
Citation: Kristyn Alissa Bates. Gene-environment interactions in considering physical activity for the prevention of dementia[J]. AIMS Molecular Science, 2015, 2(3): 359-381. doi: 10.3934/molsci.2015.3.359
[1] | Ceyu Lei, Xiaoling Han, Weiming Wang . Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor. Mathematical Biosciences and Engineering, 2022, 19(7): 6659-6679. doi: 10.3934/mbe.2022313 |
[2] | Yajie Sun, Ming Zhao, Yunfei Du . Multiple bifurcations of a discrete modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(12): 20437-20467. doi: 10.3934/mbe.2023904 |
[3] | Xiaoling Han, Xiongxiong Du . Dynamics study of nonlinear discrete predator-prey system with Michaelis-Menten type harvesting. Mathematical Biosciences and Engineering, 2023, 20(9): 16939-16961. doi: 10.3934/mbe.2023755 |
[4] | Shuo Yao, Jingen Yang, Sanling Yuan . Bifurcation analysis in a modified Leslie-Gower predator-prey model with fear effect and multiple delays. Mathematical Biosciences and Engineering, 2024, 21(4): 5658-5685. doi: 10.3934/mbe.2024249 |
[5] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[6] | Xiaoyuan Chang, Junjie Wei . Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge. Mathematical Biosciences and Engineering, 2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979 |
[7] | Saheb Pal, Nikhil Pal, Sudip Samanta, Joydev Chattopadhyay . Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering, 2019, 16(5): 5146-5179. doi: 10.3934/mbe.2019258 |
[8] | Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825 |
[9] | Christian Cortés García . Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055. doi: 10.3934/mbe.2022653 |
[10] | A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq . Discrete-time predator-prey model with flip bifurcation and chaos control. Mathematical Biosciences and Engineering, 2020, 17(5): 5944-5960. doi: 10.3934/mbe.2020317 |
In biological systems, the continuous predator-prey model has been successfully investigated and many interesting results have been obtained (cf. [1,2,3,4,5,6,7,8,9] and the references therein). Moreover, based on the continuous predator-prey model, many human factors, such as time delay [10,11,12], impulsive effect [13,14,15,16,17,18,19,20], Markov Switching [21], are considered. The existing researches mainly focus on stability, periodic solution, persistence, extinction and boundedness [22,23,24,25,26,27,28].
In 2011, the authors [28] considered the system incorporating a modified version of Leslie-Gower functional response as well as that of the Holling-type Ⅲ:
$ {˙x(t)=x(a1−bx−c1y2x2+k1),˙y(t)=y(a2−c2yx+k2). $
|
(1) |
With the diffusion of the species being also taken into account, the authors [28] studied a reaction-diffusion predator-prey model, and gave the stability of this model.
In model (1) $ x $ represents a prey population, $ y $ represents a predator with population, $ a_{1} $ and $ a_{2} $ represent the growth rate of prey $ x $ and predator $ y $ respectively, constant $ b $ represents the strength of competition among individuals of prey $ x $, $ c_{1} $ measures the maximum value of the per capita reduction rate of prey $ x $ due to predator $ y $, $ k_{1} $ and $ k_{2} $ represent the extent to which environment provides protection to $ x $ and to $ y $ respectively, $ c_{2} $ admits a same meaning as $ c_{1}. $ All the constants $ a_{1}, a_{2}, b, c_{1}, c_{2}, k_{1}, k_{2} $ are positive parameters.
However, provided with experimental and numerical researches, it has been obtained that bifurcation is a widespread phenomenon in biological systems, from simple enzyme reactions to complex ecosystems. In general, the bifurcation may put a population at a risk of extinction and thus hinder reproduction, so the bifurcation has always been regarded as a unfavorable phenomenon in biology [29]. This bifurcation phenomenon has attracted the attention of many mathematicians, so the research on bifurcation problem is more and more abundant [30,31,32,33,34,35,36,37,38,39,40].
Although the continuous predator-prey model has been successfully applied in many ways, its disadvantages are also obvious. It requires that the species studied should have continuous and overlapping generations. In fact, we have noticed that many species do not have these characteristics, such as salmon, which have an annual spawning season and are born at the same time each year. For the population with non-overlapping generation characteristics, the discrete time model is more practical than the continuous model [38], and discrete models can generate richer and more complex dynamic properties than continuous time models [39]. In addition, since many continuous models cannot be solved by symbolic calculation, people usually use difference equations for approximation and then use numerical methods to solve the continuous model.
In view of the above discussion, the study of discrete system is paid more and more attention by mathematicians. Many latest research works have focused on flip bifurcation for different models, such as, discrete predator-prey model [41,42]; discrete reduced Lorenz system [43]; coupled thermoacoustic systems [44]; mathematical cardiac system [45]; chemostat model [46], etc.
For the above reasons, we will study from different perspectives in this paper, focusing on the discrete scheme of Eq (1).
In order to get a discrete form of Eq (1), we first let
$ u = \frac{b}{a_{1}}x, v = \frac{c_{1}}{a_{1}}y, \tau = a_{1}t, $ |
and rewrite $ u, v, \tau $ as $ x, y, t, $ then (1) changes into:
$ {˙x(t)=x(1−x−β1y2x2+h1),˙y(t)=αy(1−β2yx+h2), $
|
(2) |
where $ \beta_{1} = \frac{b^{2}}{c_{1}a_{1}}, h_{1} = \frac{b^{2}k_{1}}{a_{1}^{2}}, \alpha = \frac{a_{2}}{c_{1}}, \beta_{2} = \frac{c_{2}b}{c_{1}a_{2}}, h_{2} = \frac{bk_{2}}{a_{1}}. $
Next, we use Euler approximation method, i.e., let
$ \frac{dx}{dt}\approx \frac{x_{n+1}-x_{n}}{\bigtriangleup t}, \; \; \; \; \; \; \frac{dy}{dt}\approx \frac{y_{n+1}-y_{n}}{\bigtriangleup t}, $ |
where $ \bigtriangleup t $ denotes a time step, $ x_{n}, y_{n} $ and $ x_{n+1}, y_{n+1} $ represent consecutive points. Provided with Euler approximation method with the time step $ \bigtriangleup t = 1 $, (2) changes into a two-dimensional discrete dynamical system:
$ {xn+1=xn+xn(1−xn−β1y2nx2n+h1),yn+1=yn+αyn(1−β2ynxn+h2). $
|
(3) |
For the sake of analysis, we rewrite (3) in the following map form:
$ (xy)↦(x+x(1−x−β1y2x2+h1)y+αy(1−β2yx+h2)). $
|
(4) |
In this paper, we will consider the effect of the coefficients of map (4) on the dynamic behavior of the map (4). Our goal is to show how a flipped bifurcation of map (4) can appear under some certain conditions.
The remainder of the present paper is organized as follows. In section 2, we discuss the fixed points of map (4) including existence and stability. In section 3, we investigate the flip bifurcation at equilibria $ E_{2} $ and $ E^{\ast}. $ It has been proved that map (4) can undergo the flip bifurcation provided with that some values of parameters be given certain. In section 4, we give an example to support the theoretical results of the present paper. As the conclusion, we make a brief discussion in section 5.
Obviously, $ E_{1}(1, 0) $ and $ E_{2}(0, \frac{h_{2}}{\beta_{2}}) $ are fixed points of map (4). Given the biological significance of the system, we focus on the existence of an interior fixed point $ E^{\ast}(x^{\ast}, y^{\ast}), $ where $ x^{\ast} > 0, y^{\ast} > 0 $ and satisfy
$ 1-x^{\ast} = \frac{\beta_{1}(y^{\ast})^{2}}{(x^{\ast})^{2}+h_{1}}, x^{\ast}+h_{2} = \beta_{2}y^{\ast}, $ |
i.e., $ x^{\ast} $ is the positive root of the following cubic equation:
$ β22x3+(β1−β22)x2+(β22h1+2β1h2)x+β1h22−β22h1=0. $
|
(5) |
Based on the relationship between the roots and the coefficients of Eq (5), we have
Lemma 2.1 Assume that $ \beta_{1}h_{2}^{2}-\beta_{2}^{2}h_{1} < 0, $ then Eq (5) has least one positive root, and in particular
(ⅰ) a unique positive root, if $ \beta_{1}\geq \beta_{2}^{2}; $
(ⅱ) three positive roots, if $ \beta_{1} < \beta_{2}^{2}. $
The proof of Lemma 2.1 is easy, and so it is omitted.
In order to study the stability of equilibria, we first give the Jacobian matrix $ J(E) $ of map (4) at any a fixed point $ E(x, y), $ which can be written as
$ J(E)=(2−2x−β1y2(h1−x2)(x2+h1)2−2β1xyx2+h1αβ2y2(x+h2)21+α−2αβ2yx+h2). $
|
For equilibria $ E_{1}, $ we have
$ J(E1)=(0001+α). $
|
The eigenvalues of $ J(E_{1}) $ are $ \lambda_{1} = 0, \lambda_{2} = 1+\alpha $ with $ \lambda_{2} > 1 $ due to the constant $ \alpha > 0, $ so $ E_{1}(1, 0) $ is a saddle.
For equilibria $ E_{2}, $ note that
$ J(E2)=(2−β1h22β22h10αβ21−α), $
|
then the eigenvalues of $ J(E_{2}) $ are $ \lambda_{1} = 2-\frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}}, \lambda_{2} = 1-\alpha, $ and so we get
Lemma 2.2 The fixed point $ E_{2}(0, \frac{h_{2}}{\beta_{2}}) $ is
(ⅰ) a sink if $ 1 < \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} < 3 $ and $ 0 < \alpha < 2; $
(ⅱ) a source if $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} < 1 $ or $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} > 3 $ and $ \alpha > 2; $
(ⅲ) a a saddle if $ 1 < \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} < 3 $ and $ \alpha > 2, $ or, $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} < 1 $ or $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} > 3 $ and $ 0 < \alpha < 2; $
(ⅳ) non-hyperbolic if $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} = 1 $ or $ \frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}} = 3 $ or $ \alpha = 2. $
In this section, we will use the relevant results of literature [38,39,40] to study the flip bifurcation at equilibria $ E_{2} $ and $ E^{\ast}. $
Based on (ⅲ) in Lemma 2.2, it is known that if $ \alpha = 2 $, the eigenvalues of $ J(E_{2}) $ are: $ \lambda_{1} = 2-\frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}}, \lambda_{2} = -1. $ Define
$ Fl = \{(\beta_{1}, \beta_{2}, h_{1}, h_{2}, \alpha):\alpha = 2, \beta_{1}, \beta_{2}, h_{1}, h_{2} \gt 0 \}. $ |
We conclude that a flip bifurcation at $ E_{2}(0, \frac{h_{2}}{\beta_{2}}) $ of map (4) can appear if the parameters vary in a small neighborhood of the set $ Fl. $
To study the flip bifurcation, we take constant $ \alpha $ as the bifurcation parameter, and transform $ E_{2}(0, \frac{h_{2}}{\beta_{2}}) $ into the origin. Let $ e = 2-\frac{\beta_{1}h_{2}^{2}}{\beta_{2}^{2}h_{1}}, \alpha_{1} = \alpha-2, $ and
$ u(n) = x(n), v(n) = y(n)-\frac{h_{2}}{\beta_{2}}, $ |
then map (4) can be turned into
$ (uv)↦(eu−u2−2β1h2β2h1uv+O((|u|+|v|+|α1|)3)2β2u−v−2β2h2u2−2β2h2v2+4h2uv+α1β2u−α1v−α1β2h2u2−α1β2h2v2+2α1h2uv+O((|u|+|v|+|α1|)3)). $
|
(6) |
Let
$ T_{1} = \left( 1+e02β21 \right), $
|
then by the following invertible transformation:
$ \left( uv \right) = T_{1} \left( sw \right), $
|
map (6) turns into
$ (sw)↦(es−(1+e)s2−2β1h2β2h1s(2sβ2+w)+O(|s|+|w|+|α1|)3−w+F2(s,w,α1)), $
|
(7) |
where
$ F_{2} = \frac{2}{\beta_{2}}[(1+e)s^{2} + \frac{2\beta_{1}h_{2}}{\beta_{2}h_{1}}s(\frac{2s}{\beta_{2}}+w)]-\frac{2}{\beta_{2}h_{2}}(1+e)^{2}s^{2}-\frac{2\beta_{2}}{h_{2}}(\frac{2s}{\beta_{2}}+w)^{2}+\frac{4(1+e)}{h_{2}}s(\frac{2s}{\beta_{2}}+w) $ |
$ +\frac{(1+e)\alpha_{1}}{\beta_{2}}s-\alpha_{1}(\frac{2s}{\beta_{2}}+w)-\frac{(1+e)^{2}\alpha_{1}}{\beta_{2}h_{2}}s^{2}-\frac{\alpha_{1}\beta_{2}}{h_{2}}(\frac{2s}{\beta_{2}}+w)^{2} $ |
$ +\frac{2(1+e)\alpha_{1}}{h_{2}}s(\frac{2s}{\beta_{2}}+w)+O(|s|+|w|+|\alpha_{1}|)^{3}.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
Provided with the center manifold theorem (Theorem 7 in [40]), it can be obtained that there will exist a center manifold $ W^{c}(0, 0) $ for map (7), and the center manifold $ W^{c}(0, 0) $ can be approximated as:
$ W^{c}(0, 0) = \{(w, s, \alpha_{1})\in R^{3}:s = aw^{2}+bw\alpha_{1}+c(\alpha_{1})^{2}+O(|w|+|\alpha_{1}| )^{3} \}. $ |
As the center manifold satisfies:
$ s=a(−w+F2)2+b(−w+F2)α1+c(α1)2=e(aw2+bwα1+c(α1)2)−(1+e)(aw2+bwα1+c(α1)2)2−2β1h2β2h1(aw2+bwα1+c(α1)2)(2β2(aw2+bwα1+c(α1)2)+w)+O(|s|+|w|+|α1|)3, $
|
it can be obtained by comparing the coefficients of the above equality that $ a = 0, b = 0, c = 0, $ so the center manifold of map (7) at $ E_{2}(0, \frac{h_{2}}{\beta_{2}}) $ is $ s = 0. $ Then map (7) restricted to the center manifold turns into
$ w(n+1) = -w(n)-\alpha_{1}w(n)-\frac{2\beta_{2}}{h_{2}}w^{2}(n)-\frac{\alpha_{1}\beta_{2}}{h_{2}}w^{2}(n)+O(|w(n)|+|\alpha_{1}|)^{3} $ |
$ \triangleq f(w, \alpha_{1}).\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
Obviously,
$ f_{w}(0, 0) = -1, \; \; \; \; \; f_{ww}(0, 0) = -\frac{4\beta_{2}}{h_{2}}, $ |
so
$ \frac{(f_{ww}(0, 0))^{2}}{2}+\frac{f_{www}(0, 0)}{3}\neq 0, \; \; \; \; \; f_{w\alpha_{1}}(0, 0) = -1\neq 0. $ |
Therefore, Theorem 4.3 in [38] guarantees that map (3) undergoes a flip bifurcation at $ E_{2}(0, \frac{h_{2}}{\beta_{2}})$.
Note that
$ J(E∗)=(2−2x∗−β1(y∗)2(h1−(x∗)2)((x∗)2+h1)2−2β1x∗y∗(x∗)2+h1αβ21−α), $
|
then the characteristic equation of Jacobian matrix $ J(E^{\ast}) $ of map (3) at $ E^{\ast}(x^{\ast}, y^{\ast}) $ is:
$ λ2−(1+α0−α)λ+(1−α)α0−ηα=0, $
|
(8) |
where
$ \alpha_{0} = 2-2x^{\ast}-\frac{\beta_{1}(y^{\ast})^{2}(h_{1}-(x^{\ast})^{2})}{((x^{\ast})^{2}+h_{1})^{2}} , \eta = - \frac{2\beta_{1}x^{\ast}y^{\ast}}{\beta_{2}((x^{\ast})^{2}+h_{1})}. $ |
Firstly, we discuss the stability of the fixed point $ E^{\ast}(x^{\ast}, y^{\ast}). $ The stability results can be described as the the following Lemma, which can be easily proved by the relations between roots and coefficients of the characteristic Eq (8), so the proof has been omitted.
Lemma 3.1 The fixed point $ E^{\ast}(x^{\ast}, y^{\ast}) $ is
(ⅰ) a sink if one of the following conditions holds.
(ⅰ.1) $ 0 < \alpha_{0}+\eta < 1, $ and $ \frac{\alpha_{0}-1}{\alpha_{0}+\eta} < \alpha < \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅰ.2) $ -1 < \alpha_{0}+\eta < 0, $ and $ \alpha < \min \{\frac{\alpha_{0}-1}{\alpha_{0}+\eta}, \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta} \}; $
(ⅰ.3) $ \alpha_{0}+\eta < -1, $ and $ \frac{\alpha_{0}-1}{\alpha_{0}+\eta} > \alpha > \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅱ) a source if one of the following conditions holds.
(ⅱ.1) $ 0 < \alpha_{0}+\eta < 1, $ and $ \alpha < \min \{\frac{\alpha_{0}-1}{\alpha_{0}+\eta}, \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta} \}; $
(ⅱ.2) $ -1 < \alpha_{0}+\eta < 0, $ and $ \frac{\alpha_{0}-1}{\alpha_{0}+\eta} < \alpha < \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅱ.3) $ \alpha_{0}+\eta < -1, $ and $ \alpha > \max \{\frac{\alpha_{0}-1}{\alpha_{0}+\eta}, \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta} \}; $
(ⅲ) a saddle if one of the following conditions holds.
(ⅲ.1) $ -1 < \alpha_{0}+\eta < 1, $ and $ \alpha > \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅲ.2) $ \alpha_{0}+\eta < -1, $ and $ \alpha < \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅳ) non-hyperbolic if one of the following conditions holds.
(ⅳ.1) $ \alpha_{0}+\eta = 1; $
(ⅳ.2) $ \alpha_{0}+\eta\neq -1; $ and $ \alpha = \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}; $
(ⅳ.3) $ \alpha_{0}+\eta\neq 0, \alpha = \frac{\alpha_{0}-1}{\alpha_{0}+\eta} $ and $ (1+\alpha_{0}-\alpha)^{2} < 4((1-\alpha)\alpha_{0}-\eta\alpha). $
Then based on (ⅳ.2) of Lemma 3.1 and $ \alpha\neq 1+\alpha_{0}, 3+\alpha_{0}, $ we get that one of the eigenvalues at $ E^{\ast}(x^{\ast}, y^{\ast}) $ is $ -1 $ and the other satisfies $ |\lambda|\neq 1. $ For $ \alpha, \beta_{1}, \beta_{2}, h_{1}, h_{2} > 0, $ let us define a set:
$ Fl = \{(\beta_{1}, \beta_{2}, h_{1}, h_{2}, \alpha):\alpha = \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}, \alpha_{0}+\eta\neq -1, \alpha\neq 1+\alpha_{0}, 3+\alpha_{0} \}. $ |
We assert that a flip bifurcation at $ E^{\ast}(x^{\ast}, y^{\ast}) $ of map (3) can appear if the parameters vary in a small neighborhood of the set $ Fl. $
To discuss flip bifurcation at $ E^{\ast}(x^{\ast}, y^{\ast}) $ of map (3), we choose constant $ \alpha $ as the bifurcation parameter and adopt the central manifold and bifurcation theory [38,39,40].
Let parameters $ (\alpha_{1}, \beta_{1}, \beta_{2}, h_{1}, h_{2})\in Fl, $ and consider map (3) with $ (\alpha_{1}, \beta_{1}, \beta_{2}, h_{1}, h_{2}), $ then map (3) can be described as
$ {xn+1=xn+xn(1−xn−β1y2nx2n+h1),yn+1=yn+α1yn(1−β2ynxn+h2). $
|
(9) |
Obviously, map (9) has only a unique positive fixed point $ E^{\ast}(x^{\ast}, y^{\ast}), $ and the eigenvalues are $ \lambda_{1} = \; -\; 1, \lambda_{2} = 2+\alpha_{0}-\alpha, $ where $ |\lambda_{2}|\neq1. $
Note that $ (\alpha_{1}, \beta_{1}, \beta_{2}, h_{1}, h_{2})\in Fl, $ then $ \alpha_{1} = \frac{2(1+\alpha_{0})}{1+\alpha_{0}+\eta}. $ Let $ |\alpha^{\ast}| $ small enough, and consider the following perturbation of map (9) described by
$ {xn+1=xn+xn(1−xn−β1y2nx2n+h1),yn+1=yn+(α1+α∗)yn(1−β2ynxn+h2), $
|
(10) |
with $ \alpha^{\ast} $ be a perturbation parameter.
To transform $ E^{\ast}(x^{\ast}, y^{\ast}) $ into the origin, we let $ u = x-x^{\ast}, v = y- y^{\ast}, $ then map (10) changes into
$ (uv)↦(a1u+a2v+a3u2+a4uv+a5v2+a6u3+a7u2v+a8uv2+a9v3+O((|u|+|v|)4)b1u+b2v+b3u2+b4uv+b5v2+c1uα∗+c2vα∗+c3u2α∗+c4uvα∗+c5v2α∗+b6u3+b7u2v+b8uv2+b9v3+O((|u|+|v|+|α∗|)4)), $
|
(11) |
where
$ a_{1} = 2-2x^{\ast}-\beta_{1}(y^{\ast})^{2}f(0)-\beta_{1}x^{\ast}(y^{\ast})^{2}f'(0); $ $ a_{2} = -2\beta_{1}x^{\ast}y^{\ast}f(0); $
$ a_{3} = -1-\beta_{1}(y^{\ast})^{2}f'(0)-\frac{1}{2}\beta_{1}x^{\ast}(y^{\ast})^{2}f''(0); $ $ a_{4} = -2\beta_{1}y^{\ast}f(0)-2\beta_{1}x^{\ast}y^{\ast}f'(0); $
$ a_{5} = -\beta_{1}x^{\ast}f(0); $ $ a_{6} = -\frac{1}{2}\beta_{1}(y^{\ast})^{2}f''(0)-\frac{1}{6}\beta_{1}x^{\ast}(y^{\ast})^{2}f'''(0); $
$ a_{7} = -\beta_{1}x^{\ast}y^{\ast}f''(0)-2\beta_{1}y^{\ast}f'(0); $ $ a_{8} = -\beta_{1}f(0)-\beta_{1}x^{\ast}f'(0), \; \; \; a_{9} = 0; $
$ f(0) = \frac{1}{(x^{\ast})^{2}+h_{1}}, f'(0) = \frac{-2x^{\ast}}{[(x^{\ast})^{2}+h_{1}]^{2}}, f''(0) = \frac{6(x^{\ast})^{2}-2h_{1}}{[(x^{\ast})^{2}+h_{1}]^{3}}, f'''(0) = \frac{ 24x^{\ast} (h_{1}-(x^{\ast})^{2})}{[(x^{\ast})^{2}+h_{1}]^{4}}. $
$ b_{1} = \frac{\alpha_{1}\beta_{2}(y^{\ast})^{2} }{(x^{\ast}+h_{2})^{2} }; $ $ b_{2} = 1+\alpha_{1}-\frac{\alpha_{1}\beta_{2}y^{\ast} }{x^{\ast}+h_{2}}; $ $ b_{3} = -\frac{\alpha_{1}\beta_{2}(y^{\ast})^{2} }{(x^{\ast}+h_{2})^{3} }; $ $ b_{4} = \frac{2\alpha_{1}\beta_{2}y^{\ast} }{ (x^{\ast}+h_{2})^{2} }; $
$ b_{5} = -\frac{\alpha_{1}\beta_{2} }{x^{\ast}+h_{2}}; $ $ c_{1} = \frac{\beta_{2}(y^{\ast})^{2} }{(x^{\ast}+h_{2})^{2} }; $ $ c_{2} = 1-\frac{\beta_{2}y^{\ast} }{x^{\ast}+h_{2}}; $ $ c_{3} = -\frac{\beta_{2}(y^{\ast})^{2} }{(x^{\ast}+h_{2})^{3} }; $
$ c_{4} = \frac{2\beta_{2}y^{\ast} }{(x^{\ast}+h_{2})^{2} }; $ $ c_{5} = -\frac{\beta_{2} }{x^{\ast}+h_{2} }; $ $ b_{6} = \frac{\alpha_{1}\beta_{2}(y^{\ast})^{2} }{(x^{\ast}+h_{2})^{4} }; $ $ b_{7} = -\frac{2\alpha_{1}\beta_{2}y^{\ast} }{ (x^{\ast}+h_{2})^{3} }; $
$ b_{8} = \frac{\alpha_{1}\beta_{2} }{(x^{\ast}+h_{2})^{2} }; \; \; \; \; b_{9} = 0.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
Now let's construct an matrix
$ T2=(a2a2−1−a1λ2−a1). $
|
It's obvious that the matrix $ T_{2} $ is invertible due to $ \lambda_{2}\neq -1, $ and then we use the following invertible translation
$ \left( uv \right) = T_{2} \left( sw \right), $
|
map (11) can be described by
$ (sw)↦(−s+f1(s,w,α∗)λ2w+f2(s,w,α∗)), $
|
(12) |
where
$ f_{1}(s, w, \alpha^{\ast}) = \frac{(\lambda_{2}-a_{1})a_{3}-a_{2} b_{3}}{ a_{2}(\lambda_{2}+1) }u^{2} + \frac{(\lambda_{2}-a_{1})a_{4}-a_{2} b_{4}}{ a_{2}(\lambda_{2}+1) }uv +\frac{(\lambda_{2}-a_{1})a_{5}-a_{2} b_{5}}{ a_{2}(\lambda_{2}+1) }v^{2} +\frac{(\lambda_{2}-a_{1})a_{6}-a_{2} b_{6}}{ a_{2}(\lambda_{2}+1) }u^{3} \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +\frac{(\lambda_{2}-a_{1})a_{7}-a_{2} b_{7}}{ a_{2}(\lambda_{2}+1) }u^{2}v +\frac{(\lambda_{2}-1)a_{8}-a_{2} b_{8}}{ a_{2}(\lambda_{2}+1) }uv^{2} +\frac{(\lambda_{2}-a_{1})a_{9}-a_{2} b_{9}}{ a_{2}(\lambda_{2}+1) }v^{3}- \frac{a_{2}c_{1}}{a_{2}(\lambda_{2}+1)}u\alpha^{\ast} \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; - \frac{a_{2}c_{2}}{a_{2}(\lambda_{2}+1)}v\alpha^{\ast}- \frac{a_{2}c_{3}}{a_{2}(\lambda_{2}+1)}u^{2}\alpha^{\ast} - \frac{a_{2}c_{4}}{a_{2}(\lambda_{2}+1)}uv\alpha^{\ast} - \frac{a_{2}c_{5}}{a_{2}(\lambda_{2}+1)}v^{2}\alpha^{\ast} \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +O((|s|+ |w|+|\alpha^{\ast}| )^{4}), \\ f_{2}(s, w, \alpha^{\ast}) = \frac{(a_{1}+1)a_{3}+a_{2} b_{3}}{ a_{2}(\lambda_{2}+1) }u^{2} + \frac{(a_{1}+1)a_{4}+a_{2} b_{4}}{ a_{2}(\lambda_{2}+1) }uv +\frac{(a_{1}+1)a_{5}+a_{2} b_{5}}{ a_{2}(\lambda_{2}+1) }v^{2} +\frac{(a_{1}+1)a_{6}+a_{2} b_{6}}{ a_{2}(\lambda_{2}+1) }u^{3} \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +\frac{(a_{1}+1)a_{7}+a_{2} b_{7}}{ a_{2}(\lambda_{2}+1) }u^{2}v +\frac{(a_{1}+1)a_{8}+a_{2} b_{8}}{ a_{2}(\lambda_{2}+1) }uv^{2}+\frac{(a_{1}+1)a_{9}+a_{2} b_{9}}{ a_{2}(\lambda_{2}+1) }v^{3}+ \frac{a_{2}c_{1}}{a_{2}(\lambda_{2}+1)}u\alpha^{\ast}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; + \frac{a_{2}c_{2}}{a_{2}(\lambda_{2}+1)}v\alpha^{\ast}+ \frac{a_{2}c_{3}}{a_{2}(\lambda_{2}+1)}u^{2}\alpha^{\ast}+ \frac{a_{2}c_{4}}{a_{2}(\lambda_{2}+1)}uv\alpha^{\ast} + \frac{a_{2}c_{5}}{a_{2}(\lambda_{2}+1)}v^{2}\alpha^{\ast}\\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +O((|s|+ |w|+|\alpha^{\ast}| )^{4}), $ |
with
$ u = a_{2}(s+w), v = (\lambda_{2}-a_{1})w-(a_{1}+1)s; $
$ u^{2} = (a_{2}(s+w))^{2}; $
$ uv = (a_{2}(s+w))((\lambda_{2}-a_{1})w-(a_{1}+1)s); $
$ v^{2} = ((\lambda_{2}-a_{1})w-(a_{1}+1)s)^{2}; $
$ u^{3} = (a_{2}(s+w))^{3}; $
$ u^{2}v = (a_{2}(s+w))^{2}((\lambda_{2}-a_{1})w-(a_{1}+1)s); $
$ uv^{2} = (a_{2}(s+w))((\lambda_{2}-a_{1})w-(a_{1}+1)s)^{2}; $
$ v^{3} = ((\lambda_{2}-a_{1})w-(a_{1}+1)s)^{3}. $
In the following, we will study the center manifold of map (12) at fixed point (0, 0) in a small neighborhood of $ \alpha^{\ast} = 0. $ The well-known center manifold theorem guarantee that a center manifold $ W^{c}(0, 0) $ can exist, and it can be approximated as follows
$ W^{c}(0, 0) = \{(s, w, \alpha^{\ast})\in R^{3}:w = d_{1}s^{2}+d_{2}s\alpha^{\ast}+d_{3}(\alpha^{\ast})^{2}+ O(( |s|+ |\alpha^{\ast}|)^{3}) \}, $ |
which satisfies
$ w = d_{1}(-s+f_{1}(s, w, \alpha^{\ast}))^{2}+d_{2}(-s+f_{1}(s, w, \alpha^{\ast}))\alpha^{\ast}+d_{3}(\alpha^{\ast})^{2} $ |
$ = \lambda_{2}( d_{1}s^{2}+d_{2}s\alpha^{\ast}+d_{3}(\alpha^{\ast})^{2} )+f_{2}(s, w, \alpha^{\ast}).\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
By comparing the coefficients of the above equation, we have
$ d_{1} = \frac{a_{2}((a_{1}+1)a_{3}+a_{2}b_{3})}{1-\lambda_{2}^{2}}-\frac{(a_{1}+1)((a_{1}+1)a_{4}+a_{2}b_{4})}{1-\lambda_{2}^{2}}+ \frac{(a_{1}+1)^{2}((a_{1}+1)a_{5}+a_{2}b_{5})}{1-\lambda_{2}^{2}}, \\ d_{2} = \frac{c_{2}(a_{1}+1) -a_{2}c_{1} }{(1+\lambda_{2})^{2}}, \; \; \; \; \; \; d_{3} = 0.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; $ |
So, restricted to the center manifold $ W^{c}(0, 0), $ map (12) turns into
$ s↦−s+e1s2+e2sα∗+e3s2α∗+e4s(α∗)2+e5s3+O((|s|+|α∗|)4)≜F2(s,α∗), $
|
(13) |
where
$ e_{1} = A_{1}a_{2}^{2}-A_{2}a_{2}(a_{1}+1)+ A_{3}(a_{1}+1)^{2}; $
$ e_{2} = -A_{8}a_{2}+ A_{9}(a_{1}+1); $
$ e_{3} = 2A_{1}d_{2}a_{2}^{2}+ A_{2}a_{2}d_{2}(\lambda_{2}-2a_{1}-1)-2A_{3}d_{2}(\lambda_{2}-a_{1})(a_{1}+1)-A_{8}a_{2}d_{1} $
$ -A_{9}(\lambda_{2}-a_{1})d_{1}-A_{10}a_{2}^{2}+A_{11}a_{2}(a_{1}+1)-A_{12}(a_{1}+1)^{2}; $
$ e_{4} = -A_{8}a_{2}d_{2}-A_{9}(\lambda_{2}-a_{1})d_{2}; $
$ e_{5} = 2A_{1}a_{2}^{2}d_{1}+A_{2}a_{2}d_{1}(\lambda_{2}-2a_{1}-1)-2A_{3}d_{1}(\lambda_{2}-a_{1})(a_{1}+1)+A_{4}a_{2}^{3} $
$ -A_{5}a_{2}^{2}(a_{1}+1)+A_{6}a_{2}(a_{1}+1)^{2}-A_{7}(a_{1}+1)^{3}; $
with
$ A_{1} = \frac{(\lambda_{2}-a_{1})a_{3}-a_{2} b_{3}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{2} = \frac{(\lambda_{2}-a_{1})a_{4}-a_{2} b_{4}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{3} = \frac{(\lambda_{2}-a_{1})a_{5}-a_{2} b_{5}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{4} = \frac{(\lambda_{2}-a_{1})a_{6}-a_{2} b_{6}}{ a_{2}(\lambda_{2}+1) }; $
$ A_{5} = \frac{(\lambda_{2}-a_{1})a_{7}-a_{2} b_{7}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{6} = \frac{(\lambda_{2}-1)a_{8}-a_{2} b_{8}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{7} = \frac{(\lambda_{2}-a_{1})a_{9}-a_{2} b_{9}}{ a_{2}(\lambda_{2}+1) }; \; \; A_{8} = \frac{a_{2}c_{1}}{a_{2}(\lambda_{2}+1)}; $
$ A_{9} = \frac{a_{2}c_{2}}{a_{2}(\lambda_{2}+1)}; \; \; \; \; \; \; \; \; A_{10} = \frac{a_{2}c_{3}}{a_{2}(\lambda_{2}+1)}; \; \; \; \; \; \; \; \; A_{11} = \frac{a_{2}c_{4}}{a_{2}(\lambda_{2}+1)}; \; \; \; \; \; \; \; \; A_{12} = \frac{a_{2}c_{5}}{a_{2}(\lambda_{2}+1)}. $
To study the flip bifurcation of map (13), we define the following two discriminatory quantities
$ \mu_{1} = \left( \frac{\partial^{2}F_{2}}{\partial s\partial\alpha^{\ast}}+\frac{1}{2}\frac{\partial F_{2}}{\partial\alpha^{\ast}} \frac{\partial^{2}F_{2}}{\partial s^{2}} \right )|_{(0, 0)}, $ |
and
$ \mu_{2} = \left(\frac{1}{6} \frac{\partial^{3}F_{2}}{\partial s^{3}}+\left(\frac{1}{2} \frac{\partial^{2}F_{2}}{\partial s^{2}}\right)^{2} \right )|_{(0, 0)} $ |
which can be showed in [38]. Then provided with Theorem 3.1 in [38], the following result can be given as
Theorem 3.1. Assume that $ \mu_{1} $ and $ \mu_{2} $ are not zero, then a flip bifurcation can occur at $ E^{\ast}(x^{\ast}, y^{\ast}) $ of map (3) if the parameter $ \alpha^{\ast} $ varies in a small neighborhood of origin. And that when $ \mu_{2} > 0 (<0), $ the period-2 orbit bifurcated from $ E^{\ast}(x^{\ast}, y^{\ast}) $ of map (3) is stable (unstable).
As application, we now give an example to support the theoretical results of this paper by using MATLAB. Let $ \beta_{1} = 1, \beta_{2} = 0.5, h_{1} = 0.05, h_{2} = 0.1, $ then we get from (5) that map (3) has only one positive point $ E^{\ast}(0.0113, 0.2226). $ And we further have $ \mu_{1} = e_{2} = 0.1134 \neq 0, \mu_{2} = e_{5}+e_{1}^{2} = -4.4869 \neq 0, $ which implies that all conditions of Theorem 3.1 hold, a flip bifurcation comes from $ E^{\ast} $ at the bifurcation parameter $ \alpha = 2.2238 $, so the flip bifurcation is supercritical, i.e., the period-2 orbit is unstable.
According to Figures 1 and 2, the positive point $ E^{\ast}(0.0113, 0.2226) $ is stable for $ 2\leq \alpha \leq 2.4 $ and loses its stability at the bifurcation parameter value $ \alpha = 2.2238. $ Which implies that map (3) has complex dynamical properties.
In this paper, a predator-prey model with modified Leslie-Gower and Holling-type Ⅲ schemes is considered from another aspect. The complex behavior of the corresponding discrete time dynamic system is investigated. we have obtained that the fixed point $ E_{1} $ of map (4) is a saddle, and the fixed points $ E_{2} $ and $ E^{\ast} $ of map (4) can undergo flip bifurcation. Moreover, Theorem 3.1 tell us that the period-2 orbit bifurcated from $ E^{\ast}(x^{\ast}, y^{\ast}) $ of map (3) is stable under some sufficient conditions, which means that the predator and prey can coexist on the stable period-2 orbit. So, compared with previous studies [28] on the continuous predator-prey model, our discrete model shows more irregular and complex dynamic characteristics. The present research can be regarded as the continuation and development of the former studies in [28].
This work is supported by the National Natural Science Foundation of China (60672085), Natural Foundation of Shandong Province (ZR2016EEB07) and the Reform of Undergraduate Education in Shandong Province Research Projects (2015M139).
The authors would like to thank the referee for his/her valuable suggestions and comments which led to improvement of the manuscript.
The authors declare that they have no competing interests.
YYL carried out the proofs of main results in the manuscript. FXZ and XLZ participated in the design of the study and drafted the manuscripts. All the authors read and approved the final manuscripts.
[1] |
Alzheimer A, Stelzmann RA, Schnitzlein HN, et al. (1995) An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat 8: 429-431. doi: 10.1002/ca.980080612
![]() |
[2] |
(2013) 2013 Alzheimer's disease facts and figures. Alzheimers Dement 9: 208-245. doi: 10.1016/j.jalz.2013.02.003
![]() |
[3] |
Brookmeyer R, Johnson E, Ziegler-Graham K, et al. (2007) Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3: 186-191. doi: 10.1016/j.jalz.2007.04.381
![]() |
[4] |
Martins RN, Robinson PJ, Chleboun JO, et al. (1991) The molecular pathology of amyloid deposition in Alzheimer's disease. Mol Neurobiol 5: 389-398. doi: 10.1007/BF02935560
![]() |
[5] | Masters CL, Multhaup G, Simms G, et al. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. Embo J 4: 2757-2763. |
[6] |
Schweers O, Mandelkow EM, Biernat J, et al. (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci U S A 92: 8463-8467. doi: 10.1073/pnas.92.18.8463
![]() |
[7] |
Goedert M, Jakes R, Spillantini MG, et al. (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383: 550-553. doi: 10.1038/383550a0
![]() |
[8] |
Villemagne VL, Pike KE, Darby D, et al. (2008) Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia 46: 1688-1697. doi: 10.1016/j.neuropsychologia.2008.02.008
![]() |
[9] | Chien DT, Bahri S, Szardenings AK, et al. (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34: 457-468. |
[10] |
Maruyama M, Shimada H, Suhara T, et al. (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79: 1094-1108. doi: 10.1016/j.neuron.2013.07.037
![]() |
[11] |
Rentz DM, Parra Rodriguez MA, Amariglio R, et al. (2013) Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer's disease: a selective review. Alzheimers Res Ther 5: 58. doi: 10.1186/alzrt222
![]() |
[12] | Baumgart M, Snyder HM, Carrillo MC, et al. (2015) Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. |
[13] |
Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol 10: 819-828. doi: 10.1016/S1474-4422(11)70072-2
![]() |
[14] |
Selkoe DJ (1996) Amyloid beta-protein and the genetics of Alzheimer's disease. J Biol Chem 271: 18295-18298. doi: 10.1074/jbc.271.31.18295
![]() |
[15] |
Glenner GG, Wong CW (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122: 1131-1135. doi: 10.1016/0006-291X(84)91209-9
![]() |
[16] |
Mann DM, Esiri MM (1989) The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down's syndrome. J Neurol Sci 89: 169-179. doi: 10.1016/0022-510X(89)90019-1
![]() |
[17] |
Jorm AF, Korten AE, Henderson AS (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 76: 465-479. doi: 10.1111/j.1600-0447.1987.tb02906.x
![]() |
[18] |
Hebert LE, Weuve J, Scherr PA, et al. (2013) Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80: 1778-1783. doi: 10.1212/WNL.0b013e31828726f5
![]() |
[19] |
(2015) 2015 Alzheimer's disease facts and figures. Alzheimers Dement 11: 332-384. doi: 10.1016/j.jalz.2015.02.003
![]() |
[20] |
Lukiw WJ (2004) Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem Res 29: 1287-1297. doi: 10.1023/B:NERE.0000023615.89699.63
![]() |
[21] |
Smith MA, Nunomura A, Lee HG, et al. (2005) Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 26: 579-580; discussion 587-595. doi: 10.1016/j.neurobiolaging.2004.09.021
![]() |
[22] |
Overmyer M, Helisalmi S, Soininen H, et al. (1999) Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol (Berl) 97: 383-392. doi: 10.1007/s004010051002
![]() |
[23] |
Currais A (2015) Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 21: 30-42. doi: 10.1016/j.arr.2015.02.001
![]() |
[24] | Mielke MM, Vemuri P, Rocca WA (2014) Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences. Clin Epidemiol 6: 37-48. |
[25] |
Chapman RM, Mapstone M, Gardner MN, et al. (2011) Women have farther to fall: gender differences between normal elderly and Alzheimer's disease in verbal memory engender better detection of Alzheimer's disease in women. J Int Neuropsychol Soc 17: 654-662. doi: 10.1017/S1355617711000452
![]() |
[26] |
Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18: 347-358. doi: 10.1016/S0736-5748(00)00017-4
![]() |
[27] |
Jones KJ, Brown TJ, Damaser M (2001) Neuroprotective effects of gonadal steroids on regenerating peripheral motoneurons. Brain Res Brain Res Rev 37: 372-382. doi: 10.1016/S0165-0173(01)00107-2
![]() |
[28] | Wise PM, Dubal DB, Wilson ME, et al. (2001) Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 142: 969-973. |
[29] |
Strittmatter WJ, Saunders AM, Schmechel D, et al. (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90: 1977-1981. doi: 10.1073/pnas.90.5.1977
![]() |
[30] |
Saunders AM, Strittmatter WJ, Schmechel D, et al. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43: 1467-1472. doi: 10.1212/WNL.43.8.1467
![]() |
[31] |
Corder EH, Saunders AM, Strittmatter WJ, et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261: 921-923. doi: 10.1126/science.8346443
![]() |
[32] |
McGeer PL, Walker DG, Pitas RE, et al. (1997) Apolipoprotein E4 (ApoE4) but not ApoE3 or ApoE2 potentiates beta- amyloid protein activation of complement in vitro. Brain Res 749: 135-138. doi: 10.1016/S0006-8993(96)01324-8
![]() |
[33] |
Prince JA, Zetterberg H, Andreasen N, et al. (2004) APOE epsilon4 allele is associated with reduced cerebrospinal fluid levels of Abeta42. Neurology 62: 2116-2118. doi: 10.1212/01.WNL.0000128088.08695.05
![]() |
[34] |
Tiraboschi P, Hansen LA, Masliah E, et al. (2004) Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology 62: 1977-1983. doi: 10.1212/01.WNL.0000128091.92139.0F
![]() |
[35] |
Lovestone S, Anderton BH, Hartley C, et al. (1996) The intracellular fate of apolipoprotein E is tau dependent and apoe allele-specific. Neuroreport 7: 1005-1008. doi: 10.1097/00001756-199604100-00010
![]() |
[36] |
Tesseur I, Van Dorpe J, Spittaels K, et al. (2000) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 156: 951-964. doi: 10.1016/S0002-9440(10)64963-2
![]() |
[37] | Arendt T, Schindler C, Bruckner MK, et al. (1997) Plastic neuronal remodeling is impaired in patients with Alzheimer's disease carrying apolipoprotein epsilon 4 allele. J Neurosci 17: 516-529. |
[38] | Burkhardt MS, Foster JK, Laws SM, et al. (2004) Oestrogen replacement therapy may improve memory functioning in the absence of APOE epsilon4. J Alzheimers Dis 6: 221-228. |
[39] |
Patterson CE, Todd SA, Passmore AP (2011) Effect of apolipoprotein E and butyrylcholinesterase genotypes on cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease. Pharmacogenomics J 11: 444-450. doi: 10.1038/tpj.2010.61
![]() |
[40] |
Petersen RC, Thomas RG, Grundman M, et al. (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352: 2379-2388. doi: 10.1056/NEJMoa050151
![]() |
[41] |
Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer's disease. Lancet Neurol 12: 92-104. doi: 10.1016/S1474-4422(12)70259-4
![]() |
[42] |
Norton S, Matthews FE, Barnes DE, et al. (2014) Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol 13: 788-794. doi: 10.1016/S1474-4422(14)70136-X
![]() |
[43] |
Van Den Heuvel C, Thornton E, Vink R (2007) Traumatic brain injury and Alzheimer's disease: a review. Prog Brain Res 161: 303-316. doi: 10.1016/S0079-6123(06)61021-2
![]() |
[44] |
Solomon A, Kareholt I, Ngandu T, et al. (2007) Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology 68: 751-756. doi: 10.1212/01.wnl.0000256368.57375.b7
![]() |
[45] | Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9: 124. |
[46] | Organization WH (2015) Global Strategy on Diet, Physical Activity and Health. |
[47] |
Warburton DE, Nicol CW, Bredin SS (2006) Health benefits of physical activity: the evidence. CMAJ 174: 801-809. doi: 10.1503/cmaj.051351
![]() |
[48] |
Beckett MW, Ardern CI, Rotondi MA (2015) A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. BMC Geriatr 15: 9. doi: 10.1186/s12877-015-0007-2
![]() |
[49] |
Reiner M, Niermann C, Jekauc D, et al. (2013) Long-term health benefits of physical activity--a systematic review of longitudinal studies. BMC Public Health 13: 813. doi: 10.1186/1471-2458-13-813
![]() |
[50] | Angevaren M, Aufdemkampe G, Verhaar HJ, et al. (2008) Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev: CD005381. |
[51] | Carter ND, Khan KM, McKay HA, et al. (2002) Community-based exercise program reduces risk factors for falls in 65- to 75-year-old women with osteoporosis: randomized controlled trial. CMAJ 167: 997-1004. |
[52] |
Lynch NA, Ryan AS, Evans J, et al. (2007) Older elite football players have reduced cardiac and osteoporosis risk factors. Med Sci Sports Exerc 39: 1124-1130. doi: 10.1249/01.mss.0b013e3180557466
![]() |
[53] |
Vuori IM (2001) Dose-response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc 33: S551-586; discussion 609-510. doi: 10.1097/00005768-200106001-00026
![]() |
[54] |
Tan ZS, Seshadri S, Beiser A, et al. (2005) Bone mineral density and the risk of Alzheimer disease. Arch Neurol 62: 107-111. doi: 10.1001/archneur.62.1.107
![]() |
[55] |
Zhang Y, Seshadri S, Ellison RC, et al. (2001) Bone mineral density and verbal memory impairment: Third National Health and Nutrition Examination Survey. Am J Epidemiol 154: 795-802. doi: 10.1093/aje/154.9.795
![]() |
[56] |
Yaffe K, Browner W, Cauley J, et al. (1999) Association between bone mineral density and cognitive decline in older women. J Am Geriatr Soc 47: 1176-1182. doi: 10.1111/j.1532-5415.1999.tb05196.x
![]() |
[57] |
Gunstad J, Paul RH, Cohen RA, et al. (2007) Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 48: 57-61. doi: 10.1016/j.comppsych.2006.05.001
![]() |
[58] |
Gustafson D, Lissner L, Bengtsson C, et al. (2004) A 24-year follow-up of body mass index and cerebral atrophy. Neurology 63: 1876-1881. doi: 10.1212/01.WNL.0000141850.47773.5F
![]() |
[59] | Jagust W, Harvey D, Mungas D, et al. (2005) Central obesity and the aging brain. Arch Neurol 62: 1545-1548. |
[60] | Kivipelto M, Ngandu T, Fratiglioni L, et al. (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62: 1556-1560. |
[61] |
Whitmer RA, Gunderson EP, Barrett-Connor E, et al. (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. Bmj 330: 1360. doi: 10.1136/bmj.38446.466238.E0
![]() |
[62] | Sohrabi HR, Bates KA, Weinborn M, et al. (2015) Bone mineral density, adiposity, and cognitive functions. Front Aging Neurosci 7: 16. |
[63] |
Koudinov AR, Berezov TT, Kumar A, et al. (1998) Alzheimer's amyloid beta interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin Chim Acta 270: 75-84. doi: 10.1016/S0009-8981(97)00207-6
![]() |
[64] |
Koudinov AR, Koudinova NV, Kumar A, et al. (1996) Biochemical characterization of Alzheimer's soluble amyloid beta protein in human cerebrospinal fluid: Associations with high density lipoproteins. Biochem Biophys Res Commun 223: 592-597. doi: 10.1006/bbrc.1996.0940
![]() |
[65] | Eapen DJ, Kalra GL, Rifai L, et al. (2010) Raising HDL cholesterol in women. Int J Womens Health 1: 181-191. |
[66] | Bates KA, Sohrabi HR, Rodrigues M, et al. (2009) Association of Cardiovascular Factors and Alzheimer's Disease Plasma Amyloid-beta Protein in Subjective Memory Complainers. J Alzheimers Dis 17: 305-318. |
[67] |
Atzmon G, Gabriely I, Greiner W, et al. (2002) Plasma HDL levels highly correlate with cognitive function in exceptional longevity. J Gerontol A Biol Sci Med Sci 57: M712-715. doi: 10.1093/gerona/57.11.M712
![]() |
[68] |
Crichton GE, Elias MF, Davey A, et al. (2014) Higher HDL cholesterol is associated with better cognitive function: the Maine-Syracuse study. J Int Neuropsychol Soc 20: 961-970. doi: 10.1017/S1355617714000885
![]() |
[69] | Singh-Manoux A, Gimeno D, Kivimaki M, et al. (2008) Low HDL cholesterol is a risk factor for deficit and decline in memory in midlife. The Whitehall II study. Arterioscler Thromb Vasc Biol 28: 1557-1563. |
[70] | Ward MA, Bendlin BB, McLaren DG, et al. (2010) Low HDL Cholesterol is Associated with Lower Gray Matter Volume in Cognitively Healthy Adults. Front Aging Neurosci 2. |
[71] | Biessels GJ, Kappelle LJ (2005) Increased risk of Alzheimer's disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans 33: 1041-1044. |
[72] |
Gatto NM, Henderson VW, St John JA, et al. (2008) Metabolic syndrome and cognitive function in healthy middle-aged and older adults without diabetes. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 15: 627-641. doi: 10.1080/13825580802036936
![]() |
[73] |
Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9: 36-45. doi: 10.1038/nrn2294
![]() |
[74] |
Craft S, Asthana S, Newcomer JW, et al. (1999) Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch Gen Psychiatry 56: 1135-1140. doi: 10.1001/archpsyc.56.12.1135
![]() |
[75] |
Craft S, Newcomer J, Kanne S, et al. (1996) Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 17: 123-130. doi: 10.1016/0197-4580(95)02002-0
![]() |
[76] |
Kulstad JJ, Green PS, Cook DG, et al. (2006) Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology 66: 1506-1510. doi: 10.1212/01.wnl.0000216274.58185.09
![]() |
[77] |
Ibanez J, Izquierdo M, Arguelles I, et al. (2005) Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 28: 662-667. doi: 10.2337/diacare.28.3.662
![]() |
[78] |
Knowler WC, Barrett-Connor E, Fowler SE, et al. (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346: 393-403. doi: 10.1056/NEJMoa012512
![]() |
[79] |
Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30: 464-472. doi: 10.1016/j.tins.2007.06.011
![]() |
[80] | Kuipers SD, Bramham CR (2006) Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Curr Opin Drug Discov Devel 9: 580-586. |
[81] |
Neeper SA, Gomez-Pinilla F, Choi J, et al. (1996) Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726: 49-56. doi: 10.1016/0006-8993(96)00273-9
![]() |
[82] |
Oliff HS, Berchtold NC, Isackson P, et al. (1998) Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res 61: 147-153. doi: 10.1016/S0169-328X(98)00222-8
![]() |
[83] |
Widenfalk J, Olson L, Thoren P (1999) Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res 34: 125-132. doi: 10.1016/S0168-0102(99)00051-6
![]() |
[84] |
Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20: 2580-2590. doi: 10.1111/j.1460-9568.2004.03720.x
![]() |
[85] |
Vaynman SS, Ying Z, Yin D, et al. (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain Res 1070: 124-130. doi: 10.1016/j.brainres.2005.11.062
![]() |
[86] |
Kolb EM, Rezende EL, Holness L, et al. (2013) Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. J Exp Biol 216: 515-523. doi: 10.1242/jeb.076000
![]() |
[87] | Carro E, Nunez A, Busiguina S, et al. (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20: 2926-2933. |
[88] |
Ding Q, Vaynman S, Akhavan M, et al. (2006) Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140: 823-833. doi: 10.1016/j.neuroscience.2006.02.084
![]() |
[89] |
McCusker RH, McCrea K, Zunich S, et al. (2006) Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. J Neuroimmunol 179: 186-190. doi: 10.1016/j.jneuroim.2006.06.014
![]() |
[90] |
Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. Eur J Pharmacol 490: 127-133. doi: 10.1016/j.ejphar.2004.02.050
![]() |
[91] |
Erickson KI, Raji CA, Lopez OL, et al. (2010) Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology 75: 1415-1422. doi: 10.1212/WNL.0b013e3181f88359
![]() |
[92] |
Bugg JM, Head D (2011) Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol Aging 32: 506-514. doi: 10.1016/j.neurobiolaging.2009.03.008
![]() |
[93] | Boyle CP, Raji CA, Erickson KI, et al. (2015) Physical activity, body mass index, and brain atrophy in Alzheimer's disease. Neurobiol Aging 36 Suppl 1: S194-202. |
[94] |
Rovio S, Spulber G, Nieminen LJ, et al. (2010) The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging 31: 1927-1936. doi: 10.1016/j.neurobiolaging.2008.10.007
![]() |
[95] |
Erickson KI, Voss MW, Prakash RS, et al. (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108: 3017-3022. doi: 10.1073/pnas.1015950108
![]() |
[96] |
Burns JM, Cronk BB, Anderson HS, et al. (2008) Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology 71: 210-216. doi: 10.1212/01.wnl.0000317094.86209.cb
![]() |
[97] |
Honea RA, Thomas GP, Harsha A, et al. (2009) Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis Assoc Disord 23: 188-197. doi: 10.1097/WAD.0b013e31819cb8a2
![]() |
[98] |
van Praag H, Shubert T, Zhao C, et al. (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25: 8680-8685. doi: 10.1523/JNEUROSCI.1731-05.2005
![]() |
[99] |
Albeck DS, Sano K, Prewitt GE, et al. (2006) Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res 168: 345-348. doi: 10.1016/j.bbr.2005.11.008
![]() |
[100] |
Kramer AF, Erickson KI (2007) Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn Sci 11: 342-348. doi: 10.1016/j.tics.2007.06.009
![]() |
[101] |
Heyn P, Abreu BC, Ottenbacher KJ (2004) The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 85: 1694-1704. doi: 10.1016/j.apmr.2004.03.019
![]() |
[102] |
Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14: 125-130. doi: 10.1111/1467-9280.t01-1-01430
![]() |
[103] |
Stones MJ, Kozma A (1989) Age, exercise, and coding performance. Psychol Aging 4: 190-194. doi: 10.1037/0882-7974.4.2.190
![]() |
[104] |
Kamijo K, Takeda Y, Hillman CH (2011) The relation of physical activity to functional connectivity between brain regions. Clin Neurophysiol 122: 81-89. doi: 10.1016/j.clinph.2010.06.007
![]() |
[105] | Burdette JH, Laurienti PJ, Espeland MA, et al. (2010) Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci 2: 23. |
[106] | Voss MW, Prakash RS, Erickson KI, et al. (2010) Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2. |
[107] |
Strawbridge WJ, Deleger S, Roberts RE, et al. (2002) Physical activity reduces the risk of subsequent depression for older adults. Am J Epidemiol 156: 328-334. doi: 10.1093/aje/kwf047
![]() |
[108] |
Lampinen P, Heikkinen E (2003) Reduced mobility and physical activity as predictors of depressive symptoms among community-dwelling older adults: an eight-year follow-up study. Aging Clin Exp Res 15: 205-211. doi: 10.1007/BF03324501
![]() |
[109] |
Lee Y, Park K (2008) Does physical activity moderate the association between depressive symptoms and disability in older adults? Int J Geriatr Psychiatry 23: 249-256. doi: 10.1002/gps.1870
![]() |
[110] |
Yoshiuchi K, Nakahara R, Kumano H, et al. (2006) Yearlong physical activity and depressive symptoms in older Japanese adults: cross-sectional data from the Nakanojo study. Am J Geriatr Psychiatry 14: 621-624. doi: 10.1097/01.JGP.0000200602.70504.9c
![]() |
[111] |
Salguero A, Martinez-Garcia R, Molinero O, et al. (2011) Physical activity, quality of life and symptoms of depression in community-dwelling and institutionalized older adults. Arch Gerontol Geriatr 53: 152-157. doi: 10.1016/j.archger.2010.10.005
![]() |
[112] |
Lee H, Lee JA, Brar JS, et al. (2014) Physical activity and depressive symptoms in older adults. Geriatr Nurs 35: 37-41. doi: 10.1016/j.gerinurse.2013.09.005
![]() |
[113] |
Maki Y, Ura C, Yamaguchi T, et al. (2012) Effects of intervention using a community-based walking program for prevention of mental decline: a randomized controlled trial. J Am Geriatr Soc 60: 505-510. doi: 10.1111/j.1532-5415.2011.03838.x
![]() |
[114] |
Penninx BW, Rejeski WJ, Pandya J, et al. (2002) Exercise and depressive symptoms: a comparison of aerobic and resistance exercise effects on emotional and physical function in older persons with high and low depressive symptomatology. J Gerontol B Psychol Sci Soc Sci 57: P124-132. doi: 10.1093/geronb/57.2.P124
![]() |
[115] |
Teixeira CM, Vasconcelos-Raposo J, Fernandes HM, et al. (2013) Physical Activity, Depression and Anxiety Among the Elderly. Social Indicators Research 113: 307-318. doi: 10.1007/s11205-012-0094-9
![]() |
[116] |
Lazarov O, Robinson J, Tang YP, et al. (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120: 701-713. doi: 10.1016/j.cell.2005.01.015
![]() |
[117] |
Adlard PA, Perreau VM, Pop V, et al. (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci 25: 4217-4221. doi: 10.1523/JNEUROSCI.0496-05.2005
![]() |
[118] |
Kemppainen NM, Aalto S, Wilson IA, et al. (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67: 1575-1580. doi: 10.1212/01.wnl.0000240117.55680.0a
![]() |
[119] |
Klunk WE, Engler H, Nordberg A, et al. (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55: 306-319. doi: 10.1002/ana.20009
![]() |
[120] |
Klunk WE, Lopresti BJ, Ikonomovic MD, et al. (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. J Neurosci 25: 10598-10606. doi: 10.1523/JNEUROSCI.2990-05.2005
![]() |
[121] |
Liang KY, Mintun MA, Fagan AM, et al. (2010) Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol 68: 311-318. doi: 10.1002/ana.22096
![]() |
[122] |
Vemuri P, Lesnick TG, Przybelski SA, et al. (2012) Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol 72: 730-738. doi: 10.1002/ana.23665
![]() |
[123] |
Brown BM, Peiffer JJ, Taddei K, et al. (2013) Physical activity and amyloid-beta plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol Psychiatry 18: 875-881. doi: 10.1038/mp.2012.107
![]() |
[124] |
Okonkwo OC, Schultz SA, Oh JM, et al. (2014) Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology 83: 1753-1760. doi: 10.1212/WNL.0000000000000964
![]() |
[125] |
Bennet AM, Di Angelantonio E, Ye Z, et al. (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. Jama 298: 1300-1311. doi: 10.1001/jama.298.11.1300
![]() |
[126] | Mahley RW, Nathan BP, Pitas RE (1996) Apolipoprotein E. Structure, function, and possible roles in Alzheimer's disease. Ann N Y Acad Sci 777: 139-145. |
[127] |
Weisgraber KH (1994) Apolipoprotein E: structure-function relationships. Adv Protein Chem 45: 249-302. doi: 10.1016/S0065-3233(08)60642-7
![]() |
[128] | Weisgraber KH, Mahley RW (1996) Human apolipoprotein E: the Alzheimer's disease connection. Faseb J 10: 1485-1494. |
[129] |
Yaffe K, Haan M, Byers A, et al. (2000) Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology 54: 1949-1954. doi: 10.1212/WNL.54.10.1949
![]() |
[130] |
Szekely CA, Breitner JC, Fitzpatrick AL, et al. (2008) NSAID use and dementia risk in the Cardiovascular Health Study: role of APOE and NSAID type. Neurology 70: 17-24. doi: 10.1212/01.wnl.0000284596.95156.48
![]() |
[131] |
Qiu C, Winblad B, Fastbom J, et al. (2003) Combined effects of APOE genotype, blood pressure, and antihypertensive drug use on incident AD. Neurology 61: 655-660. doi: 10.1212/WNL.61.5.655
![]() |
[132] |
Rovio S, Kareholt I, Helkala EL, et al. (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease. Lancet Neurol 4: 705-711. doi: 10.1016/S1474-4422(05)70198-8
![]() |
[133] |
Deeny SP, Poeppel D, Zimmerman JB, et al. (2008) Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biol Psychol 78: 179-187. doi: 10.1016/j.biopsycho.2008.02.007
![]() |
[134] |
Etnier JL, Caselli RJ, Reiman EM, et al. (2007) Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness. Med Sci Sports Exerc 39: 199-207. doi: 10.1249/01.mss.0000239399.85955.5e
![]() |
[135] |
Kivipelto M, Rovio S, Ngandu T, et al. (2008) Apolipoprotein E epsilon4 magnifies lifestyle risks for dementia: a population-based study. J Cell Mol Med 12: 2762-2771. doi: 10.1111/j.1582-4934.2008.00296.x
![]() |
[136] | Niti M, Yap KB, Kua EH, et al. (2008) Physical, social and productive leisure activities, cognitive decline and interaction with APOE-epsilon 4 genotype in Chinese older adults. Int Psychogeriatr 20: 237-251. |
[137] | Schuit AJ, Feskens EJ, Launer LJ, et al. (2001) Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc 33: 772-777. |
[138] | Yang SY, Weng PH, Chen JH, et al. (2014) Leisure activities, apolipoprotein E e4 status, and the risk of dementia. J Formos Med Assoc. |
[139] |
Luck T, Riedel-Heller SG, Luppa M, et al. (2014) Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene-environment interaction for the risk of dementia and Alzheimer's disease dementia. Psychol Med 44: 1319-1329. doi: 10.1017/S0033291713001918
![]() |
[140] |
Podewils LJ, Guallar E, Kuller LH, et al. (2005) Physical Activity, APOE Genotype, and Dementia Risk: Findings from the Cardiovascular Health Cognition Study. Am J Epidemiol 161: 639-651. doi: 10.1093/aje/kwi092
![]() |
[141] |
Lindsay J, Laurin D, Verreault R, et al. (2002) Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156: 445-453. doi: 10.1093/aje/kwf074
![]() |
[142] |
Sabia S, Kivimaki M, Kumari M, et al. (2010) Effect of Apolipoprotein E epsilon4 on the association between health behaviors and cognitive function in late midlife. Mol Neurodegener 5: 23. doi: 10.1186/1750-1326-5-23
![]() |
[143] |
Taaffe DR, Irie F, Masaki KH, et al. (2008) Physical activity, physical function, and incident dementia in elderly men: the Honolulu-Asia Aging Study. J Gerontol A Biol Sci Med Sci 63: 529-535. doi: 10.1093/gerona/63.5.529
![]() |
[144] | Smith JC, Nielson KA, Woodard JL, et al. (2014) Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer's disease. Front Aging Neurosci 6: 61. |
[145] |
Head D, Bugg JM, Goate AM, et al. (2012) Exercise Engagement as a Moderator of the Effects of APOE Genotype on Amyloid Deposition. Arch Neurol 69: 636-643. doi: 10.1001/archneurol.2011.845
![]() |
[146] |
Nichol K, Deeny SP, Seif J, et al. (2009) Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 5: 287-294. doi: 10.1016/j.jalz.2009.02.006
![]() |
[147] | Buttini M, Yu GQ, Shockley K, et al. (2002) Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation. J Neurosci 22: 10539-10548. |
[148] |
Allen SJ, MacGowan SH, Tyler S, et al. (1997) Reduced cholinergic function in normal and Alzheimer's disease brain is associated with apolipoprotein E4 genotype. Neurosci Lett 239: 33-36. doi: 10.1016/S0304-3940(97)00872-0
![]() |
[149] | Scarmeas N, Habeck C, Anderson KE, et al. (2004) Altered PET functional brain responses in cognitively intact elderly persons at risk for Alzheimer disease (carriers of the epsilon4 allele). Am J Geriatr Psychiatry 12: 596-605. |
[150] | Rimajova M, Lenzo NP, Wu J-S, et al. (2007) Fluoro-2-deoxy-D-glucose (FDG)-PET in APOEε4 carriers in the Australian population. Journal of Alzheimer's disease 13: 137-146. |
[151] |
Mosconi L, De Santi S, Brys M, et al. (2008) Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry 63: 609-618. doi: 10.1016/j.biopsych.2007.05.030
![]() |
[152] | Hone E, Martins IJ, Fonte J, et al. (2003) Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J Alzheimers Dis 5: 1-8. |
[153] | Hone E, Martins IJ, Jeoung M, et al. (2005) Alzheimer's disease amyloid-beta peptide modulates apolipoprotein E isoform specific receptor binding. J Alzheimers Dis 7: 303-314. |
[154] |
Mazur-Kolecka B, Frackowiak J, Kowal D, et al. (2002) Oxidative protein damage in cells engaged in beta-amyloidosis is related to apoE genotype. Neuroreport 13: 465-468. doi: 10.1097/00001756-200203250-00021
![]() |
[155] |
Overmyer M, Helisalmi S, Soininen H, et al. (1999) Astrogliosis and the ApoE genotype. an immunohistochemical study of postmortem human brain tissue. Dement Geriatr Cogn Disord 10: 252-257. doi: 10.1159/000017128
![]() |
[156] |
Taddei K, Clarnette R, Gandy SE, et al. (1997) Increased plasma apolipoprotein E (apoE) levels in Alzheimer's disease. Neurosci Lett 223: 29-32. doi: 10.1016/S0304-3940(97)13394-8
![]() |
[157] |
Laws SM, Hone E, Gandy S, et al. (2003) Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 84: 1215-1236. doi: 10.1046/j.1471-4159.2003.01615.x
![]() |
[158] |
Laws SM, Hone E, Taddei K, et al. (2002) Variation at the APOE -491 promoter locus is associated with altered brain levels of apolipoprotein E. Mol Psychiatry 7: 886-890. doi: 10.1038/sj.mp.4001097
![]() |
[159] | Casadei VM, Ferri C, Veglia F, et al. (1999) APOE-491 promoter polymorphism is a risk factor for late-onset Alzheimer's disease. Neurology 53: 1888-1889. |
[160] |
Bueller JA, Aftab M, Sen S, et al. (2006) BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biol Psychiatry 59: 812-815. doi: 10.1016/j.biopsych.2005.09.022
![]() |
[161] |
Lim YY, Villemagne VL, Laws SM, et al. (2014) Effect of BDNF Val66Met on memory decline and hippocampal atrophy in prodromal Alzheimer's disease: a preliminary study. PLoS One 9: e86498. doi: 10.1371/journal.pone.0086498
![]() |
[162] |
Feher A, Juhasz A, Rimanoczy A, et al. (2009) Association between BDNF Val66Met polymorphism and Alzheimer disease, dementia with Lewy bodies, and Pick disease. Alzheimer Dis Assoc Disord 23: 224-228. doi: 10.1097/WAD.0b013e318199dd7d
![]() |
[163] |
Brown BM, Bourgeat P, Peiffer JJ, et al. (2014) Influence of BDNF Val66Met on the relationship between physical activity and brain volume. Neurology 83: 1345-1352. doi: 10.1212/WNL.0000000000000867
![]() |
[164] |
Teng HK, Teng KK, Lee R, et al. (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25: 5455-5463. doi: 10.1523/JNEUROSCI.5123-04.2005
![]() |
[165] |
Zhang Y, Wang B, Wan H, et al. (2013) Meta-analysis of the insulin degrading enzyme polymorphisms and susceptibility to Alzheimer's disease. Neurosci Lett 541: 132-137. doi: 10.1016/j.neulet.2013.01.051
![]() |
[166] | Vargas T, Martinez-Garcia A, Antequera D, et al. (2011) IGF-I gene variability is associated with an increased risk for AD. Neurobiol Aging 32: 556 e553-511. |
[167] |
Braskie MN, Boyle CP, Rajagopalan P, et al. (2014) Physical activity, inflammation, and volume of the aging brain. Neuroscience 273: 199-209. doi: 10.1016/j.neuroscience.2014.05.005
![]() |
[168] | Licastro F, Porcellini E, Caruso C, et al. (2006) Genetic risk profiles for Alzheimer's disease: Integration of APOE genotype and variants that up-regulate inflammation. Neurobiol Aging. |
[169] |
Culpan D, MacGowan SH, Ford JM, et al. (2003) Tumour necrosis factor-alpha gene polymorphisms and Alzheimer's disease. Neurosci Lett 350: 61-65. doi: 10.1016/S0304-3940(03)00854-1
![]() |
[170] |
Du Y, Dodel RC, Eastwood BJ, et al. (2000) Association of an interleukin 1 alpha polymorphism with Alzheimer's disease. Neurology 55: 480-483. doi: 10.1212/WNL.55.4.480
![]() |
[171] |
Grimaldi LM, Casadei VM, Ferri C, et al. (2000) Association of early-onset Alzheimer's disease with an interleukin-1alpha gene polymorphism. Ann Neurol 47: 361-365. doi: 10.1002/1531-8249(200003)47:3<361::AID-ANA12>3.0.CO;2-N
![]() |
[172] |
Hedley R, Hallmayer J, Groth DM, et al. (2002) Association of interleukin-1 polymorphisms with Alzheimer's disease in Australia. Ann Neurol 51: 795-797. doi: 10.1002/ana.10196
![]() |
[173] |
Koivisto AM, Helisalmi S, Pihlajamaki J, et al. (2005) Interleukin-6 promoter polymorphism and late-onset Alzheimer's disease in the Finnish population. J Neurogenet 19: 155-161. doi: 10.1080/01677060600569721
![]() |
[174] |
Laws SM, Perneczky R, Wagenpfeil S, et al. (2005) TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum Mutat 26: 29-35. doi: 10.1002/humu.20180
![]() |
[175] |
Lio D, Annoni G, Licastro F, et al. (2006) Tumor necrosis factor-alpha -308A/G polymorphism is associated with age at onset of Alzheimer's disease. Mech Ageing Dev 127: 567-571. doi: 10.1016/j.mad.2006.01.015
![]() |
[176] |
Nicoll JA, Mrak RE, Graham DI, et al. (2000) Association of interleukin-1 gene polymorphisms with Alzheimer's disease. Ann Neurol 47: 365-368. doi: 10.1002/1531-8249(200003)47:3<365::AID-ANA13>3.0.CO;2-G
![]() |
[177] |
Sciacca FL, Ferri C, Licastro F, et al. (2003) Interleukin-1B polymorphism is associated with age at onset of Alzheimer's disease. Neurobiol Aging 24: 927-931. doi: 10.1016/S0197-4580(03)00011-3
![]() |
[178] |
Shibata N, Ohnuma T, Takahashi T, et al. (2002) Effect of IL-6 polymorphism on risk of Alzheimer disease: genotype-phenotype association study in Japanese cases. Am J Med Genet 114: 436-439. doi: 10.1002/ajmg.10417
![]() |
[179] |
Ferencz B, Laukka EJ, Welmer AK, et al. (2014) The benefits of staying active in old age: physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychol Aging 29: 440-449. doi: 10.1037/a0035465
![]() |
[180] | Holler CJ, Davis PR, Beckett TL, et al. (2014) Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer's disease brain and correlates with neurofibrillary tangle pathology. J Alzheimers Dis 42: 1221-1227. |
[181] | Xu W, Tan L, Yu JT (2014) The Role of PICALM in Alzheimer's Disease. Mol Neurobiol. |
[182] |
Herring A, Donath A, Yarmolenko M, et al. (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. Faseb J 26: 117-128. doi: 10.1096/fj.11-193193
![]() |
[183] |
Parnpiansil P, Jutapakdeegul N, Chentanez T, et al. (2003) Exercise during pregnancy increases hippocampal brain-derived neurotrophic factor mRNA expression and spatial learning in neonatal rat pup. Neurosci Lett 352: 45-48. doi: 10.1016/j.neulet.2003.08.023
![]() |
[184] | Horsburgh S, Robson-Ansley P, Adams R, et al. (2015) Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev 21: 26-41. |
[185] |
Kaliman P, Parrizas M, Lalanza JF, et al. (2011) Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 10: 475-486. doi: 10.1016/j.arr.2011.05.002
![]() |
[186] | Ntanasis-Stathopoulos J, Tzanninis JG, Philippou A, et al. (2013) Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact 13: 133-146. |
[187] | Hess NCL, Dieberg G, McFarlane JR, et al. (2014) The effect of exercise intervention on cognitive performance in persons at risk of, or with, dementia: A systematic review and meta-analysis. Healthy Aging Research 3: 1-10. |
[188] |
Holthoff VA, Marschner K, Scharf M, et al. (2015) Effects of physical activity training in patients with Alzheimer's dementia: results of a pilot RCT study. PLoS One 10: e0121478. doi: 10.1371/journal.pone.0121478
![]() |
[189] | Etnier JL, Labban JD, Karper WB, et al. (2015) Innovative Research Design Exploring the Effects of Physical Activity and Genetics on Cognitive Performance in Community-Based Older Adults. J Aging Phys Act. |
[190] |
Lautenschlager NT, Cox KL, Flicker L, et al. (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300: 1027-1037. doi: 10.1001/jama.300.9.1027
![]() |
[191] |
Buchman AS, Boyle PA, Yu L, et al. (2012) Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology 78: 1323-1329. doi: 10.1212/WNL.0b013e3182535d35
![]() |
[192] | Zlatar ZZ, McGregor KM, Towler S, et al. (2015) Self-reported physical activity and objective aerobic fitness: differential associations with gray matter density in healthy aging. Front Aging Neurosci 7: 5. |
[193] |
Akbaraly TN, Portet F, Fustinoni S, et al. (2009) Leisure activities and the risk of dementia in the elderly: results from the Three-City Study. Neurology 73: 854-861. doi: 10.1212/WNL.0b013e3181b7849b
![]() |
[194] |
Scarmeas N, Levy G, Tang MX, et al. (2001) Influence of leisure activity on the incidence of Alzheimer's disease. Neurology 57: 2236-2242. doi: 10.1212/WNL.57.12.2236
![]() |
[195] |
Schooler C, Mulatu MS (2001) The reciprocal effects of leisure time activities and intellectual functioning in older people: a longitudinal analysis. Psychol Aging 16: 466-482. doi: 10.1037/0882-7974.16.3.466
![]() |
[196] |
Verghese J, Lipton RB, Katz MJ, et al. (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348: 2508-2516. doi: 10.1056/NEJMoa022252
![]() |
[197] |
Barnes LL, Mendes de Leon CF, Wilson RS, et al. (2004) Social resources and cognitive decline in a population of older African Americans and whites. Neurology 63: 2322-2326. doi: 10.1212/01.WNL.0000147473.04043.B3
![]() |
[198] |
Bennett DA, Schneider JA, Tang Y, et al. (2006) The effect of social networks on the relation between Alzheimer's disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5: 406-412. doi: 10.1016/S1474-4422(06)70417-3
![]() |
[199] |
Trost SG, Owen N, Bauman AE, et al. (2002) Correlates of adults' participation in physical activity: review and update. Med Sci Sports Exerc 34: 1996-2001. doi: 10.1097/00005768-200212000-00020
![]() |
[200] |
Dergance JM, Calmbach WL, Dhanda R, et al. (2003) Barriers to and benefits of leisure time physical activity in the elderly: differences across cultures. J Am Geriatr Soc 51: 863-868. doi: 10.1046/j.1365-2389.2003.51271.x
![]() |
[201] |
Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52: 135-143. doi: 10.1002/ana.10262
![]() |
[202] |
Hannan AJ (2014) Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 40: 13-25. doi: 10.1111/nan.12102
![]() |
[203] |
Ball K, Berch DB, Helmers KF, et al. (2002) Effects of cognitive training interventions with older adults: a randomized controlled trial. Jama 288: 2271-2281. doi: 10.1001/jama.288.18.2271
![]() |
[204] | Calero MD, Navarro E (2007) Cognitive plasticity as a modulating variable on the effects of memory training in elderly persons. Arch Clin Neuropsychol 22: 63-72. |
[205] |
Engvig A, Fjell AM, Westlye LT, et al. (2010) Effects of memory training on cortical thickness in the elderly. Neuroimage 52: 1667-1676. doi: 10.1016/j.neuroimage.2010.05.041
![]() |
[206] |
Rozzini L, Costardi D, Chilovi BV, et al. (2007) Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry 22: 356-360. doi: 10.1002/gps.1681
![]() |
[207] |
Zanetti O, Binetti G, Magni E, et al. (1997) Procedural memory stimulation in Alzheimer's disease: impact of a training programme. Acta Neurol Scand 95: 152-157. doi: 10.1111/j.1600-0404.1997.tb00087.x
![]() |
[208] |
Zanetti O, Zanieri G, Di Giovanni G, et al. (2001) Effectiveness of procedural memory stimulation in mild Alzheimer's disease patients: A controlled study. Neuropsychol Rehabil 11: 263-272. doi: 10.1080/09602010042000088
![]() |
[209] |
Wilson RS, Mendes De Leon CF, Barnes LL, et al. (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. Jama 287: 742-748. doi: 10.1001/jama.287.6.742
![]() |
[210] |
Wilson RS, Scherr PA, Schneider JA, et al. (2007) Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 69: 1911-1920. doi: 10.1212/01.wnl.0000271087.67782.cb
![]() |
[211] |
Shah T, Verdile G, Sohrabi H, et al. (2014) A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly. Transl Psychiatry 4: e487. doi: 10.1038/tp.2014.122
![]() |
[212] | Gates NJ, Sachdev P (2014) Is cognitive training an effective treatment for preclinical and early Alzheimer's disease? J Alzheimers Dis 42 Suppl 4: S551-559. |
[213] |
Ngandu T, Lehtisalo J, Solomon A, et al. (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385: 2255-2263. doi: 10.1016/S0140-6736(15)60461-5
![]() |
[214] |
Ellis KA, Bush AI, Darby D, et al. (2009) The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 21: 672-687. doi: 10.1017/S1041610209009405
![]() |
[215] |
Mueller SG, Weiner MW, Thal LJ, et al. (2005) Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1: 55-66. doi: 10.1016/j.jalz.2005.06.003
![]() |
[216] |
Bateman RJ, Xiong C, Benzinger TL, et al. (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367: 795-804. doi: 10.1056/NEJMoa1202753
![]() |
[217] |
Raber J, Wong D, Buttini M, et al. (1998) Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci U S A 95: 10914-10919. doi: 10.1073/pnas.95.18.10914
![]() |
[218] |
Ungar L, Altmann A, Greicius MD (2014) Apolipoprotein E, gender, and Alzheimer's disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8: 262-273. doi: 10.1007/s11682-013-9272-x
![]() |
1. | 桂珍 王, A Class of Mathematical Model Concerning Impulsive Pest Control Strategies, 2021, 10, 2324-7991, 548, 10.12677/AAM.2021.102060 | |
2. | Liyan Zhong, Jianhe Shen, Degenerate Transcritical Bifurcation Point can be an Attractor: A Case Study in a Slow–Fast Modified Leslie–Gower Model, 2022, 21, 1575-5460, 10.1007/s12346-022-00608-8 | |
3. | Naqi Abbas, Rizwan Ahmed, Stability and bifurcation analysis of a discrete Leslie predator-prey model with fear effect, 2024, 12, 2309-0022, 16, 10.21015/vtm.v12i1.1686 | |
4. | Fethi Souna, Salih Djilali, Sultan Alyobi, Anwar Zeb, Nadia Gul, Suliman Alsaeed, Kottakkaran Sooppy Nisar, Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior, 2023, 8, 2473-6988, 15723, 10.3934/math.2023803 | |
5. | Parvaiz Ahmad Naik, Muhammad Amer, Rizwan Ahmed, Sania Qureshi, Zhengxin Huang, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect, 2024, 21, 1551-0018, 4554, 10.3934/mbe.2024201 | |
6. | Neriman Kartal, Multiple Bifurcations and Chaos Control in a Coupled Network of Discrete Fractional Order Predator–Prey System, 2024, 2731-8095, 10.1007/s40995-024-01665-1 | |
7. | Parvaiz Ahmad Naik, Rizwan Ahmed, Aniqa Faizan, Theoretical and Numerical Bifurcation Analysis of a Discrete Predator–Prey System of Ricker Type with Weak Allee Effect, 2024, 23, 1575-5460, 10.1007/s12346-024-01124-7 | |
8. | Saud Fahad Aldosary, Rizwan Ahmed, Stability and bifurcation analysis of a discrete Leslie predator-prey system via piecewise constant argument method, 2024, 9, 2473-6988, 4684, 10.3934/math.2024226 | |
9. | Parvaiz Ahmad Naik, Yashra Javaid, Rizwan Ahmed, Zohreh Eskandari, Abdul Hamid Ganie, Stability and bifurcation analysis of a population dynamic model with Allee effect via piecewise constant argument method, 2024, 70, 1598-5865, 4189, 10.1007/s12190-024-02119-y |