Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case

1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 München, Germany
2 Mathematics 253-37, Caltech, Pasadena, CA 91125, USA
3 DICATAM, Sezione di Matematica, Università degli Studi di Brescia, Via Branze 38-25123 Brescia, Italy

This contribution is part of the Special Issue: Qualitative Analysis and Spectral Theory for Partial Differential Equations
Guest Editor: Veronica Felli
Link: https://www.aimspress.com/newsinfo/1371.html

Special Issues: Qualitative Analysis and Spectral Theory for Partial Differential

For dimensions $N \geq 4$, we consider the Br\'ezis-Nirenberg variational problem of finding \[ S(\epsilon V) := \inf_{0\not\equiv u\in H^1_0(\Omega)} \frac{\int_\Omega |\nabla u|^2\, dx +\epsilon \int_\Omega V\, |u|^2\, dx}{\left(\int_\Omega |u|^q \, dx \right)^{2/q}}, \] where $q=\frac{2N}{N-2}$ is the critical Sobolev exponent, $\Omega \subset \mathbb{R}^N$ is a bounded open set and $V:\overline{\Omega}\to \mathbb{R}$ is a continuous function. We compute the asymptotics of $S(0) - S(\epsilon V)$ to leading order as $\epsilon \to 0+$. We give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular, we characterize the concentration points as being extrema of a quotient involving the Robin function. This complements the results from our recent paper in the case $N = 3$.
  Article Metrics

Keywords Brezis–Nirenberg problem; energy asymptotic; minimizing sequences; blow-up

Citation: Rupert L. Frank, Tobias König, Hynek Kovařík. Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case. Mathematics in Engineering, 2020, 2(1): 119-140. doi: 10.3934/mine.2020007


  • 1. Aubin T (1976) Problèmes isopérimétriques et espaces de Sobolev. J Differ Geom 11: 573-598.    
  • 2. Bahri A, Coron JM (1988) On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain. Commun Pur Appl Math 41: 253-294.    
  • 3. Brézis H, Nirenberg L (1983) Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pur Appl Math 36: 437-477.    
  • 4. Brézis H, Peletier LA (1989) Asymptotics for elliptic equations involving critical growth, In: Partial Differential Equations and the Calculus of Variations, Boston: Birkhäuser, 149-192.
  • 5. Flucher M, Wei J (1998) Asymptotic shape and location of small cores in elliptic free-boundary problems. Math Z 228: 683-703.    
  • 6. Frank RL, König T, Kovařík H (2019) Energy asymptotics in the three-dimensional Brezis-Nirenberg problem. Preprint, arXiv:1908.01331.
  • 7. Han ZC (1991) Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Linéaire 8: 159-174.
  • 8. Molle R, Pistoia A (2003) Concentration phenomena in elliptic problems with critical and supercritical growth. Adv. Diff. Equations 8: 547-570.
  • 9. Rey O (1989) Proof of two conjectures of H. Brezis and L. A. Peletier. Manuscripta Math 65: 19-37.    
  • 10. Rey O (1990) The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent. J Funct Anal 89: 1-52.    
  • 11. Rodemich E (1966) The Sobolev Inequality with Best Possible Constant, Analysis Seminar Caltech: Spring, 1966.
  • 12. Rosen G (1971) Minimum value for c in the Sobolev inequality ||φ3|| ≤ c||▽φ||3. SIAM J Appl Math 21: 30-32.
  • 13. Takahashi F (2004) On the location of blow up points of least energy solutions to the Brezis- Nirenberg equation. Funkc Ekvacioj 47: 145-166.    
  • 14. Talenti G (1976) Best constant in Sobolev inequality. Ann Mat Pur Appl 110: 353-372.    
  • 15. Wei J (1998) Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent. J Math Soc JPN 50: 139-153.    


Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved