Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case

1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
2 Mathematics 253-37, Caltech, Pasadena, CA 91125, USA
3 DICATAM, Sezione di Matematica, Università degli Studi di Brescia, Via Branze 38-25123 Brescia, Italy

This contribution is part of the Special Issue: Qualitative Analysis and Spectral Theory for Partial Differential Equations
Guest Editor: Veronica Felli
Link: https://www.aimspress.com/newsinfo/1371.html

Special Issues: Qualitative Analysis and Spectral Theory for Partial Differential

For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved