Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article Special Issues

A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1

  • Received: 20 June 2019 Accepted: 23 September 2019 Published: 27 November 2019
  • We prove the lower semicontinuity of functionals of the form ΩV(α)d|Eu|, with respect to the weak converge of α in W1,γ(Ω), γ>1, and the weak* convergence of u in BD(Ω), where ΩRn. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents γ<n.

    Citation: Vito Crismale, Gianluca Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1[J]. Mathematics in Engineering, 2020, 2(1): 101-118. doi: 10.3934/mine.2020006

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • We prove the lower semicontinuity of functionals of the form ΩV(α)d|Eu|, with respect to the weak converge of α in W1,γ(Ω), γ>1, and the weak* convergence of u in BD(Ω), where ΩRn. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents γ<n.


    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (1.1)

    Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on [1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. (2.1)

    Obviously, {pi(x)}i=0 is a system of orthogonal functions on L2[c1,c2], and

    c2c1pi(x)pj(x)dx={c2c12i+1,i=j,0,ij.

    Let Li(x)=2i+1c2c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] {Li(x)}i=0 is a orthonormal basis in L2[c1,c2].

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    v(t,x,y,z)=u(t,x,y,z)ϕ(x,y,z).

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember AC represents the space of absolutely continuous functions.

    Definition 2.1. W1[0,1]={u(t)|uAC,u(0)=0,uL2[0,1]}, and

    u,vW1=10uvdt,u,vW1.

    Let c1=0,c2=1, so {Ti(t)}i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=ni=0citi. And {JTn(t)}n=0 is the orthonormal basis of W1[0,1], where

    JTn(t)=ni=0citi+1i+1.

    Definition 2.2. W2[0,a]={u(x)|uAC,u(0)=u(a)=0,uL2[0,a]}, and

    u,vW2=a0uvdx,u,vW2.

    Similarly, {Pn(x)}n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=nj=0djxj, where djR.

    Let

    JPn(x)=nj=0djxj+2aj+1x(j+1)(j+2),

    obviously, {JPn(x)}n=0 is the orthonormal basis of W2[0,a].

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. (3.1)

    Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.

    Definition 3.1. W(D)={u(t,x)|uxCC,(t,x)D,u(0,x)=0,u(t,0)=u(t,a)=0,3utx2L2(D)}, and

    u,vW(D)=D3utx23vtx2dσ.

    Theorem 3.1. W(D) is an inner product space.

    Proof. u(t,x)W(D), if u,uW(D)=0, means

    D[3u(t,x)tx2]2dσ=0,

    and it implies

    3u(t,x)tx2=t(2u(t,x)x2)=0.

    Combined with the conditions of W(D), we can get u=0.

    Obviously, W(D) satisfies other conditions of inner product space.

    Theorem 3.2. uW(D),v1(t)v2(x)W(D), then

    u(t,x),v1(t)v2(x)W(D)=u(t,x),v1(t)W1,v2(x)W2.
    Proof.u(t,x),v1(t)v2(x)W(D)=D3u(t,x)tx23[v1(t)v2(x)]tx2dσ=D2x2[u(t,x)t]v1(t)t2v2(x)x2dσ=a02x2u(t,x),v1(t)W12v2(x)x2dx=u(t,x),v1(t)W1,v2(x)W2.

    Corollary 3.1. u1(t)u2(x)W(D),v1(t)v2(x)W(D), then

    u1(t)u2(x),v1(t)v2(x)W(D)=u1(t),v1(t)W1u2(x),v2(x)W2.

    Let

    ρij(t,x)=JTi(t)JPj(x),i,jN.

    Theorem 3.3. {ρij(t,x)}i,j=0is an orthonormal basis inW(D).

    Proof. ρij(t,x),ρlm(t,x)W(D),i,j,l,mN,

    ρij(t,x),ρlm(t,x)W(D)=JTi(t)JPj(x),JTl(t)JPm(x)W(D)=JTi(t),JTl(t)W1JPj(x),JPm(x)W2.

    So

    ρij(t,x),ρlm(t,x)W(D)={1,i=l,j=m,0,others.

    In addition, uW(D), if u,ρijW(D)=0, means

    u(t,x),JTi(t)JPj(x)W(D)=u(t,x),JTi(t)W1,JPj(x)W2=0.

    Note that {JPj(x)}j=0 is the complete system of W2, so u(t,x),JTi(t)W1=0.

    Similarly, we can get u(t,x)=0.

