basolateral amygdala. Brain Res 1064: 52 - 55. |
[90] | Samhan-Arias AK, García-Bereguiaín MA, Gutierrez-Merino C (2007) Plasma membrane-bound cytochrome b5 reductase forms a large network of redox centres that co-localizes with cholera toxin B binding sites in cerebellar granule neurons in culture, In: Society for Free Radical Research (SFRR) Editor, Proceedings of the European Meeting of the SFFR, Bologna (Italy): Medimond, 147-150. |
[91] | Samhan-Arias AK, Gutiérrez-Merino C (2008) Plasma membrane-bound cytochrome b5 reductase is associated with lipid rafts in cerebellar granule neurons in culture, In: Grune T. Editor, Proceedings of the European Meeting of the Society for Free Radical Research, 1 Ed., Bologna (Italy): Medimond, 75-78. |
[92] | Silva DM, Samhan-Arias AK, Garcia-Bereguiain MA, et al. (2009) Major plasma membrane-associated redox centres co-localize with L-type calcium channels in neuronal lipid rafts microdomains, In: Caporosi D., Pigozzi F., Sabatini S. Editors, Free Radicals, Health and Lifestyle, 3 Eds., Bologna (Italy): Medimond, 127-130. |
[93] |
Marques-da-Silva D, Gutierrez-Merino C (2012) L-type voltage-operated calcium channels, N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts. Biochem Biophys Res Commun 420: 257-262. doi: 10.1016/j.bbrc.2012.02.145
![]() |
[94] |
Sato Y, Sagami I, Shimizu T (2004) Identification of Caveolin-1-interacting Sites in Neuronal Nitric-oxide Synthase. J Biol Chem 279: 8827-8836. doi: 10.1074/jbc.M310327200
![]() |
[95] |
Samhan-Arias AK, Garcia-Bereguiain MA, Martin-Romero FJ, et al. (2006) Regionalization of plasma membrane-bound flavoproteins of cerebellar granule neurons in culture by fluorescence energy transfer imaging. J Fluorescence 16: 393-401. doi: 10.1007/s10895-005-0065-5
![]() |
[96] | Gutierrez-Merino C (2008) Redox modulation of neuronal calcium homeostasis and its deregulation by reactive oxygen species, In: Gutierrez-Merino C. and Leeuwenburgh C. Editors, Free Radicals in Biology and Medicine, 2 Eds., Kerala (India): Research Signpost, 67-101. |
[97] |
Marchetti C, Usai C (1996) High affinity block by nimodipine of the internal calcium elevation in chronically depolarized rat cerebellar granule neurons. Neurosci Lett 207: 77-80. doi: 10.1016/0304-3940(96)12492-7
![]() |
[98] |
Maric D, Maric I, Barker JL (2000) Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic rat cerebral cortex. Cereb Cortex 10: 561-573. doi: 10.1093/cercor/10.6.561
![]() |
[99] |
Arakawa Y, Nishijima C, Shimizu N, et al. (2002) Survival-promoting activity of nimodipine and nifedipine in rat motoneurons: implications of an intrinsic calcium toxicity in motoneurons. J Neurochem 83: 150-156. doi: 10.1046/j.1471-4159.2002.01126.x
![]() |
[100] |
Samhan-Arias AK, Gutierrez-Merino C (2014) Purified NADH-Cytochrome b5 Reductase Is a Novel Superoxide Anion Source Inhibited by Apocynin: Sensitivity to nitric oxide and peroxynitrite. Free Radic Biol Med 73: 174-189. doi: 10.1016/j.freeradbiomed.2014.04.033
![]() |
[101] |
Hidalgo C, Donoso P (2008) Crosstalk between calcium and redox signalling: from molecular mechanisms to health implications. Antioxid Redox Signal 10: 1275-1312. doi: 10.1089/ars.2007.1886
![]() |
[102] |
Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6: 662-680. doi: 10.1038/nrd2222
![]() |
[103] |
Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63: 175-195. doi: 10.1146/annurev.bi.63.070194.001135
![]() |
[104] |
Parekh AB (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 586: 3043-3054. doi: 10.1113/jphysiol.2008.153460
![]() |
[105] |
Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389-399. doi: 10.1016/S0896-6273(00)80983-6
![]() |
[106] | Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium 24: 345-357. |
[107] |
Willmott NJ, Wong K, Strong AJ (2000) Intercellular Ca2+ waves in rat hippocampal slice and dissociated glial-neuron cultures mediated by nitric oxide. FEBS Lett 487: 239-247. doi: 10.1016/S0014-5793(00)02359-0
![]() |
[108] | Marques-da-Silva D (2012) Estudio de los microdominios de sistemas redox y de transporte de calcio en la membrana plasmática de neuronas. PhD Thesis, University of Extremadura. |
[109] |
Contestabile A, Ciani E (2004) Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. Neurochem Int 45: 903-914. doi: 10.1016/j.neuint.2004.03.021
![]() |
[110] |
Contestabile A (2008) Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog Neurobiol 84: 317-328. doi: 10.1016/j.pneurobio.2008.01.002
![]() |
[111] |
Grueter CE, Abiria SA, Wu Y, et al. (2008) Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 47: 1760-1767. doi: 10.1021/bi701755q
![]() |
[112] |
Paratcha G, Ibáñez CF (2002) Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Curr Opin Neurobiol 12: 542-549. doi: 10.1016/S0959-4388(02)00363-X ![]() |
[113] | Inoue H, Miyaji M, Kosugi A, et al. (2002) Lipid rafts as the signaling scaffold for NK cell activation: tyrosine phosphorylation and association of LAT with phosphatidylinositol 3-kinase and phospholipase C-gamma following CD2 stimulation. Eur J Immunol 32: 2188-2198. |
[114] |
Zheng F, Soellner D, Nunez J, et al. (2008) The basal level of intracellular calcium gates the activation of phosphoinositide 3-kinase - Akt signaling by brain-derived neurotrophic factor in cortical neurons. J Neurochem 106: 1259-1274. doi: 10.1111/j.1471-4159.2008.05478.x
![]() |
[115] |
Hudmon A, Schulman H, Kim J, et al. (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171: 537-547. doi: 10.1083/jcb.200505155
![]() |
[116] | Lee TS, Karl R, Moosmang S, et al. (2006) Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: Identification of the phosphorylation sites. J Biol Chem 281: 25560-25567. |
[117] |
Coultrap SJ, Bayer KU (2014) Nitric Oxide Induces Ca2+-independent Activity of the Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII). J Biol Chem 289: 19458-19465. doi: 10.1074/jbc.M114.558254
![]() |
[118] |
Coultrap SJ, Zaegel V, Bayer KU (2014) CaMKII isoforms differ in their specific requirements for regulation by nitric oxide. FEBS Lett 588: 4672-4676. doi: 10.1016/j.febslet.2014.10.039
![]() |
[119] | Müller U, Hildebrandt H (2002) Nitric Oxide/cGMP-Mediated Protein Kinase A Activation in the Antennal Lobes Plays an Important Role in Appetitive Reflex Habituation in the Honeybee. J Neurosci 22:8739-8747. |
[120] |
De Jongh KS, Murphy BJ, Colvin AA, et al. (1996) Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. Biochemistry 35: 10392-10340. doi: 10.1021/bi953023c
![]() |
[121] |
Mitterdorfer J, Froschmayr M, Grabner M, et al. (1996) Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel alpha 1 subunits. Biochemistry 35: 9400-9406. doi: 10.1021/bi960683o
![]() |
[122] |
Gao T, Yatani A, Dell’Acqua ML, et al. (1997) cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19: 185-196. doi: 10.1016/S0896-6273(00)80358-X
![]() |
[123] |
Puri TS, Gerhardstein BL, Zhao XL, et al. (1997) Differential effects of subunit interactions on protein kinase A- and C-mediated phosphorylation of L-type calcium channels. Biochemistry 36: 9605-9615. doi: 10.1021/bi970500d
![]() |
1. | Abdelali Hannoufa, Craig Matthews, Biruk A. Feyissa, Margaret Y. Gruber, Muhammad Arshad, 2018, Chapter 25, 978-3-030-36326-0, 41, 10.1007/124_2018_25 | |
2. | Sagar Prasad Nayak, Priti Prasad, Vinayak Singh, Abhinandan Mani Tripathi, Sumit Kumar Bag, Chandra Sekhar Mohanty, Role of miRNAs in the regulation of proanthocyanidin biosynthesis in the legume Psophocarpus tetragonolobus (L.) DC., 2023, 0167-6903, 10.1007/s10725-023-00971-9 | |
3. | Habibullah Khan Achakzai, Muhammad Younas Khan Barozai, Muhammad Din, Iftekhar Ahmed Baloch, Abdul Kabir Khan Achakzai, Allah Bakhsh, Identification and annotation of newly conserved microRNAs and their targets in wheat (Triticum aestivum L.), 2018, 13, 1932-6203, e0200033, 10.1371/journal.pone.0200033 | |
4. | Sevgi Marakli, Identification and functional analyses of new sesame miRNAs (Sesamum indicum L.) and their targets, 2018, 45, 0301-4851, 2145, 10.1007/s11033-018-4373-7 | |
5. | Mohandas Snigdha, Duraisamy Prasath, Transcriptomic analysis to reveal the differentially expressed miRNA targets and their miRNAs in response to Ralstonia solanacearum in ginger species, 2021, 21, 1471-2229, 10.1186/s12870-021-03108-0 | |
6. | Lan Li, Guangling Chen, Mingzhu Yuan, Shirong Guo, Yu Wang, Jin Sun, CsbZIP2-miR9748-CsNPF4.4 Module Mediates High Temperature Tolerance of Cucumber Through Jasmonic Acid Pathway, 2022, 13, 1664-462X, 10.3389/fpls.2022.883876 | |
7. | Thiago F. Martins, Pedro F. N. Souza, Murilo S. Alves, Fredy Davi A. Silva, Mariana R. Arantes, Ilka M. Vasconcelos, Jose T. A. Oliveira, Identification, characterization, and expression analysis of cowpea (Vigna unguiculata [L.] Walp.) miRNAs in response to cowpea severe mosaic virus (CPSMV) challenge, 2020, 39, 0721-7714, 1061, 10.1007/s00299-020-02548-6 | |
8. | Muhammad Younas Khan Barozai, Zhujia Ye, Sasikiran Reddy Sangireddy, Suping Zhou, Bioinformatics profiling and expressional studies of microRNAs in root, stem and leaf of the bioenergy plant switchgrass (Panicum virgatum L.) under drought stress, 2018, 8, 23522151, 1, 10.1016/j.aggene.2018.02.001 | |
9. | Yusuf Ceylan, Yasemin Celik Altunoglu, Erdoğan Horuz, HSF and Hsp Gene Families in sunflower: a comprehensive genome-wide determination survey and expression patterns under abiotic stress conditions, 2023, 0033-183X, 10.1007/s00709-023-01862-6 | |
10. | Abdul Baqi, Wajid Rehman, Iram Bibi, Farid Menaa, Yousaf Khan, Doha A. Albalawi, Abdul Sattar, Identification and Validation of Functional miRNAs and Their Main Targets in Sorghum bicolor, 2023, 1073-6085, 10.1007/s12033-023-00988-5 | |
11. | Caoli Zhu, Yicheng Yan, Yaning Feng, Jiawei Sun, Mingdao Mu, Zhiyuan Yang, Genome-Wide Analysis Reveals Key Genes and MicroRNAs Related to Pathogenic Mechanism in Wuchereria bancrofti, 2024, 13, 2076-0817, 1088, 10.3390/pathogens13121088 | |
12. | Kishan Saha, Onyinye C. Ihearahu, Vanessa E. J. Agbor, Teon Evans, Labode Hospice Stevenson Naitchede, Supriyo Ray, George Ude, In Silico Genome-Wide Profiling of Conserved miRNAs in AAA, AAB, and ABB Groups of Musa spp.: Unveiling MicroRNA-Mediated Drought Response, 2025, 26, 1422-0067, 6385, 10.3390/ijms26136385 |
vun miRNAs | Ref. miRNAs | PL | MFE | MS | NM | ML | SE # | MSA | GC% | SL | OE |
vun-mir398 | mtr-mir398a | 131 | −32.24 | TGTGTTCTCAGGTCGCCCCTG | 2 | 21 | FF542932 | 5' | 61.90 | + | leaves |
vun-mir413 | ath-mir413 | 353 | −88.55 | TTAGTTTCTCTTGTTCTGCTT | 2 | 21 | FG940215 | 5' | 33.33 | + | mixed |
vun-mir435 | osa-mir435 | 347 | −124.38 | TTATGAGGCTTTGGAGTTGA | 4 | 20 | FG811172 | 3' | 40.00 | + | mixed |
vun-mir834 | ath-mir834 | 135 | −52.95 | TGGTAGCAGTGGCGGTGGTGG | 3 | 21 | FG822669 | 3' | 66.66 | − | mixed |
vun-mir1512 | gma-mir1512a | 46 | −10.60 | CCTTTAAGAATTTCA-TTA-- | 4 | 18 | FG880488 | 3' | 22.22 | − | mixed |
vun-mir1514 | gma-mir1514 | 127 | −31.70 | TTCATTTCTAAAATAGGCATC | 2 | 21 | FF388166 | 5' | 28.57 | − | root |
vun-mir1525 | gma-mir1525 | 78 | −14.10 | GGGGTTAAATATGTTTTTAGT | 3 | 21 | FG845219 | 5' | 28.57 | + | mixed |
vun-mir1848 | osa-mir1848 | 77 | −32.20 | CGCTCGCCGGCGCGCGCGTCCA | 2 | 22 | FG920123 | 3' | 86.36 | + | mixed |
vun-mir2095 | osa-mir2095 | 57 | −17.20 | CTTCCATTTATGACATGTTT | 3 | 20 | FG838629 | 5' | 30.00 | − | mixed |
vun-mir2606 | mtr-mir2606a | 69 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2609 | mtr-mir2609a | 70 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2622 | mtr-mir2622 | 210 | −36.85 | CTTGTGTGCCATTGTGAGCTTA | 3 | 22 | FG900047 | 3' | 42.85 | − | mixed |
vun-mir2630 | mtr-mir2630a | 114 | −24.70 | TGGTTTTGGTCTTTGGTTTTA | 3 | 21 | FF391380 | 5' | 33.33 | + | root |
vun-mir2636 | mtr-mit2636 | 191 | −29.40 | GGATGTTAGTGTGCTGAATAT | 4 | 21 | FG814033 | 5' | 38.09 | − | mixed |
vun-mir2657 | mtr-mir2657 | 156 | −35.38 | TTTTATTGTATTGATTTTGTTG | 4 | 22 | FG926034 | 5' | 18.18 | − | mixed |
vun-mir2678 | mtr-mir2678 | 136 | −39.32 | TAAAGTTGTTGCGCGTGTC | 3 | 19 | FF389500 | 3' | 47.36 | − | root |
vun-mir2950 | mes-mir2950 | 347 | −83.20 | TTCCATCTCTTGCAGACTGAA | 2 | 21 | FG872933 | 5' | 42.85 | − | mixed |
vun-mir3434 | ath-mir3434 | 78 | −17.40 | TGAGAGTATCAGCCATGAGA | 2 | 20 | FF392538 | 3' | 45.00 | − | root |
vun-mir4351 | gma-mir4351 | 148 | −63.30 | GTTAGGGTTCAGTTGGAGTTGG | 3 | 22 | FG936300 | 3' | 50.00 | − | mixed |
vun-mir4392 | gma-mir4392 | 306 | −80.53 | TCTGTGAGAACGTGATTTCGGA | 3 | 22 | FG857306 | 5' | 45.45 | + | mixed |
vun-mir4408 | gma-mir4408 | 66 | −20.70 | CAACAACATTGGATGAGTATAGGA | 4 | 24 | FG894682 | 3' | 37.5 | + | mixed |
vun-mir4414a vun-mir4414b | mtr-mir4414a | 120 | −42.20 | AGCTGCTGACTCGTTGGTTCAATTCAACGATGCGGGAGCTGC | 0 1 | 21 21 | FF537171 | 5' 3' | 52.38 57.14 | + + | leaves |
vun-mir4992 | gma-mir4992 | 63 | −21.20 | CATCTAAGATGGTTTTTTTCAG | 4 | 22 | FG926352 | 3' | 31.81 | − | mixed |
vun-mir4996 | gma-mir4996 | 163 | −49.83 | TAGAAGTTACCCATGTTCTC | 2 | 20 | FF388735 | 3' | 40.00 | − | root |
vun-mir5012 | ath-mir5012 | 172 | −43.44 | TTTTGCTGCTCCGTGTGTTCC | 3 | 21 | FG809429 | 3' | 52.38 | + | mixed |
vun-mir5043 | gma-mir5043 | 125 | −48.20 | CTTCTCCTTCTCTGCACCACC | 3 | 21 | FG810406 | 5' | 57.14 | + | mixed |
vun-mir5215 | mtr-mir5215 | 181 | −49.63 | AGGAGGATGAGCTAGTTGATT | 3 | 21 | FG939979 | 5' | 42.85 | + | mixed |
vun-mir5216 | mtr-mir5216a | 124 | −27.58 | TTGGGAGTGAAAAACAGTGGAA | 2 | 22 | FF399948 | 5' | 40.90 | + | root |
vun-mir5219 | mtr-mir5219 | 107 | −25.23 | TCATGGAATCTCAGCTGCAGCAG | 1 | 23 | FG850600 | 3' | 52.17 | − | mixed |
vun-mir5227 | mtr-mir5227 | 140 | −18.04 | AGAACAGAAGAAGATTGAAGAA | 3 | 22 | FG915684 | 5' | 31.81 | − | mixed |
vun-mir5241 | mtr-mir5241a | 381 | W#8722;119.80 | TGGGTGAATGGAAGAGTGAAT | 3 | 21 | FG904590 | 3' | 42.85 | + | mixed |
vun-mir5246 | mtr-mir5246 | 68 | −18.70 | CACCAGAGAGCTTTGAAGGTT | 4 | 21 | FG856911 | 3' | 47.61 | + | mixed |
vun-mir5255 | mtr-mir5255 | 54 | −10.40 | TGACAGGATAGAGGACATGAC | 4 | 21 | FG910302 | 5' | 47.61 | − | mixed |
vun-mir5261 | mtr-mir5261 | 311 | −71.81 | CGATTGTAGATGGCTTTGGCT | 3 | 21 | FG838847 | 5' | 47.61 | − | mixed |
vun-mir5280 | mtr-mir5280 | 90 | −20.22 | TAAGTAGAAACGGGCCGAGATCGGGG | 4 | 26 | FG915361 | 5' | 57.69 | − | mixed |
vun-mir5290 | mtr-mir5290 | 217 | −30.24 | AAAGTAGAGAGAGAAAGACACATA | 4 | 24 | FG852502 | 5' | 33.33 | + | mixed |
vun-mir5298 | mtr-mir5298a | 192 | −36.58 | TGGATTTCAAGATGAAGATGAAGAA | 4 | 25 | FF402284 | 3' | 32.00 | − | root |
vun-mir5376 | gma-mir5376 | 341 | −132.02 | TGGAGATTGTGAAGAATTTGAGA | 3 | 23 | FG872123 | 3' | 34.78 | + | mixed |
vun-mir5561 | mtr-mir5561 | 346 | −69.34 | ATCTCTCTCTCTCTAAATGTA | 3 | 21 | FF390124 | 5' | 33.33 | − | root |
vun-mir5758 | mtr-mir5758 | 91 | −22.60 | TAAGTTGGATCTATGTATTTG | 3 | 21 | FG893334 | 3' | 28.57 | + | mixed |
vun-mir5770 | gma-mir5770a | 98 | −30.40 | TTAGGACTATGGTTTGGATGA | 1 | 21 | FG937135 | 3' | 38.09 | − | mixed |
vun-mir6252 | osa-mir6252 | 90 | −20.90 | ATGAGTTGTGTTGAGAGAGGGTT | 4 | 23 | FG841373 | 3' | 43.47 | − | mixed |
vun-mir7696 | mtr-mir7696a | 173 | −33.67 | ACAAGTACTTA-AATTCAAAA | 4 | 20 | FG864277 | 3' | 20.00 | − | mixed |
vun-mir8182 | ath-mir8182 | 170 | −31.80 | TTGTGTTGCGTTTGTGATGACT | 3 | 22 | FG942892 | 5' | 40.90 | − | mixed |
vun-mir9748 | gma-mir9748 | 98 | −32.45 | GAAGGAAGTGTTGAGGGAGGAG | 3 | 22 | FG921211 | 5' | 54.54 | + | mixed |
miRNA | Target Acc. | Target Description | Function | Alignment |
vun-mir398 | TC8412 | Predicted protein | Hypothetical protein | miRNA 21 GUCCCCGCUGGACUCUUGUGU 1 ::::::::.:::: :::::: Target 24 CAGGGACGAUCUGAUAACACA 44 |
vun-mir413 | TC18010 | H/ACA ribonucleoprotein complex | Transcription factor | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 ::::::::::::::::::::: Target 432 AAGCAGAACAAGAGAAACUAA 452 |
vun-mir413 | FF538223 | Tropinone reductase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:::::::.::.:.:::::: Target 321 GAGCAGAAUAAUGGGAACUAA 341 |
vun-mir413 | TC16544 | Valyl-tRNA synthetase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 :.::::::::::.:::. ::: Target 1013 AGGCAGAACAAGGGAAGAUAA 1033 |
vun-mir413 | TC9044 | Uroporphyrinogen decarboxylase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:: :::: :::::::.::.: Target 59 GAGAAGAAGAAGAGAAGCUGA 79 |
vun-mir435 | TC9534 | Chromosome chr12 scaffold_238, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :::::::::: :..::::.: Target 242 UCAACUCCAAUGUUUCAUGA 261 |
vun-mir435 | FF387447 | Chromosome chr9 scaffold_7, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::::.:.:::.::::: ::: Target 386 UCAAUUUCAAGGCCUCCUAA 405 |
vun-mir435 | TC16349 | Ripening related protein | Growth and development | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :.::::::::: :.:.::.: Target 523 UUAACUCCAAAACUUUAUGA 542 |
vun-mir435 | FG810938 | Protein kinase | Signal transduction | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::: :::::: :::::.::. Target 474 UCACCUCCAAUGCCUCGUAG 493 |
vun-mir834 | TC4272 | SCOF-1 | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.::::::: :.::::: Target 281 CCACCGCCGCCACCGUUACCA 301 |
vun-mir834 | TC8566 | Cytochrome P450 monooxygenase CYP83E9 | Metabolism | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ::::: : :::::::::::: Target 465 CACCAACACCACUGCUACCA 484 |
vun-mir834 | TC7191 | DnaJ-like protein | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::.::::::::::::: :::. Target 173 CCGCCACCGCCACUGCAACCG 193 |
vun-mir834 | FG876294 | Zinc finger-like protein | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::::::::::::: :: :::: Target 138 CCACCACCGCCACCGCCACCA 158 |
vun-mir834 | TC4023 | GroEL-like chaperone, ATPase | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :: ::.:::::.:::::.::: Target 78 CCUCCGCCGCCGCUGCUGCCA 98 |
vun-mir834 | TC7031 | Oxophytodienoate reductase | Metabolism | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 .::.::.:::::::::: ::: Target 19 UCAUCAUCGCCACUGCUUCCA 39 |
vun-mir834 | TC15421 | MYB | Transcription factor | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ..:.::.::.:::::::::: Target 955 UGCUACUGCUACUGCUACCA 974 |
vun-mir834 | GH622195 | Ribosomal protein | Structural protein | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.:::::::: ::::: Target 110 CCACCGCCGCCACUUCUACCU 130 |
vun-mir834 | TC7768 | Calcium-binding EF-hand) | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ..::.::.:..::::.::::: Target 470 UUACUACUGUUACUGUUACCA 490 |
vun-mir1512 | XM_013230906 | Biomphalaria glabrata dual oxidase | Metabolism | target 5' C U 3' AAUGAAAUUCUUAAAGG UUACUUUAAGAAUUUCC miRNA 3' A 5' |
vun-mir1512 | XM_006957329 | Nucleoside triphosphate hydrolase protein | Transcription factor | target 5' U A 3' UAAUGAAAUUCUUAAAG AUUACUUUAAGAAUUUC miRNA 3' C 5' |
vun-mir1512 | KC463855 | NB-LRR receptor (RSG3-301) | Transcription factor | target 5' C CCC GG U 3' AAUGA AA CUUGAAGG UUACU UU GAAUUUCC miRNA 3' A AA 5' |
vun-mir1512 | EF076031 | Phosphatidic acid phosphatase alpha (PAPa) | Metabolism | target 5' A AAGGGG G A 3' UGGUGAAA UC UAAAGG AUUACUUU AG AUUUCC miRNA 3' A A 5' |
vun-mir1512 | AF413209 | Dolichos biflorus chloroplast ribulose-1, 5-bisphosphate carboxylase | Metabolism | target 5' C G 3' UGGUGAAAU UAAAGG AUUACUUUA AUUUCC miRNA 3' AGA 5' |
vun-mir1514 | FF388166 | NAC domain-containing protein 78 | Transcription factor | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 ::::::::::::::::::::: Target 687 GAUGCCUAUUUUAGAAAUGAA 707 |
vun-mir1514 | FF540114 | Phosphate transporter family protein | transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 461 AUGCCUGUUUUGGAAAUGAA 480 |
vun-mir1514 | TC15423 | NAM-like protein | Transcription factor | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 589 AUGCCUGUUUUGGAAAUGAA 608 |
vun-mir1514 | TC869 | ATP-binding cassette sub-family f member 2 | Transporter | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 :: ::.:::: :::::::::: Target 733 GAGGCUUAUUCUAGAAAUGAA 753 |
vun-mir1514 | FG830151 | Starch branching enzyme | Metabolism | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::: ::::::::.:::: Target 314 AUGCCAAUUUUAGAGAUGAU 333 |
vun-mir1514 | TC5197 | Cytochrome c biogenesis protein-like | Transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::.::::::::::.:::: Target 749 AUAUCUAUUUUAGAGAUGAU 768 |
vun-mir1525 | TC17248 | Salt-tolerance protein | Stress related | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::::::::::::.:. Target 306 ACUAAAAACAUAUUUAACUCU 326 |
vun-mir1525 | FG915097 | UDP-N-acetylmuramoylalanine-D-glutamate ligase | Transcription factor | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::.::::::.:::: Target 468 ACUAAAAAUAUAUUUGACCCA 488 |
vun-mir1525 | TC14268 | Non-specific lipid-transfer protein | transporter | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 ::.:::...:::::::::.: Target 505 CUGAAAGUGUAUUUAACCUC 524 |
vun-mir1525 | TC18336 | Heat shock protein | Stress related | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 .:.:..:.::::::.::::: Target 166 UUGAGGAUAUAUUUGACCCC 185 |
vun-mir1848 | EG424245 | Radical SAM domain protein | Metabolism | miRNA 20 CUGCGCGCGCGGCCGCUCGC 1 :: ::: :::: :::::::: Target 110 GAAGCGAGCGCAGGCGAGCG 129 |
vun-mir2095 | FF402667 | Resistance protein MG55 | Stress related | miRNA 20 UUUGUACAGUAUUUACCUUC 1 .: :.:::::::::::::: Target 592 GAUCGUGUCAUAAAUGGAAU 611 |
vun-mir2095 | TC2784 | Vacuolar protein sorting-associated protein 26-like protein | transporter | miRNA 20 UUUGUACAGUAUUUACCUUC 1 :::::::::::.: ::::: Target 824 AAACAUGUCAUCGAAGGAAG 843 |
vun-mir2606 | TC406838 | SNF1 related protein kinase | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2606 | TC401737 | ATP binding protein | Transcription factor | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2606 | NP305366 | Hypothetical protein | Hypothetical protein | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::::::.:.::.::::::. Target 420 ACUGAGAAUCGAGUACUUCAG 440 |
vun-mir2609 | NP038997 | Jasmonate induced protein | Stress related | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::.:: ::::::::::::: Target 220 ACUGGGAUCCAAGCACUUCAA 240 |
vun-mir2609 | NP568563 | SEC14-like protein | Transcription factor | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 :: :::::::::: ::::.:: Target 417 AGCGAGAACCAAGGACUUUAA 437 |
vun-mir2609 | TC406838 | SNF1 related protein kinase-like protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2609 | TC401737 | ATP binding protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2622 | TC9003 | Alpha-expansin 2 | Metabolism | miRNA 22 AUUCGAGUGUUACCGUGUGUUC 1 :::::::::::::::::::::: Target 64 UAAGCUCACAAUGGCACACAAG 85 |
vun-mir2630 | TC15462 | Auxin influx transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::::::: ::::::::: Target 293 AAAACCAAAAACCAAAACCU 312 |
vun-mir2630 | FF390661 | Serine/arginine repetitive matrix 1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::: ::: :::::::::: Target 349 AAAACAAAAAACCAAAACCA 368 |
vun-mir2630 | FG865319 | Monosaccharid transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::.:::::::.::.:::: Target 109 UAAAUCAAAGACUAAGACCA 128 |
vun-mir2630 | TC4441 | Ras-related protein RAB8-1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::.:::: :::::::::: Target 75 AAAAUCAAA-ACCAAAACCA 93 |
vun-mir2630 | TC1550 | Homeodomain leucine zipper protein HDZ3 | Transcription factor | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :.::::..:. :::::::::: Target 1253 UGAAACUGAGAACCAAAACCA 1273 |
vun-mir2630 | FC457466 | Pseudouridylate synthase | Metabolism | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :::::. :..:::.::::::: Target 504 UAAAAUGAGGGACUAAAACCA 524 |
vun-mir2630 | TC6720 | Ubiquitin carrier protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::::::::: :::::.:: Target 685 AAAACCAAAGCCCAAAUUCA 704 |
vun-mir2636 | TC7750 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 21 UAUAAGUCGUGUGAUUGUAGG 1 :::::.::::::::::.:.: Target 225 AUAUUUAGCACACUAAUAAUC 245 |
vun-mir2636 | FF537611 | Na+/H+ antiporter | Metabolism | miRNA 20 AUAAGUCGUGUGAUUGUAGG 1 : :::::::::::..:::.. Target 25 UCUUCAGCACACUGGCAUUU 44 |
vun-mir2636 | TC1711 | Beta-1, 3-glucanase-like protein | Metabolism | miRNA 19 UAAGUCGU-GUGAUUGUAGG 1 : :::::: ::::::::::: Target 1279 AAUCAGCAACACUAACAUCC 1298 |
vun-mir2657 | TC7897 | Proteinase inhibitor 20 | Metabolism | miRNA 20 UGUUUUAGUUAUGUUAUUUU 1 :.::::: ::::.::::::: Target 934 AUAAAAUAAAUAUAAUAAAA 953 |
vun-mir2657 | FG852576 | Heat shock protein 70 cognate | Stress related | miRNA 22 GUUGUUUUAGUUAUGUUAUUUU 1 :::.:.:::::::. :::.::: Target 77 CAAUAGAAUCAAUGAAAUGAAA 98 |
vun-mir2657 | TC5942 | 2, 4-D inducible glutathione S-transferase | Metabolism | miRNA 21 UUGUUUUAGUUAUGUUAUUUU 1 ::.:::::. ::..::::::: Target 745 AAUAAAAUUUAUGUAAUAAAA 765 |
vun-mir2678 | EF472252 | Bound starch synthase | Metabolism | target 5' U UG UG A 3' GGC G GCA GAC CUG C CGU UUG miRNA 3' UG G UG AAAU 5' |
vun-mir2678 | D88122 | CPRD46 protein | Stress related | target 5' U C G 3' GCGCGUA CAACUU UGCGCGU GUUGAA miRNA 3' CUG U AU 5' |
vun-mir2678 | AY466858 | Peroxisomal ascorbate peroxidase | Metabolism | target 5' U A C A 3' GGCACG UG CGGC ACUU CUGUGC GC GUUG UGAA miRNA 3' U AU 5' |
vun-mir2678 | AB028025 | YLD mRNA for regulatory protein | Metabolism | target 5' A CCA C G 3' GCGC GCG CGGCGAC UGUG CGC GUUGUUG miRNA 3' C AAAU 5' |
vun-mir2950 | TC11773 | F-box/Kelch-repeat protein | Transcription factor | miRNA 21 AAGUCAGACGUUCUCUACCUU 1 ::::::::::::::::::::: Target 614 UUCAGUCUGCAAGAGAUGGAA 634 |
vun-mir2950 | TC2831 | Ethylene responsive protein | Stress related | miRNA 20 AGUCAGACGUUCUCUACCUU 1 :..:: ::.::::::::::. Target 1700 UUGGUAUGUAAGAGAUGGAG 1719 |
vun-mir3434 | TC7167 | Protein transport protein Sec24-like At3g07100 | Transporter | miRNA 20 AGAGUACCGACUAUGAGAGU 1 :::.::::.:::: ::.::: Target 662 UCUUAUGGUUGAUUCUUUCA 681 |
vun-mir4351 | TC5899 | Expressed protein | Hypothetical protein | miRNA 22 GGUUGAGGUUGACUUGGGAUUG 1 :::::::::::::::::::::: Target 27 CCAACUCCAACUGAACCCUAAC 48 |
vun-mir4351 | FF391835 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 20 UUGAGGUUGACUUGGGAUUG 1 ::: ::::.: ::::::::. Target 22 AACCCCAAUUAAACCCUAAU 41 |
vun-mir4392 | TC14606 | AKIN beta1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 791 UGCUAAAUCACGUCUUCAUAGA 812 |
vun-mir4392 | TC9038 | SNF1-related protein kinase regulatory beta subunit 1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 979 UGCUAAAUCACGUCUUCAUAGA 1000 |
vun-mir4408 | TC2049 | Monooxygenase | Metabolism | miRNA 24 AGGAUAUGAGUAGGUUACAACAAC 1 :: :::.::::: :: ::::::: Target 369 UCAGAUAUUCAUCAAAAGUUGUUG 392 |
vun-mir4992 | FG809835 | TfIIE | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::::::::::::::::: Target 247 CUGAAAAAAACCAUCUUAGAUG 268 |
vun-mir4992 | TC11468 | Uncharacterized protein At2g03890.2 | Hypothetical protein | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::: :::::.::::::: Target 836 CUGAAAAAUACCAUUUUAGAUG 857 |
vun-mir4992 | TC414 | Zinc finger protein 7 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 739 UUGAGAGAAACCAUUUUGGAUC 760 |
vun-mir4992 | TC2268 | Zinc finger protein 4 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 857 UUGAGAGAAACCAUUUUGGAUC 878 |
vun-mir5012 | TC1335 | Ribosomal protein L30 | Structural protein | miRNA 21 CCUUGUGUGCCUCGUCGUUUU 1 ::::.::. :::::::::::: Target 209 GGAAUACGAGGAGCAGCAAAA 229 |
vun-mir5012 | TC59 | Acireductone dioxygenase | Metabolism | miRNA 21 CCUUGUGUGCC-UCGUCGUUUU 1 ::::::::: : :::::::::: Target 19 GGAACACACUGUAGCAGCAAAA 40 |
vun-mir5012 | TC12731 | Mn-specific cation diffusion facilitator transporter | Transporter | miRNA 20 CUUGUGUGCCUCGUCGUUUU 1 ::.::::::::: :::::. Target 186 GAGCACACGGAGAAGCAAGU 205 |
vun-mir5043 | FF401363 | Ran-specific GTPase-activating protein | Transcription factor | miRNA 21 CCACCACGUC-UCUUCCUCUUC 1 : :::::::: :::.::::::: Target 444 GAUGGUGCAGGAGAGGGAGAAG 465 |
vun-mir5215 | FG909052 | Ferredoxin Ⅰ precursor | Metabolism | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::::::::::::::: Target 179 AAUCAACUAGCUCAUCCUCCU 199 |
vun-mir5215 | GH620837 | L-lactate dehydrogenase | Metabolism | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 :::.:: :::::.::::::: Target 491 AUCGACGAGCUCGUCCUCCU 510 |
vun-mir5215 | TC8326 | 50S ribosomal protein L21 | Structural protein | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 :::.::.:.:::.::::::.: Target 943 AAUUAAUUGGCUUAUCCUCUU 963 |
vun-mir5215 | FG849457 | Vancomycin resistance protein | Stress related | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 ::::::.:::::::::.: Target 340 AUCAACAGGCUCAUCCUUCG 359 |
vun-mir5215 | TC6816 | General substrate transporter | Transporter | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::.:::: :.::::: Target 1035 AAUCAACUGGCUC-UUCUCCU 1054 |
vun-mir5216 | FG851044 | Metal ion binding | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :.:::: :::::.:::.:::: Target 227 UAUCACUUUUUUUUACUUCCAA 248 |
vun-mir5216 | FG841236 | T5I8.13 | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :::::.: :: ::::.:::::: Target 132 UUCCAUUCUUCUUCAUUCCCAA 153 |
vun-mir5216 | FG931306 | Predicted protein | Hypothetical protein | miRNA 21 AGGUGACAAAAAGUGAGGGUU 1 :.:::::::: ::..:.:::: Target 2 UUCACUGUUUCUCGUUUCCAA 22 |
vun-mir5219 | TC16320 | Tumor-related protein | Growth and development | miRNA 20 GACGUCGACUCUAAGGUACU 1 ::::: :::::.:: ::::: Target 141 CUGCACCUGAGGUUACAUGA 160 |
vun-mir5227 | TC9947 | TINY-like protein | Transcription factor | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 ::.::::: ::::::.:::::: Target 1075 UUUUUCAA-CUUCUUUUGUUCU 1095 |
vun-mir5227 | FG842691 | HMG1/2-like protein | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.::.:::: ::.: Target 27 CUUCAAUUUUUUUCUAUUUU 46 |
vun-mir5227 | FG886406 | Probable intracellular septation protein | Growth & development | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 :.::::: :::.::.::::.: Target 48 UGUUUCAACCUUUUUUUGUUUU 69 |
vun-mir5227 | TC17852 | Glutathione S-transferase PM24 | Metabolism | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.:::: :::::: Target 1044 CUUCAAUUUUCUCGUGUUCU 1063 |
vun-mir5227 | TC10272 | DNA-directed RNA polymerase subunit | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::: ::.::.:::::: Target 288 CUUCAAGAUUUUUUUGUUCU 307 |
vun-mir5241 | TC10790 | VDAC-like porin | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::::::::..:: Target 201 UUCACUCUUCCAUUCAUUCA 220 |
vun-mir5241 | TC18525 | Peptidyl-prolyl cis-trans isomerase | Metabolism | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::..::::::.::::::.: Target 58 UUCGUUCUUCCGUUCACCUA 77 |
vun-mir5241 | FG863193 | Probable plastid-lipid-associated protein 13 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:: :.:::::::.:: Target 158 UUCAUUCAUUCAUUCACUCA 177 |
vun-mir5241 | TC7362 | Serine/threonine protein kinase | Signal transduction | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::..::.:::.:::::..:: Target 934 UUUGCUUUUCUAUUCAUUCA 953 |
vun-mir5241 | TC16629 | Multidrug resistance protein | Disease related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::::::::::: :: :.:: Target 915 UUCACUCUUCCAGUCUCUCA 934 |
vun-mir5241 | TC2781 | Non-specific lipid-transfer protein | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::: ::: :.:: Target 20 UUCACUCUUCCUUUCUCUCA 39 |
vun-mir5241 | TC212 | Chaperone GrpE type 2 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:::.: :::::::: Target 207 UUCAUUCUCUCCUUCACCCA 226 |
vun-mir5255 | TC8912 | Pyruvate kinase | Signal transduction | miRNA 20 AGUACAGGAGAUAGGACAGU 1 :.:::::.:::.::.:::.: Target 71 UUAUGUCUUCUGUCUUGUUA 90 |
vun-mir5255 | TC18327 | Cysteine protease | Metabolism | miRNA 20 AGUACAGGAGAUAGGACAGU 1 ::: :::::. ::.:::::: Target 605 UCAAGUCCUUGAUUCUGUCA 624 |
vun-mir5261 | FG838847 | Chromosome undetermined scaffold_221 | Hypothetical protein | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::::::::::::::: Target 540 AGCCAAAGCCAUCUACAAUCG 560 |
vun-mir5261 | FF398912 | TIR | Stress related | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::.:::::::::::: Target 413 AGCCAAAGUCAUCUACAAUCG 433 |
vun-mir5290 | TC3168 | Hydroxyproline-rich glycoprotein | Disease related | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::::.::::.::: Target 82 UCUCUUUCUUUCUCUUUCUAUUUU 105 |
vun-mir5290 | FG844083 | PAS sensor protein | Signal transduction | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::.:::.::.::: Target 99 UUUCUCUCUUUCUUUCUUUAUUUU 122 |
vun-mir5290 | FG871448 | Eco57I restriction endonuclease | Metabolism | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : ::::::::::::: :::: Target 42 UCUCUUUCUCUCUCUCCUUU 61 |
vun-mir5290 | TC11392 | Ribonuclease Ⅲ | Transcription factor | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 ::: :: ::: ::::.:.:::::: Target 841 UAUAUGACUUCCUCUUUUUACUUU 864 |
vun-mir5290 | TC12655 | Calcium dependent protein kinase | Signal transduction | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 ::::::.:.:::.:.:::: Target 1254 GGUCUUUUUUUCUUUGCUUU 1273 |
vun-mir5290 | TC4908 | ACC oxidase | Growth & development | miRNA 22 ACACAGAAAGAGAGAGAUGAAA 1 : : ::::::::::::::. :: Target 1376 UCUCUCUUUCUCUCUCUAUCUU 1397 |
vun-mir5290 | FG874464 | RNA-binding protein | Transcription factor | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : :::::::::::::.::: Target 14 UCUCUUUCUCUCUCUCUUUU 33 |
vun-mir5298 | TC16082 | Translation initiation factor IF | Transcription factor | miRNA 25 AAGAAGUAGAAG-UAGAACUUUAGGU 1 :.::::::::: : ::::::::::: Target 34 UCUUUCAUCUUCGAACUUGAAAUCCA 59 |
vun-mir5298 | TC11481 | Non-specific lipid-transfer protein | Transporter | miRNA 24 AGAAGUAGAAGUAGAACUUUAGGU 1 :.: ::: ::.:::::::.::..: Target 614 UUUACAUGUUUAUCUUGAGAUUUA 637 |
vun-mir5298 | TC16211 | (Iso) Flavonoid glycosyltransferase | Metabolism | miRNA 25 AAGAAGUAGAAGUAGAACUUUAGGU 1 : ::.. :::: :::::::::::: Target 233 UCCUCUGCCUUCUUCUUGAAAUCCA 257 |
vun-mir5376 | TC18575 | Zgc:158399 protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 ::::::::::::::::::::::: Target 517 UCUCAAAUUCUUCACAAUCUCCA 539 |
vun-mir5376 | TC16446 | Predicted protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 :::::::::::::: :::.: :: Target 687 UCUCAAAUUCUUCAGAAUUUACA 709 |
vun-mir5376 | FC457472 | Chromosome chr1 scaffold_135 | Hypothetical protein | miRNA 20 GUUUAAGAAGUGUUAGAGGU 1 .: ::::::::::::::.: Target 141 AGAUUUCUUCACAAUCUCUA 160 |
vun-mir5561 | TC1062 | H+/Ca2+ exchanger 2 | Transporter | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 : ::::::::::::::::: Target 8 AGAUUUAGAGAGAGAGAGAG 27 |
vun-mir5561 | TC8162 | GTPase | Metabolism | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 :..: :::::::::::::: Target 102 AUGUAUAGAGAGAGAGAGAG 121 |
vun-mir5561 | TC11798 | Cold shock domain | Stress related | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 ::: : : :::::::::::: Target 2 ACAGUGACAGAGAGAGAGAU 21 |
vun-mir5758 | TC975 | Chromosome chr11 scaffold_13 | Hypothetical protein | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 ::::::::::::::::::::: Target 213 CAAAUACAUAGAUCCAACUUA 233 |
vun-mir5758 | TC5742 | Pyrophosphate-dependent phosphofructo-1-kinase | Signal transduction | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 .:::::.::::::::::: :: Target 306 UAAAUAUAUAGAUCCAACCUA 326 |
vun-mir5758 | TC16939 | Chromosome undetermined scaffold_310 | Hypothetical protein | miRNA 20 UUUAUGUAUCUAGGUUGAAU 1 :::::::: :::::::: :: Target 509 AAAUACAUUGAUCCAACGUA 528 |
vun-mir5770 | TC1925 | Amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 ::::::::::::::::::::: Target 165 UCAUCCAAACCAUAGUCCUAA 185 |
vun-mir5770 | TC5168 | Copper amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 :..::::::::::::::: :: Target 148 UUGUCCAAACCAUAGUCCAAA 168 |
vun-mir5770 | TC18480 | Ribonuclease H | Transcription factor | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 :::.:::.:.:::::..::: Target 613 CAUUCAAGCUAUAGUUUUAA 632 |
vun-mir5770 | TC1738 | Allyl alcohol dehydrogenase | Metabolism | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 ::::.::::. ::::.::.: Target 766 CAUCUAAACUUUAGUUCUGA 785 |
vun-mir6252 | FG841373 | Nucleoporin-like protein | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 ::::::::::::::::::::::: Target 24 AACCCUCUCUCAACACAACUCAU 46 |
vun-mir6252 | FG857360 | Membrane protein | Transporters | miRNA 21 GGGAGAGAGUUGUGUUGAGUA 1 .::::::::::::: ::::: Target 247 UCCUCUCUCAACACUCCUCAU 267 |
vun-mir6252 | TC15301 | Homeobox domain, ZF-HD class | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 : : :::::::::: ::::::: Target 9 AUCACUCUCUCAACUCAACUCAA 31 |
vun-mir7696 | FG864277 | BZIP transcription | Transcription factor | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::::::::::::::::::: Target 17 UUUUGAAUUUAAGUACUUGU 36 |
vun-mir7696 | FF383199 | Olfactory receptor | Signal transduction | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::: : :::::::::::: Target 141 UUUUUAUUUUAAGUACUUGG 160 |
vun-mir8182 | TC3507 | Pectin methylesterase | Metabolism | miRNA 21 CAGUAGUGUUUGCGUUGUGUU 1 ::::::::::..:::::: :. Target 654 GUCAUCACAAGUGCAACAGAG 674 |
vun-mir9748 | TC16306 | Lectin-like protein kinase | Signal transduction | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :.:::..:::::::::::::. Target 17 CGUCUCUUUCAACACUUCCUUU 38 |
vun-mir9748 | TC1064 | Zinc finger, RING-type: Thioredoxin-related | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .:::::.::::::.::.:::: Target 16 UUCCUCUCUCAACUUUUUCUUC 37 |
vun-mir9748 | TC9843 | Beta-xylosidase/alpha-L-arabinosidase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 :.::..::::::::::::: Target 478 CUUCUUUCAACACUUCCUUG 497 |
vun-mir9748 | TC15743 | Heat shock protein | Stress related | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :::.:::::::::.::.:::: Target 244 CUCUUCCCUCAACGCUCUCUUC 265 |
vun-mir9748 | TC15591 | Transcription factor AHAP2 | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .::.:::::::: :::::: :: Target 64 UUCUUCCCUCAAGACUUCCAUC 85 |
vun-mir9748 | TC298 | Glutathione reductase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 .:::.:::::::::.:::: Target 95 UCUCUCUCAACACUCUCUUC 114 |
vun-mir9748 | TC1040 | Glycine-rich protein 2b | Transcription factor | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 ::.::::.:::::::::: Target 567 ACUUCCUCUGCACUUCCUUC 586 |
vun miRNAs | Ref. miRNAs | PL | MFE | MS | NM | ML | SE # | MSA | GC% | SL | OE |
vun-mir398 | mtr-mir398a | 131 | −32.24 | TGTGTTCTCAGGTCGCCCCTG | 2 | 21 | FF542932 | 5' | 61.90 | + | leaves |
vun-mir413 | ath-mir413 | 353 | −88.55 | TTAGTTTCTCTTGTTCTGCTT | 2 | 21 | FG940215 | 5' | 33.33 | + | mixed |
vun-mir435 | osa-mir435 | 347 | −124.38 | TTATGAGGCTTTGGAGTTGA | 4 | 20 | FG811172 | 3' | 40.00 | + | mixed |
vun-mir834 | ath-mir834 | 135 | −52.95 | TGGTAGCAGTGGCGGTGGTGG | 3 | 21 | FG822669 | 3' | 66.66 | − | mixed |
vun-mir1512 | gma-mir1512a | 46 | −10.60 | CCTTTAAGAATTTCA-TTA-- | 4 | 18 | FG880488 | 3' | 22.22 | − | mixed |
vun-mir1514 | gma-mir1514 | 127 | −31.70 | TTCATTTCTAAAATAGGCATC | 2 | 21 | FF388166 | 5' | 28.57 | − | root |
vun-mir1525 | gma-mir1525 | 78 | −14.10 | GGGGTTAAATATGTTTTTAGT | 3 | 21 | FG845219 | 5' | 28.57 | + | mixed |
vun-mir1848 | osa-mir1848 | 77 | −32.20 | CGCTCGCCGGCGCGCGCGTCCA | 2 | 22 | FG920123 | 3' | 86.36 | + | mixed |
vun-mir2095 | osa-mir2095 | 57 | −17.20 | CTTCCATTTATGACATGTTT | 3 | 20 | FG838629 | 5' | 30.00 | − | mixed |
vun-mir2606 | mtr-mir2606a | 69 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2609 | mtr-mir2609a | 70 | −13.00 | TTGAAGTGCTTGGTTCTCACT | 4 | 21 | FG931806 | 5' | 42.85 | + | mixed |
vun-mir2622 | mtr-mir2622 | 210 | −36.85 | CTTGTGTGCCATTGTGAGCTTA | 3 | 22 | FG900047 | 3' | 42.85 | − | mixed |
vun-mir2630 | mtr-mir2630a | 114 | −24.70 | TGGTTTTGGTCTTTGGTTTTA | 3 | 21 | FF391380 | 5' | 33.33 | + | root |
vun-mir2636 | mtr-mit2636 | 191 | −29.40 | GGATGTTAGTGTGCTGAATAT | 4 | 21 | FG814033 | 5' | 38.09 | − | mixed |
vun-mir2657 | mtr-mir2657 | 156 | −35.38 | TTTTATTGTATTGATTTTGTTG | 4 | 22 | FG926034 | 5' | 18.18 | − | mixed |
vun-mir2678 | mtr-mir2678 | 136 | −39.32 | TAAAGTTGTTGCGCGTGTC | 3 | 19 | FF389500 | 3' | 47.36 | − | root |
vun-mir2950 | mes-mir2950 | 347 | −83.20 | TTCCATCTCTTGCAGACTGAA | 2 | 21 | FG872933 | 5' | 42.85 | − | mixed |
vun-mir3434 | ath-mir3434 | 78 | −17.40 | TGAGAGTATCAGCCATGAGA | 2 | 20 | FF392538 | 3' | 45.00 | − | root |
vun-mir4351 | gma-mir4351 | 148 | −63.30 | GTTAGGGTTCAGTTGGAGTTGG | 3 | 22 | FG936300 | 3' | 50.00 | − | mixed |
vun-mir4392 | gma-mir4392 | 306 | −80.53 | TCTGTGAGAACGTGATTTCGGA | 3 | 22 | FG857306 | 5' | 45.45 | + | mixed |
vun-mir4408 | gma-mir4408 | 66 | −20.70 | CAACAACATTGGATGAGTATAGGA | 4 | 24 | FG894682 | 3' | 37.5 | + | mixed |
vun-mir4414a vun-mir4414b | mtr-mir4414a | 120 | −42.20 | AGCTGCTGACTCGTTGGTTCAATTCAACGATGCGGGAGCTGC | 0 1 | 21 21 | FF537171 | 5' 3' | 52.38 57.14 | + + | leaves |
vun-mir4992 | gma-mir4992 | 63 | −21.20 | CATCTAAGATGGTTTTTTTCAG | 4 | 22 | FG926352 | 3' | 31.81 | − | mixed |
vun-mir4996 | gma-mir4996 | 163 | −49.83 | TAGAAGTTACCCATGTTCTC | 2 | 20 | FF388735 | 3' | 40.00 | − | root |
vun-mir5012 | ath-mir5012 | 172 | −43.44 | TTTTGCTGCTCCGTGTGTTCC | 3 | 21 | FG809429 | 3' | 52.38 | + | mixed |
vun-mir5043 | gma-mir5043 | 125 | −48.20 | CTTCTCCTTCTCTGCACCACC | 3 | 21 | FG810406 | 5' | 57.14 | + | mixed |
vun-mir5215 | mtr-mir5215 | 181 | −49.63 | AGGAGGATGAGCTAGTTGATT | 3 | 21 | FG939979 | 5' | 42.85 | + | mixed |
vun-mir5216 | mtr-mir5216a | 124 | −27.58 | TTGGGAGTGAAAAACAGTGGAA | 2 | 22 | FF399948 | 5' | 40.90 | + | root |
vun-mir5219 | mtr-mir5219 | 107 | −25.23 | TCATGGAATCTCAGCTGCAGCAG | 1 | 23 | FG850600 | 3' | 52.17 | − | mixed |
vun-mir5227 | mtr-mir5227 | 140 | −18.04 | AGAACAGAAGAAGATTGAAGAA | 3 | 22 | FG915684 | 5' | 31.81 | − | mixed |
vun-mir5241 | mtr-mir5241a | 381 | W#8722;119.80 | TGGGTGAATGGAAGAGTGAAT | 3 | 21 | FG904590 | 3' | 42.85 | + | mixed |
vun-mir5246 | mtr-mir5246 | 68 | −18.70 | CACCAGAGAGCTTTGAAGGTT | 4 | 21 | FG856911 | 3' | 47.61 | + | mixed |
vun-mir5255 | mtr-mir5255 | 54 | −10.40 | TGACAGGATAGAGGACATGAC | 4 | 21 | FG910302 | 5' | 47.61 | − | mixed |
vun-mir5261 | mtr-mir5261 | 311 | −71.81 | CGATTGTAGATGGCTTTGGCT | 3 | 21 | FG838847 | 5' | 47.61 | − | mixed |
vun-mir5280 | mtr-mir5280 | 90 | −20.22 | TAAGTAGAAACGGGCCGAGATCGGGG | 4 | 26 | FG915361 | 5' | 57.69 | − | mixed |
vun-mir5290 | mtr-mir5290 | 217 | −30.24 | AAAGTAGAGAGAGAAAGACACATA | 4 | 24 | FG852502 | 5' | 33.33 | + | mixed |
vun-mir5298 | mtr-mir5298a | 192 | −36.58 | TGGATTTCAAGATGAAGATGAAGAA | 4 | 25 | FF402284 | 3' | 32.00 | − | root |
vun-mir5376 | gma-mir5376 | 341 | −132.02 | TGGAGATTGTGAAGAATTTGAGA | 3 | 23 | FG872123 | 3' | 34.78 | + | mixed |
vun-mir5561 | mtr-mir5561 | 346 | −69.34 | ATCTCTCTCTCTCTAAATGTA | 3 | 21 | FF390124 | 5' | 33.33 | − | root |
vun-mir5758 | mtr-mir5758 | 91 | −22.60 | TAAGTTGGATCTATGTATTTG | 3 | 21 | FG893334 | 3' | 28.57 | + | mixed |
vun-mir5770 | gma-mir5770a | 98 | −30.40 | TTAGGACTATGGTTTGGATGA | 1 | 21 | FG937135 | 3' | 38.09 | − | mixed |
vun-mir6252 | osa-mir6252 | 90 | −20.90 | ATGAGTTGTGTTGAGAGAGGGTT | 4 | 23 | FG841373 | 3' | 43.47 | − | mixed |
vun-mir7696 | mtr-mir7696a | 173 | −33.67 | ACAAGTACTTA-AATTCAAAA | 4 | 20 | FG864277 | 3' | 20.00 | − | mixed |
vun-mir8182 | ath-mir8182 | 170 | −31.80 | TTGTGTTGCGTTTGTGATGACT | 3 | 22 | FG942892 | 5' | 40.90 | − | mixed |
vun-mir9748 | gma-mir9748 | 98 | −32.45 | GAAGGAAGTGTTGAGGGAGGAG | 3 | 22 | FG921211 | 5' | 54.54 | + | mixed |
miRNA | Target Acc. | Target Description | Function | Alignment |
vun-mir398 | TC8412 | Predicted protein | Hypothetical protein | miRNA 21 GUCCCCGCUGGACUCUUGUGU 1 ::::::::.:::: :::::: Target 24 CAGGGACGAUCUGAUAACACA 44 |
vun-mir413 | TC18010 | H/ACA ribonucleoprotein complex | Transcription factor | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 ::::::::::::::::::::: Target 432 AAGCAGAACAAGAGAAACUAA 452 |
vun-mir413 | FF538223 | Tropinone reductase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:::::::.::.:.:::::: Target 321 GAGCAGAAUAAUGGGAACUAA 341 |
vun-mir413 | TC16544 | Valyl-tRNA synthetase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 :.::::::::::.:::. ::: Target 1013 AGGCAGAACAAGGGAAGAUAA 1033 |
vun-mir413 | TC9044 | Uroporphyrinogen decarboxylase | Metabolism | miRNA 21 UUCGUCUUGUUCUCUUUGAUU 1 .:: :::: :::::::.::.: Target 59 GAGAAGAAGAAGAGAAGCUGA 79 |
vun-mir435 | TC9534 | Chromosome chr12 scaffold_238, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :::::::::: :..::::.: Target 242 UCAACUCCAAUGUUUCAUGA 261 |
vun-mir435 | FF387447 | Chromosome chr9 scaffold_7, | Hypothetical protein | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::::.:.:::.::::: ::: Target 386 UCAAUUUCAAGGCCUCCUAA 405 |
vun-mir435 | TC16349 | Ripening related protein | Growth and development | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 :.::::::::: :.:.::.: Target 523 UUAACUCCAAAACUUUAUGA 542 |
vun-mir435 | FG810938 | Protein kinase | Signal transduction | miRNA 20 AGUUGAGGUUUCGGAGUAUU 1 ::: :::::: :::::.::. Target 474 UCACCUCCAAUGCCUCGUAG 493 |
vun-mir834 | TC4272 | SCOF-1 | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.::::::: :.::::: Target 281 CCACCGCCGCCACCGUUACCA 301 |
vun-mir834 | TC8566 | Cytochrome P450 monooxygenase CYP83E9 | Metabolism | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ::::: : :::::::::::: Target 465 CACCAACACCACUGCUACCA 484 |
vun-mir834 | TC7191 | DnaJ-like protein | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::.::::::::::::: :::. Target 173 CCGCCACCGCCACUGCAACCG 193 |
vun-mir834 | FG876294 | Zinc finger-like protein | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ::::::::::::: :: :::: Target 138 CCACCACCGCCACCGCCACCA 158 |
vun-mir834 | TC4023 | GroEL-like chaperone, ATPase | Stress related | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :: ::.:::::.:::::.::: Target 78 CCUCCGCCGCCGCUGCUGCCA 98 |
vun-mir834 | TC7031 | Oxophytodienoate reductase | Metabolism | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 .::.::.:::::::::: ::: Target 19 UCAUCAUCGCCACUGCUUCCA 39 |
vun-mir834 | TC15421 | MYB | Transcription factor | miRNA 20 GUGGUGGCGGUGACGAUGGU 1 ..:.::.::.:::::::::: Target 955 UGCUACUGCUACUGCUACCA 974 |
vun-mir834 | GH622195 | Ribosomal protein | Structural protein | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 :::::.:::::::: ::::: Target 110 CCACCGCCGCCACUUCUACCU 130 |
vun-mir834 | TC7768 | Calcium-binding EF-hand) | Transcription factor | miRNA 21 GGUGGUGGCGGUGACGAUGGU 1 ..::.::.:..::::.::::: Target 470 UUACUACUGUUACUGUUACCA 490 |
vun-mir1512 | XM_013230906 | Biomphalaria glabrata dual oxidase | Metabolism | target 5' C U 3' AAUGAAAUUCUUAAAGG UUACUUUAAGAAUUUCC miRNA 3' A 5' |
vun-mir1512 | XM_006957329 | Nucleoside triphosphate hydrolase protein | Transcription factor | target 5' U A 3' UAAUGAAAUUCUUAAAG AUUACUUUAAGAAUUUC miRNA 3' C 5' |
vun-mir1512 | KC463855 | NB-LRR receptor (RSG3-301) | Transcription factor | target 5' C CCC GG U 3' AAUGA AA CUUGAAGG UUACU UU GAAUUUCC miRNA 3' A AA 5' |
vun-mir1512 | EF076031 | Phosphatidic acid phosphatase alpha (PAPa) | Metabolism | target 5' A AAGGGG G A 3' UGGUGAAA UC UAAAGG AUUACUUU AG AUUUCC miRNA 3' A A 5' |
vun-mir1512 | AF413209 | Dolichos biflorus chloroplast ribulose-1, 5-bisphosphate carboxylase | Metabolism | target 5' C G 3' UGGUGAAAU UAAAGG AUUACUUUA AUUUCC miRNA 3' AGA 5' |
vun-mir1514 | FF388166 | NAC domain-containing protein 78 | Transcription factor | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 ::::::::::::::::::::: Target 687 GAUGCCUAUUUUAGAAAUGAA 707 |
vun-mir1514 | FF540114 | Phosphate transporter family protein | transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 461 AUGCCUGUUUUGGAAAUGAA 480 |
vun-mir1514 | TC15423 | NAM-like protein | Transcription factor | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::::.::::.:::::::: Target 589 AUGCCUGUUUUGGAAAUGAA 608 |
vun-mir1514 | TC869 | ATP-binding cassette sub-family f member 2 | Transporter | miRNA 21 CUACGGAUAAAAUCUUUACUU 1 :: ::.:::: :::::::::: Target 733 GAGGCUUAUUCUAGAAAUGAA 753 |
vun-mir1514 | FG830151 | Starch branching enzyme | Metabolism | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::::: ::::::::.:::: Target 314 AUGCCAAUUUUAGAGAUGAU 333 |
vun-mir1514 | TC5197 | Cytochrome c biogenesis protein-like | Transporter | miRNA 20 UACGGAUAAAAUCUUUACUU 1 ::.::::::::::.:::: Target 749 AUAUCUAUUUUAGAGAUGAU 768 |
vun-mir1525 | TC17248 | Salt-tolerance protein | Stress related | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::::::::::::.:. Target 306 ACUAAAAACAUAUUUAACUCU 326 |
vun-mir1525 | FG915097 | UDP-N-acetylmuramoylalanine-D-glutamate ligase | Transcription factor | miRNA 21 UGAUUUUUGUAUAAAUUGGGG 1 ::::::::.::::::.:::: Target 468 ACUAAAAAUAUAUUUGACCCA 488 |
vun-mir1525 | TC14268 | Non-specific lipid-transfer protein | transporter | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 ::.:::...:::::::::.: Target 505 CUGAAAGUGUAUUUAACCUC 524 |
vun-mir1525 | TC18336 | Heat shock protein | Stress related | miRNA 20 GAUUUUUGUAUAAAUUGGGG 1 .:.:..:.::::::.::::: Target 166 UUGAGGAUAUAUUUGACCCC 185 |
vun-mir1848 | EG424245 | Radical SAM domain protein | Metabolism | miRNA 20 CUGCGCGCGCGGCCGCUCGC 1 :: ::: :::: :::::::: Target 110 GAAGCGAGCGCAGGCGAGCG 129 |
vun-mir2095 | FF402667 | Resistance protein MG55 | Stress related | miRNA 20 UUUGUACAGUAUUUACCUUC 1 .: :.:::::::::::::: Target 592 GAUCGUGUCAUAAAUGGAAU 611 |
vun-mir2095 | TC2784 | Vacuolar protein sorting-associated protein 26-like protein | transporter | miRNA 20 UUUGUACAGUAUUUACCUUC 1 :::::::::::.: ::::: Target 824 AAACAUGUCAUCGAAGGAAG 843 |
vun-mir2606 | TC406838 | SNF1 related protein kinase | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2606 | TC401737 | ATP binding protein | Transcription factor | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2606 | NP305366 | Hypothetical protein | Hypothetical protein | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::::::.:.::.::::::. Target 420 ACUGAGAAUCGAGUACUUCAG 440 |
vun-mir2609 | NP038997 | Jasmonate induced protein | Stress related | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 : ::.:: ::::::::::::: Target 220 ACUGGGAUCCAAGCACUUCAA 240 |
vun-mir2609 | NP568563 | SEC14-like protein | Transcription factor | miRNA 21 UCACUCUUGGUUCGUGAAGUU 1 :: :::::::::: ::::.:: Target 417 AGCGAGAACCAAGGACUUUAA 437 |
vun-mir2609 | TC406838 | SNF1 related protein kinase-like protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 : :::::. ::::::::::: Target 1051 GAGAGAAUAAAGCACUUCAA 1070 |
vun-mir2609 | TC401737 | ATP binding protein | Signal transduction | miRNA 20 CACUCUUGGUUCGUGAAGUU 1 :::::::.::::.::::: Target 242 UCGAGAACCGAGCAUUUCAA 261 |
vun-mir2622 | TC9003 | Alpha-expansin 2 | Metabolism | miRNA 22 AUUCGAGUGUUACCGUGUGUUC 1 :::::::::::::::::::::: Target 64 UAAGCUCACAAUGGCACACAAG 85 |
vun-mir2630 | TC15462 | Auxin influx transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::::::: ::::::::: Target 293 AAAACCAAAAACCAAAACCU 312 |
vun-mir2630 | FF390661 | Serine/arginine repetitive matrix 1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::: ::: :::::::::: Target 349 AAAACAAAAAACCAAAACCA 368 |
vun-mir2630 | FG865319 | Monosaccharid transport protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::.:::::::.::.:::: Target 109 UAAAUCAAAGACUAAGACCA 128 |
vun-mir2630 | TC4441 | Ras-related protein RAB8-1 | Transcription factor | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 ::::.:::: :::::::::: Target 75 AAAAUCAAA-ACCAAAACCA 93 |
vun-mir2630 | TC1550 | Homeodomain leucine zipper protein HDZ3 | Transcription factor | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :.::::..:. :::::::::: Target 1253 UGAAACUGAGAACCAAAACCA 1273 |
vun-mir2630 | FC457466 | Pseudouridylate synthase | Metabolism | miRNA 21 AUUUUGGUUUCUGGUUUUGGU 1 :::::. :..:::.::::::: Target 504 UAAAAUGAGGGACUAAAACCA 524 |
vun-mir2630 | TC6720 | Ubiquitin carrier protein | Transporter | miRNA 20 UUUUGGUUUCUGGUUUUGGU 1 :::::::::: :::::.:: Target 685 AAAACCAAAGCCCAAAUUCA 704 |
vun-mir2636 | TC7750 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 21 UAUAAGUCGUGUGAUUGUAGG 1 :::::.::::::::::.:.: Target 225 AUAUUUAGCACACUAAUAAUC 245 |
vun-mir2636 | FF537611 | Na+/H+ antiporter | Metabolism | miRNA 20 AUAAGUCGUGUGAUUGUAGG 1 : :::::::::::..:::.. Target 25 UCUUCAGCACACUGGCAUUU 44 |
vun-mir2636 | TC1711 | Beta-1, 3-glucanase-like protein | Metabolism | miRNA 19 UAAGUCGU-GUGAUUGUAGG 1 : :::::: ::::::::::: Target 1279 AAUCAGCAACACUAACAUCC 1298 |
vun-mir2657 | TC7897 | Proteinase inhibitor 20 | Metabolism | miRNA 20 UGUUUUAGUUAUGUUAUUUU 1 :.::::: ::::.::::::: Target 934 AUAAAAUAAAUAUAAUAAAA 953 |
vun-mir2657 | FG852576 | Heat shock protein 70 cognate | Stress related | miRNA 22 GUUGUUUUAGUUAUGUUAUUUU 1 :::.:.:::::::. :::.::: Target 77 CAAUAGAAUCAAUGAAAUGAAA 98 |
vun-mir2657 | TC5942 | 2, 4-D inducible glutathione S-transferase | Metabolism | miRNA 21 UUGUUUUAGUUAUGUUAUUUU 1 ::.:::::. ::..::::::: Target 745 AAUAAAAUUUAUGUAAUAAAA 765 |
vun-mir2678 | EF472252 | Bound starch synthase | Metabolism | target 5' U UG UG A 3' GGC G GCA GAC CUG C CGU UUG miRNA 3' UG G UG AAAU 5' |
vun-mir2678 | D88122 | CPRD46 protein | Stress related | target 5' U C G 3' GCGCGUA CAACUU UGCGCGU GUUGAA miRNA 3' CUG U AU 5' |
vun-mir2678 | AY466858 | Peroxisomal ascorbate peroxidase | Metabolism | target 5' U A C A 3' GGCACG UG CGGC ACUU CUGUGC GC GUUG UGAA miRNA 3' U AU 5' |
vun-mir2678 | AB028025 | YLD mRNA for regulatory protein | Metabolism | target 5' A CCA C G 3' GCGC GCG CGGCGAC UGUG CGC GUUGUUG miRNA 3' C AAAU 5' |
vun-mir2950 | TC11773 | F-box/Kelch-repeat protein | Transcription factor | miRNA 21 AAGUCAGACGUUCUCUACCUU 1 ::::::::::::::::::::: Target 614 UUCAGUCUGCAAGAGAUGGAA 634 |
vun-mir2950 | TC2831 | Ethylene responsive protein | Stress related | miRNA 20 AGUCAGACGUUCUCUACCUU 1 :..:: ::.::::::::::. Target 1700 UUGGUAUGUAAGAGAUGGAG 1719 |
vun-mir3434 | TC7167 | Protein transport protein Sec24-like At3g07100 | Transporter | miRNA 20 AGAGUACCGACUAUGAGAGU 1 :::.::::.:::: ::.::: Target 662 UCUUAUGGUUGAUUCUUUCA 681 |
vun-mir4351 | TC5899 | Expressed protein | Hypothetical protein | miRNA 22 GGUUGAGGUUGACUUGGGAUUG 1 :::::::::::::::::::::: Target 27 CCAACUCCAACUGAACCCUAAC 48 |
vun-mir4351 | FF391835 | NADH-ubiquinone oxidoreductase chain 2 | Metabolism | miRNA 20 UUGAGGUUGACUUGGGAUUG 1 ::: ::::.: ::::::::. Target 22 AACCCCAAUUAAACCCUAAU 41 |
vun-mir4392 | TC14606 | AKIN beta1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 791 UGCUAAAUCACGUCUUCAUAGA 812 |
vun-mir4392 | TC9038 | SNF1-related protein kinase regulatory beta subunit 1 | Signal transduction | miRNA 22 AGGCUUUAGUGCAAGAGUGUCU 1 : : :::::::::.:::.::: Target 979 UGCUAAAUCACGUCUUCAUAGA 1000 |
vun-mir4408 | TC2049 | Monooxygenase | Metabolism | miRNA 24 AGGAUAUGAGUAGGUUACAACAAC 1 :: :::.::::: :: ::::::: Target 369 UCAGAUAUUCAUCAAAAGUUGUUG 392 |
vun-mir4992 | FG809835 | TfIIE | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::::::::::::::::: Target 247 CUGAAAAAAACCAUCUUAGAUG 268 |
vun-mir4992 | TC11468 | Uncharacterized protein At2g03890.2 | Hypothetical protein | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 :::::::: :::::.::::::: Target 836 CUGAAAAAUACCAUUUUAGAUG 857 |
vun-mir4992 | TC414 | Zinc finger protein 7 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 739 UUGAGAGAAACCAUUUUGGAUC 760 |
vun-mir4992 | TC2268 | Zinc finger protein 4 | Transcription factor | miRNA 22 GACUUUUUUUGGUAGAAUCUAC 1 .:::.:.:::::::.::.::: Target 857 UUGAGAGAAACCAUUUUGGAUC 878 |
vun-mir5012 | TC1335 | Ribosomal protein L30 | Structural protein | miRNA 21 CCUUGUGUGCCUCGUCGUUUU 1 ::::.::. :::::::::::: Target 209 GGAAUACGAGGAGCAGCAAAA 229 |
vun-mir5012 | TC59 | Acireductone dioxygenase | Metabolism | miRNA 21 CCUUGUGUGCC-UCGUCGUUUU 1 ::::::::: : :::::::::: Target 19 GGAACACACUGUAGCAGCAAAA 40 |
vun-mir5012 | TC12731 | Mn-specific cation diffusion facilitator transporter | Transporter | miRNA 20 CUUGUGUGCCUCGUCGUUUU 1 ::.::::::::: :::::. Target 186 GAGCACACGGAGAAGCAAGU 205 |
vun-mir5043 | FF401363 | Ran-specific GTPase-activating protein | Transcription factor | miRNA 21 CCACCACGUC-UCUUCCUCUUC 1 : :::::::: :::.::::::: Target 444 GAUGGUGCAGGAGAGGGAGAAG 465 |
vun-mir5215 | FG909052 | Ferredoxin Ⅰ precursor | Metabolism | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::::::::::::::: Target 179 AAUCAACUAGCUCAUCCUCCU 199 |
vun-mir5215 | GH620837 | L-lactate dehydrogenase | Metabolism | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 :::.:: :::::.::::::: Target 491 AUCGACGAGCUCGUCCUCCU 510 |
vun-mir5215 | TC8326 | 50S ribosomal protein L21 | Structural protein | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 :::.::.:.:::.::::::.: Target 943 AAUUAAUUGGCUUAUCCUCUU 963 |
vun-mir5215 | FG849457 | Vancomycin resistance protein | Stress related | miRNA 20 UAGUUGAUCGAGUAGGAGGA 1 ::::::.:::::::::.: Target 340 AUCAACAGGCUCAUCCUUCG 359 |
vun-mir5215 | TC6816 | General substrate transporter | Transporter | miRNA 21 UUAGUUGAUCGAGUAGGAGGA 1 ::::::::.:::: :.::::: Target 1035 AAUCAACUGGCUC-UUCUCCU 1054 |
vun-mir5216 | FG851044 | Metal ion binding | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :.:::: :::::.:::.:::: Target 227 UAUCACUUUUUUUUACUUCCAA 248 |
vun-mir5216 | FG841236 | T5I8.13 | Transcription factor | miRNA 22 AAGGUGACAAAAAGUGAGGGUU 1 :::::.: :: ::::.:::::: Target 132 UUCCAUUCUUCUUCAUUCCCAA 153 |
vun-mir5216 | FG931306 | Predicted protein | Hypothetical protein | miRNA 21 AGGUGACAAAAAGUGAGGGUU 1 :.:::::::: ::..:.:::: Target 2 UUCACUGUUUCUCGUUUCCAA 22 |
vun-mir5219 | TC16320 | Tumor-related protein | Growth and development | miRNA 20 GACGUCGACUCUAAGGUACU 1 ::::: :::::.:: ::::: Target 141 CUGCACCUGAGGUUACAUGA 160 |
vun-mir5227 | TC9947 | TINY-like protein | Transcription factor | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 ::.::::: ::::::.:::::: Target 1075 UUUUUCAA-CUUCUUUUGUUCU 1095 |
vun-mir5227 | FG842691 | HMG1/2-like protein | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.::.:::: ::.: Target 27 CUUCAAUUUUUUUCUAUUUU 46 |
vun-mir5227 | FG886406 | Probable intracellular septation protein | Growth & development | miRNA 22 AAGAAGUUAGAAGAAGACAAGA 1 :.::::: :::.::.::::.: Target 48 UGUUUCAACCUUUUUUUGUUUU 69 |
vun-mir5227 | TC17852 | Glutathione S-transferase PM24 | Metabolism | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::::.:::: :::::: Target 1044 CUUCAAUUUUCUCGUGUUCU 1063 |
vun-mir5227 | TC10272 | DNA-directed RNA polymerase subunit | Transcription factor | miRNA 20 GAAGUUAGAAGAAGACAAGA 1 :::::: ::.::.:::::: Target 288 CUUCAAGAUUUUUUUGUUCU 307 |
vun-mir5241 | TC10790 | VDAC-like porin | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::::::::..:: Target 201 UUCACUCUUCCAUUCAUUCA 220 |
vun-mir5241 | TC18525 | Peptidyl-prolyl cis-trans isomerase | Metabolism | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::..::::::.::::::.: Target 58 UUCGUUCUUCCGUUCACCUA 77 |
vun-mir5241 | FG863193 | Probable plastid-lipid-associated protein 13 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:: :.:::::::.:: Target 158 UUCAUUCAUUCAUUCACUCA 177 |
vun-mir5241 | TC7362 | Serine/threonine protein kinase | Signal transduction | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::..::.:::.:::::..:: Target 934 UUUGCUUUUCUAUUCAUUCA 953 |
vun-mir5241 | TC16629 | Multidrug resistance protein | Disease related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 :::::::::::: :: :.:: Target 915 UUCACUCUUCCAGUCUCUCA 934 |
vun-mir5241 | TC2781 | Non-specific lipid-transfer protein | Transporter | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::::::::: ::: :.:: Target 20 UUCACUCUUCCUUUCUCUCA 39 |
vun-mir5241 | TC212 | Chaperone GrpE type 2 | Stress related | miRNA 20 AAGUGAGAAGGUAAGUGGGU 1 ::::.:::.: :::::::: Target 207 UUCAUUCUCUCCUUCACCCA 226 |
vun-mir5255 | TC8912 | Pyruvate kinase | Signal transduction | miRNA 20 AGUACAGGAGAUAGGACAGU 1 :.:::::.:::.::.:::.: Target 71 UUAUGUCUUCUGUCUUGUUA 90 |
vun-mir5255 | TC18327 | Cysteine protease | Metabolism | miRNA 20 AGUACAGGAGAUAGGACAGU 1 ::: :::::. ::.:::::: Target 605 UCAAGUCCUUGAUUCUGUCA 624 |
vun-mir5261 | FG838847 | Chromosome undetermined scaffold_221 | Hypothetical protein | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::::::::::::::: Target 540 AGCCAAAGCCAUCUACAAUCG 560 |
vun-mir5261 | FF398912 | TIR | Stress related | miRNA 21 UCGGUUUCGGUAGAUGUUAGC 1 ::::::::.:::::::::::: Target 413 AGCCAAAGUCAUCUACAAUCG 433 |
vun-mir5290 | TC3168 | Hydroxyproline-rich glycoprotein | Disease related | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::::.::::.::: Target 82 UCUCUUUCUUUCUCUUUCUAUUUU 105 |
vun-mir5290 | FG844083 | PAS sensor protein | Signal transduction | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 : : : :::::::.:::.::.::: Target 99 UUUCUCUCUUUCUUUCUUUAUUUU 122 |
vun-mir5290 | FG871448 | Eco57I restriction endonuclease | Metabolism | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : ::::::::::::: :::: Target 42 UCUCUUUCUCUCUCUCCUUU 61 |
vun-mir5290 | TC11392 | Ribonuclease Ⅲ | Transcription factor | miRNA 24 AUACACAGAAAGAGAGAGAUGAAA 1 ::: :: ::: ::::.:.:::::: Target 841 UAUAUGACUUCCUCUUUUUACUUU 864 |
vun-mir5290 | TC12655 | Calcium dependent protein kinase | Signal transduction | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 ::::::.:.:::.:.:::: Target 1254 GGUCUUUUUUUCUUUGCUUU 1273 |
vun-mir5290 | TC4908 | ACC oxidase | Growth & development | miRNA 22 ACACAGAAAGAGAGAGAUGAAA 1 : : ::::::::::::::. :: Target 1376 UCUCUCUUUCUCUCUCUAUCUU 1397 |
vun-mir5290 | FG874464 | RNA-binding protein | Transcription factor | miRNA 20 ACAGAAAGAGAGAGAUGAAA 1 : :::::::::::::.::: Target 14 UCUCUUUCUCUCUCUCUUUU 33 |
vun-mir5298 | TC16082 | Translation initiation factor IF | Transcription factor | miRNA 25 AAGAAGUAGAAG-UAGAACUUUAGGU 1 :.::::::::: : ::::::::::: Target 34 UCUUUCAUCUUCGAACUUGAAAUCCA 59 |
vun-mir5298 | TC11481 | Non-specific lipid-transfer protein | Transporter | miRNA 24 AGAAGUAGAAGUAGAACUUUAGGU 1 :.: ::: ::.:::::::.::..: Target 614 UUUACAUGUUUAUCUUGAGAUUUA 637 |
vun-mir5298 | TC16211 | (Iso) Flavonoid glycosyltransferase | Metabolism | miRNA 25 AAGAAGUAGAAGUAGAACUUUAGGU 1 : ::.. :::: :::::::::::: Target 233 UCCUCUGCCUUCUUCUUGAAAUCCA 257 |
vun-mir5376 | TC18575 | Zgc:158399 protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 ::::::::::::::::::::::: Target 517 UCUCAAAUUCUUCACAAUCUCCA 539 |
vun-mir5376 | TC16446 | Predicted protein | Hypothetical protein | miRNA 23 AGAGUUUAAGAAGUGUUAGAGGU 1 :::::::::::::: :::.: :: Target 687 UCUCAAAUUCUUCAGAAUUUACA 709 |
vun-mir5376 | FC457472 | Chromosome chr1 scaffold_135 | Hypothetical protein | miRNA 20 GUUUAAGAAGUGUUAGAGGU 1 .: ::::::::::::::.: Target 141 AGAUUUCUUCACAAUCUCUA 160 |
vun-mir5561 | TC1062 | H+/Ca2+ exchanger 2 | Transporter | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 : ::::::::::::::::: Target 8 AGAUUUAGAGAGAGAGAGAG 27 |
vun-mir5561 | TC8162 | GTPase | Metabolism | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 :..: :::::::::::::: Target 102 AUGUAUAGAGAGAGAGAGAG 121 |
vun-mir5561 | TC11798 | Cold shock domain | Stress related | miRNA 20 UGUAAAUCUCUCUCUCUCUA 1 ::: : : :::::::::::: Target 2 ACAGUGACAGAGAGAGAGAU 21 |
vun-mir5758 | TC975 | Chromosome chr11 scaffold_13 | Hypothetical protein | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 ::::::::::::::::::::: Target 213 CAAAUACAUAGAUCCAACUUA 233 |
vun-mir5758 | TC5742 | Pyrophosphate-dependent phosphofructo-1-kinase | Signal transduction | miRNA 21 GUUUAUGUAUCUAGGUUGAAU 1 .:::::.::::::::::: :: Target 306 UAAAUAUAUAGAUCCAACCUA 326 |
vun-mir5758 | TC16939 | Chromosome undetermined scaffold_310 | Hypothetical protein | miRNA 20 UUUAUGUAUCUAGGUUGAAU 1 :::::::: :::::::: :: Target 509 AAAUACAUUGAUCCAACGUA 528 |
vun-mir5770 | TC1925 | Amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 ::::::::::::::::::::: Target 165 UCAUCCAAACCAUAGUCCUAA 185 |
vun-mir5770 | TC5168 | Copper amine oxidase | Metabolism | miRNA 21 AGUAGGUUUGGUAUCAGGAUU 1 :..::::::::::::::: :: Target 148 UUGUCCAAACCAUAGUCCAAA 168 |
vun-mir5770 | TC18480 | Ribonuclease H | Transcription factor | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 :::.:::.:.:::::..::: Target 613 CAUUCAAGCUAUAGUUUUAA 632 |
vun-mir5770 | TC1738 | Allyl alcohol dehydrogenase | Metabolism | miRNA 20 GUAGGUUUGGUAUCAGGAUU 1 ::::.::::. ::::.::.: Target 766 CAUCUAAACUUUAGUUCUGA 785 |
vun-mir6252 | FG841373 | Nucleoporin-like protein | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 ::::::::::::::::::::::: Target 24 AACCCUCUCUCAACACAACUCAU 46 |
vun-mir6252 | FG857360 | Membrane protein | Transporters | miRNA 21 GGGAGAGAGUUGUGUUGAGUA 1 .::::::::::::: ::::: Target 247 UCCUCUCUCAACACUCCUCAU 267 |
vun-mir6252 | TC15301 | Homeobox domain, ZF-HD class | Transcription factor | miRNA 23 UUGGGAGAGAGUUGUGUUGAGUA 1 : : :::::::::: ::::::: Target 9 AUCACUCUCUCAACUCAACUCAA 31 |
vun-mir7696 | FG864277 | BZIP transcription | Transcription factor | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::::::::::::::::::: Target 17 UUUUGAAUUUAAGUACUUGU 36 |
vun-mir7696 | FF383199 | Olfactory receptor | Signal transduction | miRNA 20 AAAACUUAAAUUCAUGAACA 1 :::: : :::::::::::: Target 141 UUUUUAUUUUAAGUACUUGG 160 |
vun-mir8182 | TC3507 | Pectin methylesterase | Metabolism | miRNA 21 CAGUAGUGUUUGCGUUGUGUU 1 ::::::::::..:::::: :. Target 654 GUCAUCACAAGUGCAACAGAG 674 |
vun-mir9748 | TC16306 | Lectin-like protein kinase | Signal transduction | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :.:::..:::::::::::::. Target 17 CGUCUCUUUCAACACUUCCUUU 38 |
vun-mir9748 | TC1064 | Zinc finger, RING-type: Thioredoxin-related | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .:::::.::::::.::.:::: Target 16 UUCCUCUCUCAACUUUUUCUUC 37 |
vun-mir9748 | TC9843 | Beta-xylosidase/alpha-L-arabinosidase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 :.::..::::::::::::: Target 478 CUUCUUUCAACACUUCCUUG 497 |
vun-mir9748 | TC15743 | Heat shock protein | Stress related | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 :::.:::::::::.::.:::: Target 244 CUCUUCCCUCAACGCUCUCUUC 265 |
vun-mir9748 | TC15591 | Transcription factor AHAP2 | Transcription factor | miRNA 22 GAGGAGGGAGUUGUGAAGGAAG 1 .::.:::::::: :::::: :: Target 64 UUCUUCCCUCAAGACUUCCAUC 85 |
vun-mir9748 | TC298 | Glutathione reductase | Metabolism | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 .:::.:::::::::.:::: Target 95 UCUCUCUCAACACUCUCUUC 114 |
vun-mir9748 | TC1040 | Glycine-rich protein 2b | Transcription factor | miRNA 20 GGAGGGAGUUGUGAAGGAAG 1 ::.::::.:::::::::: Target 567 ACUUCCUCUGCACUUCCUUC 586 |