    Let L:W(D)L2(D),

    Lu=2ux2ut.

    So, Eq (3.1) can be simplified as

    Lu=f. (3.2)

    Definition 3.2. ε>0, if uW(D) and

    ||Luf||2L(D)<ε, (3.3)

    then u is called the εbest approximate solution for Lu=f.

    Theorem 3.4. Any ε>0, there is NN, when n>N, then

    un(t,x)=ni=0nj=0ηijρij(t,x) (3.4)

    is the εbest approximate solution for Lu=f, where ηij satisfies

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn.

    Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=i=0j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.

    Note that L is a bounded operator [30], hence, any ε>0, there is NN, when n>N, then

    ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2.

    So,

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε.

    For obtain un(t,x), we need to find the coefficients ηij by solving Eq (3.5).

    min{ηij}ni,j=0J=Lunf2L2(D) (3.5)

    In addition,

    J=Lunf2L2(D)=Lunf,LunfL2(D)=Lun,LunL2(D)2Lun,fL2(D)+f,fL2(D)=ni=0nj=0nl=0nm=0ηijηlmLρij,LρlmL2(D)2ni=0nj=0ηijLρij,fL2(D)+f,fL2(D).

    So,

    Jηij=2nl=0nm=0ηlmLρij,LρlmL2(D)2ηijLρij,fL2(D),i,jNn

    and the equations Jηij=0,i,jNn can be simplified to

    Aη=B, (3.6)

    where

    A=(Lρij,LρlmL2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(Lρij,fL2(D))N×1.

    Theorem 3.5. Aη=B has a unique solution.

    Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,

    ni=0nj=0Lρij,LρlmL2(D)ηij=0,l,mNn.

    So, we can get the following equations:

    ni=0nj=0ηijLρij,ηlmLρlmL2(D)=0,l,mNn.

    By adding the above (n+1)2 equations, we can get

    ni=0nj=0ηijLρij,nl=0nm=0ηlmLρlmL2(D)=ni=0nj=0ηijLρij2L2(D)=0.

    So,

    ni=0nj=0ηijLρij=0.

    Note that L is reversible. Therefore, ηij=0,i,jNn.

    According to Theorem 3.5, un(t,x) can be obtained by substituting η=A1B into un=ni=0nj=0ηijρij(t,x).

    {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. (3.7)

    Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:

    W3[0,b]={u(y)|uAC,y[0,b],u(0)=u(b)=0,uL2[0,b]}.

    Similarly, let {Qn(y)}n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=nk=0qkyk.

    Let

    JQn(y)=nk=0qkyk+2bk+1y(k+1)(k+2),

    it is easy to prove that {JQn(y)}n=0 is the orthonormal basis of W3[0,b].

    Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.

    Definition 3.3 W(Ω)={u(t,x,y)|2uxyCC,(t,x,y)Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,5utx2y2L2(Ω)}, and

    u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω).

    Similarly, we give the following theorem without proof.

    Theorem 3.6. {ρijk(t,x,y)}i,j,k=0is an orthonormal basis ofW(Ω), where

    ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,kNn.

    Therefore, we can get un as

    un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), (3.8)

    according to the theory in Section 3.1, we can find all ηijk,i,j,kNn.

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (3.9)

    By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}n=0, and denote Rn(z)=nm=0rmzm, where rm is the coefficient of polynomial Rn(z).

    We can further obtain the orthonormal basis JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2) of W4[0,c], where

    JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2),

    and

    W4[0,c]={u(z)|uAC,z[0,c],u(0)=u(c)=0,uL2[0,c]}.

    Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.

    Definition 3.4. W(G)={u(t,x,y,z)|3uxyzCC,(t,x,y,z)G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,7utx2y2z2L2(G)}, and

    u,vW(G)=

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. \{\rho_{ijk}(t, x, y, z)\}_{i, j, k, m = 0}^\infty \mathit{\mbox{is an orthonormal basis of}}\; W(G) , where

    \rho_{ijkm}(t,x,y,z) = JT_i(t)JP_j(x)JQ_k(y)JR_m(z),\; \; i,j,k,m\in \mathbb{N}.

    Therefore, we can get u_n as

    \begin{equation} u_n(t,x,y,z) = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{k = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ijkm}\rho_{ijkm}(t,x,y,z), \end{equation} (3.10)

    according to the theory in Section 3.1, we can find all \eta_{ijkm}, \; \; i, j, k, m\in\mathbb{N}_n.

    Suppose u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) is the exact solution of Eq (3.5). Let P_{N_1, N_2}u(t, x) = \sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2} \eta_{ij}T_i(t)P_j(x) is the projection of u in L(D) .

    Theorem 4.1. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , and N_1 > r, N_2 > l , then, the error estimate of P_{N_1, N_2}u(t, x) is

    ||u-P_{N_1,N_2}u||_{L^2(D)}^2 \leq C N^{-\alpha},

    where C is a constant, N = min\{N_1, N_2\}, \alpha = min\{r, l\}.

    Proof. According to the lemma in ref. [29], it follows that

    ||u-u_{N_1}||_{L_t^2[0,1]}^2 = ||u-P_{t,N_1}u||_{L_t^2[0,1]}^2\leq C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u(t,x) ||_{L_t^2[0,1]}^2,

    where u_{N_1} = P_{t, N_1}u represents the projection of u on variable t in L^2[0, 1] , and ||\cdot||_{L_t^2[0, 1]} represents the norm of (\cdot) with respect to variable t in L^2[0, 1] .

    By integrating both sides of the above formula with respect to x , we can get

    \begin{equation*} \begin{array}{lll} ||u-u_{N_1}||_{L^2(D)}^2 &\leq & C_1 N_1^{-r} \int_0^a ||\dfrac{\partial^r}{\partial t^r}u||_{L_t^2[0,1]}^2 dx\\ & = & C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. \end{array} \end{equation*}

    Moreover,

    \begin{equation*} \begin{array}{lll} u(t,x)-u_{N_1}(t,x) & = & \sum\limits_{i = N_1+1}^{\infty} \langle u, T_i\rangle _{L_t^2[0,1]}T_i(t)\\ & = & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty} \langle \langle u, T_i\rangle _{L_t^2[0,1]}, P_j\rangle_{L_x^2[0,a]} P_j(x)T_i(t). \end{array} \end{equation*}

    According to the knowledge in Section 3,

    ||u-u_{N_1}||_{L^2(D)}^2 = \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2,

    where c_{ij} = \langle \langle u, T_i\rangle _{L_t^2[0, 1]}, P_j\rangle_{L_x^2[0, a]} .

    Therefore,

    \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2\leq C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2.

    Similarly,

    \sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\leq C_2 N_2^{-l}||\dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2.

    In conclusion,

    \begin{equation*} \begin{array}{lll} ||u-P_{N_1,N_2}u||_{L^2(D)}^2 & = & ||(\sum\limits_{i = 0}^{\infty} \sum\limits_{j = 0}^{\infty}-\sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2})c_{ij}^2 T_i(t)P_j(x)||_{L^2(D)}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{N_2}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N2+1}^{\infty}c_{ij}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\\ &\leq & C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2 + C_2 N_2^{-l}|| \dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2\\ &\leq & C N^{-\alpha}. \end{array} \end{equation*}

    Theorem 4.2. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , u_n(t, x) is the \varepsilon- best approximate solution of Eq (3.2), and n > max\{r, l\} , then,

    ||u-u_n||_{W(D)}^2 \leq C n^{-\alpha}.

    where C is a constant, \alpha = min\{r, l\}.

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    \begin{equation*} ||u-u_n||_{W(D)}^2 \leq ||u-P_{N_1,N_2}u||_{L^2(D)}^2\leq C n^{-\alpha}. \end{equation*}

    So, the \varepsilon- approximate solution has \alpha convergence order, and the convergence rate is related to n , where represents the number of bases, and the convergence order can calculate as follows.

    \begin{equation} C.R. = log_{\frac{n_2}{n_1}}\frac{max|e_{n_1}|}{max|e_{n_2}|}. \end{equation} (4.1)

    Where n_i, i = 1, 2 represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N = 10 \times 10 , which means that we use the orthonormal system \{\rho_{ij}\}_{i, j = 0}^{10} of W(D) for approximate calculation, that is, we take the orthonormal system \{JT_i(t)\}_{i = 0}^{10} and \{JP_j(x)\}_{j = 0}^{10} to construct the \varepsilon- best approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    \begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx},\; \; (t,x)\in [0,1]\times[0,2\pi],\\ u(0,x) = \sin(x),\\ u(t,0) = u(t,2\pi) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.1 is e^{-t}\sin x .

    In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of u_n . With the increase of N , the errors between the two surfaces will be smaller.

    Table 1.  \max |u-u_n| for Ex. 5.1.
    N HOC-ADI Method [20] FVM [7] Present method C.R.
    4 \times 4 6.12E-3 4.92E-2 9.892E-3
    6 \times 6 1.68E-3 2.05E-2 4.319E-4 3.8613
    8 \times 8 7.69E-4 1.27E-2 9.758E-6 6.5873
    10 \times 10 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  |u-u_n| for Ex. 5.1 ( n = 9 ).
    |u-u_n| t=0.1 t=0.3 t=0.5 t=0.7 t=0.9
    x=\frac{\pi}{5} 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    x=\frac{3\pi}{5} 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=\frac{7\pi}{5} 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=\frac{9\pi}{5} 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  u\; \; \mbox{and}\; \; u_{n} in Example 5.1( n = 9 ).
    Figure 2.  |u(1, x)-u_{n}(1, x)| in Example 5.1( n = 9 ).

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    \begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx}+u_{yy},\; \; (t,x,y)\in [0,1]\times[0,1]\times[0,1],\\ u(0,x,y) = \sin(\pi x)\sin(\pi y),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.2 is u = e^{-2\pi^2 t}\sin(\pi x)\sin(\pi y) .

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the x- axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors \max |u-u_n| for Ex. 5.2 ( t = 1, (x, y)\in [0, 1]\times[0, 1] ).
    N CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    4 \times 4 \times 4 8.820E-3 3.225E-2 5.986E-3
    8 \times 8 \times 8 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors |u-u_n| for Ex. 5.2 ( t = 1, n = 7 ).
    |u-u_n| y=0.1 y=0.3 y=0.5 y=0.7 y=0.9
    x=0.1 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    x=0.3 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.5 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    x=0.7 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.9 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  u\; \; \mbox{and}\; \; u_{n} in Example 5.2( n = 7 ).
    Figure 4.  u-u_{n} in Example 5.2( n = 7 ).

    Example 5.3. Consider the three-demensional problem as following:

    \begin{eqnarray*} \left\{ \begin{array}{l} (\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})u_t = u_{xx}+u_{yy}+u_{zz},\; \; (t,x,y,z)\in [0,1]\times[0,a]\times[0,b]\times[0,c],\\ u(0,x,y) = \sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.3 is u = e^{-\pi^2t}\sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}) .

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the \varepsilon- best approximate solution and the real solution when the boundary time t = 1 .

    Table 5.  The absolute errors |u-u_n| for Ex. 5.3 ( t = 1, z = 0.1, n = 2 ).
    |u-u_n| y=0.2 y=0.6 y=1.0 y=1.4 y=1.8
    x=0.1 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    x=0.3 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    x=0.5 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    x=0.7 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    x=0.9 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.



    [1] Abdelmoula R, Marigo JJ, Weller T (2009) Construction d'une loi de fatigue à partir d'un modèle de forces cohésives: Cas d'une fissure en mode III. C R Mecanique 337: 53-59. doi: 10.1016/j.crme.2008.12.001
    [2] Alessi R, Ambati M, Gerasimov T, et al. (2018) Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21.
    [3] Alessi R, Crismale V, Orlando G (2019) Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J Nonlinear Sci 29: 1041-1094. doi: 10.1007/s00332-018-9511-9
    [4] Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214: 575-615. doi: 10.1007/s00205-014-0763-8
    [5] Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech Mater 80: 351-367. doi: 10.1016/j.mechmat.2013.12.005
    [6] Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interface Free Bound 1: 17-37.
    [7] Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57: 149-167. doi: 10.1007/s00466-015-1225-3
    [8] Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051
    [9] Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press.
    [10] Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999-1036. doi: 10.1002/cpa.3160430805
    [11] Artina M, Cagnetti F, Fornasier M, et al. (2017) Linearly constrained evolutions of critical points and an application to cohesive fractures. Math Mod Meth Appl Sci 27: 231-290. doi: 10.1142/S0218202517500014
    [12] Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment Math Univ Carolin 37: 285-304.
    [13] Bonetti E, Rocca E, Rossi R, et al. (2016) A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM P Surv 54: 54-69. doi: 10.1051/proc/201654054
    [14] Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press.
    [15] Cagnetti F, Toader R (2011) Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach. ESAIM Contr Optim Calc Var 17: 1-27. doi: 10.1051/cocv/2009037
    [16] Chambolle A, Crismale V (2019) A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378. doi: 10.1007/s00205-018-01344-7
    [17] Conti S, Focardi M, Iurlano F (2016) Phase field approximation of cohesive fracture models. Ann Inst H Poincaré Anal Non Linéaire 33: 1033-1067.
    [18] Crismale V (2016) Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Contr Optim Calc Var 22: 883-912. doi: 10.1051/cocv/2015037
    [19] Crismale V (2017) Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann Mat Pura Appl 196: 641-685. doi: 10.1007/s10231-016-0590-7
    [20] Crismale V, Lazzaroni G (2016) Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc Var Partial Dif 55: 17. doi: 10.1007/s00526-015-0947-6
    [21] Crismale V, Lazzaroni G, Orlando G (2018) Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue. Math Mod Meth Appl Sci 28: 1371-1412. doi: 10.1142/S0218202518500379
    [22] Crismale V, Orlando G (2018) A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Diff 25: 16. doi: 10.1007/s00030-018-0507-9
    [23] Dal Maso G, DeSimone A, Mora MG (2006) Quasistatic evolution problems for linearly elasticperfectly plastic materials. Arch Ration Mech Anal 180: 237-291. doi: 10.1007/s00205-005-0407-0
    [24] Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case. Calc Var Partial Dif 55: 45. doi: 10.1007/s00526-016-0981-z
    [25] Dal Maso G, Orlando G, Toader R (2017) Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv Calc Var 10: 183-207.
    [26] Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. P Roy Soc Edinb A 137: 253-279. doi: 10.1017/S030821050500079X
    [27] Davoli E, Roubíček T, Stefanelli U (2019) Dynamic perfect plasticity and damage in viscoelastic solids. ZAMM J Appl Math Mech 99: e201800161.
    [28] Demyanov A (2009) Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc Var Partial Dif 34: 23-72. doi: 10.1007/s00526-008-0174-5
    [29] Evans LC, Gariepy RF (1992) Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press.
    [30] Heinonen J, Kilpeläinen T, Martio O (2006) Nonlinear Potential Theory of Degenerate Elliptic Equations, Mineola: Dover Publications Inc.
    [31] Horn RA, Johnson CR (2013) Matrix Analysis, 2 Eds., Cambridge: Cambridge University Press.
    [32] Ibrahimbegovic A (2009) Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Dordrecht: Springer.
    [33] Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342. doi: 10.1007/s00526-013-0676-7
    [34] Knees D, Rossi R, Zanini C (2013) A vanishing viscosity approach to a rate-independent damage model. Math Mod Meth Appl Sci 23: 565-616. doi: 10.1142/S021820251250056X
    [35] Lemaitre J, Chabouche J (1990) Mechanics of Solid Materials, Avon: Cambridge University Press.
    [36] Lions PL (1985) The concentration-compactness principle in the calculus of variations. The limit case, part I. Rev Mat Iberoam 1: 145-201.
    [37] Melching D, Scala R, Zeman J (2019) Damage model for plastic materials at finite strains. ZAMM J Appl Math Mech 99: e201800032.
    [38] Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. Int J Plasticity 84: 1-32. doi: 10.1016/j.ijplas.2016.04.011
    [39] Miehe C, Hofacker M, Schänzel LM, et al. (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M 294: 486-522.
    [40] Mielke A (2015) Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559.
    [41] Negri M, Scala R (2017) A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal Real 38: 271-305. doi: 10.1016/j.nonrwa.2017.05.002
    [42] Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: I. Les concepts fondamentaux. CR Mécanique 338: 191-198.
    [43] Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: II. Les modèles à gradient, CR Mécanique 338: 199-206.
    [44] Reshetnyak YG (1968) Weak convergence of completely additive vector functions on a set. Siberian Math J 9: 1039-1045. doi: 10.1007/BF02196453
    [45] Rossi R (2018) From visco to perfect plasticity in thermoviscoelastic materials. ZAMM J Appl Math Mech 98: 1123-1189. doi: 10.1002/zamm.201700205
    [46] Rossi R, Thomas M (2017) Coupling rate-independent and rate-dependent processes: Existence results. SIAM J Math Anal 49: 1419-1494. doi: 10.1137/15M1051567
    [47] Roubíček T, Valdman J (2016) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J Appl Math 76: 314-340. doi: 10.1137/15M1019647
    [48] Roubíček T, Valdman J (2017) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math Mech Solids 22: 1267-1287. doi: 10.1177/1081286515627674
    [49] Temam R (1985) Mathematical Problems in Plasticity, Paris: Gauthier-Villars.
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3785) PDF downloads(398) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog