
Mathematics in Engineering, 2019, 1(3): 447488. doi: 10.3934/mine.2019.3.447
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Computational efficiency of numerical integration methods for the tangent dynamics of manybody Hamiltonian systems in one and two spatial dimensions
1 Center for Theoretical Physics of Complex Systems, Institute for Basic Sciences, Daejeon, Korea
2 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
3 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
$^\dagger$This contribution is part of the Special Issue: Hamiltonian Lattice Dynamics
Guest Editors: Simone Paleari; Tiziano Penati
Link: http://www.aimspress.com/newsinfo/1165.html
Received: , Accepted: , Published:
Special Issues: Hamiltonian Lattice Dynamics
References
1. Fermi E, Pasta P, Ulam S, et al.(1955) Studies of the nonlinear problems, Los Alamos Report LA1940.
2. Ford J (1992) The FermiPastaUlam problem: Paradox turns discovery. Phys Rep 213: 271–310.
3. Campbell DK, Rosenau P, Zaslavsky GM (2005) Introduction: The FermiPastaUlam problem: The first fifty years. Chaos 15: 015101.
4. Lepri S, Livi R, Politi A (2003) Universality of anomalous onedimensional heat conductivity. Phys Rev E 68: 067102.
5. Lepri S, Livi R, Politi A (2005) Studies of thermal conductivity in FermiPastaUlamlike lattices. Chaos 15: 015118.
6. Antonopoulos C, Bountis T, Skokos Ch (2006) Chaotic dynamics of Ndegree of freedom Hamiltonian systems. Int J Bifurcation Chaos 16: 1777–1793.
7. Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243.
8. Zabusky NJ, Deem GS (1967) Dynamics of nonlinear lattices I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior. J Comput Phys 2: 126–153.
9. Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30pages.
10. Paleari S, Penati T (2008) Numerical methods and results in the FPU problem. Lect Notes Phys 728: 239–282.
11. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109: 1492–1505.
12. Abraham E, Anderson PW, Licciardello DC, et al. (1979) Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys Rev Lett 42: 673–676.
13. Shepelyansky DL (1993) Delocalization of quantum chaos by weak nonlinearity. Phys Rev Lett 70: 1787–1790.
14. Molina MI (1998) Transport of localized and extended excitations in a nonlinear Anderson model. Phys Rev B 58: 12547–12550.
15. Clément D, Varon AF, Hugbart M, et al. (2005) Suppression of transport of an interacting elongated BoseEinstein condensate in a random potential. Phys Rev Lett 95: 170409.
16. Fort C, Fallani L, Guarrera V, et al. (2005) Effect of optical disorder and single defects on the expansion of a BoseEinstein condensate in a onedimensional waveguide. Phys Rev Lett 95: 170410.
17. Schwartz T, Bartal G, Fishman S, et al. (2007) Transport and Anderson localization in disordered twodimensional photonic lattices. Nature 446: 52–55.
18. Lahini Y, Avidan A, Pozzi F, et al. (2008) Anderson localization and nonlinearity in onedimensional disordered photonic lattices. Phys Rev Lett 100: 013906.
19. Billy J, Josse V, Zuo Z, et al. (2008) Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453: 891–894.
20. Roati JG, D'Errico C, Fallani L, et al. (2008) Anderson localization of a noninteracting Bose–Einstein condensate. Nature 453: 895–898.
21. Fallani L, Fort C, Inguscio M (2008) BoseEinstein condensates in disordered potentials. Adv At Mol Opt Phys 56: 119–160.
22. Flach S, Krimer DO, Skokos Ch (2009) Universal spreading of wave packets in disordered nonlinear systems. Phys Rev Lett 102: 024101.
23. Vicencio RA, Flach S (2009) Control of wave packet spreading in nonlinear finite disordered lattices. Phys Rev E 79: 016217.
24. Skokos Ch, Krimer DO, Komineas S, et al. (2009) Delocalization of wave packets in disordered nonlinear chains. Phys Rev E 79: 056211.
25. Skokos Ch, Flach S (2010) Spreading of wave packets in disordered systems with tunable nonlinearity. Phys Rev E 82: 016208.
26. Laptyeva TV, Bodyfelt JD, Krimer DO, et al. (2010) The crossover from strong to weak chaos for nonlinear waves in disordered systems. EPL 91: 30001.
27. Modugno G (2010) Anderson localization in BoseEinstein condensates. Rep Prog Phys 73: 102401.
28. Bodyfelt JD, Laptyeva TV, Gligoric G, et al. (2011) Wave interactions in localizing media  a coin with many faces, Int J Bifurcat Chaos 21: 2107.
29. Bodyfelt JD, Laptyeva TV, Skokos Ch, et al. (2011) Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Phys Rev E 84: 016205.
30. Laptyeva TV, Bodyfelt JD, Flach S (2012) Subdiffusion of nonlinear waves in twodimensional disordered lattices. EPL 98: 60002.
31. Pikovsky AS, Shepelyansky DL (2008) Destruction of Anderson localization by a weak nonlinearity. Phys Rev Lett 100: 094101.
32. Skokos Ch, Gkolias I, Flach S (2013) Nonequilibrium chaos of disordered nonlinear waves. Phys Rev Lett 111: 064101.
33. Senyangue B, Many Manda B, Skokos Ch (2018) Characteristics of chaos evolution in one dimensional disordered nonlinear lattices. Phys Rev E 98: 052229.
34. Kati Y, Yu X, Flach S (2019) Density resolved wave packet spreading in disordered GrossPitaevskii lattices. In preparation.
35. Benettin G, Galgani L, Giorgilli A, et al. (1980) Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application. Meccanica 15: 21–30.
36. Benettin G, Galgani L, Giorgilli A, et al. (1980) Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15: 9–20.
37. Skokos Ch (2010) The Lyapunov characteristic exponents and their computation. Lect Notes Phys 790: 63–135.
38. Mulansky M, Ahnert K, Pikovsky A, et al. (2009) Dynamical thermalization of disordered nonlinear lattices. Phys Rev E 80: 056212.
39. Sales MO, Dias WS, Neto AR, et al. (2018) Subdiffusive spreading and anomalous localization in a 2D Anderson model with offdiagonal nonlinearity. Solid State Commun 270: 6–11.
40. Hairer E, Lubich C, Wanner G (2002) Geometric Numerical Integration. StructurePreservings Algorithms for Ordinary Differential Equations. SpringerVerlag Berlin Heidelberg. Vol 31.
41. McLachlan RI, Quispel GRW (2002) Splitting methods. Acta Numer 11: 341–434.
42. McLachlan RI, Quispel GRW (2006) Geometric integrators for ODEs. J Phys A Math Gen 39: 5251–5285.
43. Forest E (2006) Geometric integration for particle accelerators. J Phys A Math Gen 39: 53515377.
44. Blanes S, Casas F, Murua A (2008) Splitting and composition methods in the numerical integration of differential equations. Bol Soc Esp Mat Apl 45: 89–145.
45. Benettin G, Ponno A (2011) On the numerical integration of FPUlike systems. Phys D 240: 568–573.
46. Antonopoulos Ch, Bountis T, Skokos Ch, et al. (2014) Complex statistics and diffusion in nonlinear disordered particle chains. Chaos 24: 024405.
47. Antonopoulos Ch, Skokos Ch, Bountis T, et al. (2017) Analyzing chaos in higher order disordered quarticsextic KleinGordon lattices using qstatistics. Chaos Solitons Fractals 104: 129–134.
48. Tieleman O, Skokos Ch, Lazarides A (2014) Chaoticity without thermalisation in disordered lattices. EPL 105: 20001.
49. Skokos Ch, Gerlach E, Bodyfelt JD, et al. (2014) High order three part split symplectic integrators: Efficient techniques for the long time simulation of the disordered discrete non linear Schrödinger equation. Phys Lett A 378: 1809–1815.
50. Gerlach E, Meichsner J, Skokos C (2016) On the symplectic integration of the discrete nonlinear Schrödinger equation with disorder. Eur Phys J Spec Top 225: 1103–1114.
51. Danieli C, Campbell DK, Flach S (2017) Intermittent manybody dynamics at equilibrium. Phys Rev E 95: 060202.
52. Thudiyangal M, Kati Y, Danieli C, et al. (2018) Weakly nonergodic dynamics in the GrossPitaevskii lattice. Phys Rev Lett 120: 184101.
53. Thudiyangal M, Danieli C, Kati Y, et al. (2019) Dynamical glass phase and ergodization times in Josephson junction chains. Phys Rev Lett 122: 054102.
54. Danieli C, Thudiyangal M, Kati Y, et al. (2018) Dynamical glass in weakly nonintegrable manybody systems. arXiv:1811.10832.
55. Laskar J, Robutel P (2001) High order symplectic integrators for perturbed Hamiltonian systems. Celest Mech Dyn Astr 80: 39–62.
56. Senyange B, Skokos Ch (2018) Computational efficiency of symplectic integration schemes: Application to multidimensional disordered KleinGordon lattices. Eur Phys J Spec Top 227: 625–643.
57. Blanes S, Casas F, Farrés A, et al. (2013) New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl Numer Math 68: 58–72.
58. Skokos Ch, Gerlach E (2010) Numerical integration of variational equations. Phys Rev E 82: 036704.
59. Gerlach E, Skokos Ch (2011) Comparing the efficiency of numerical techniques for the integration of variational equations: Dynamical systems, differential equations and applications, Discrete & Continuous Dynamical SystemsSupplement 2011, Dedicated to the 8th AIMS Conference, 475–484.
60. Gerlach E, Eggl S, Skokos Ch (2012) Efficient integration of the variational equations of multidimensional Hamiltonian systems: Application to the FermiPastaUlam lattice. Int J Bifurcation Chaos 22: 1250216.
61. Carati A, Ponno A (2018) Chopping time of the FPU αmodel. J Stat Phys 170: 883–894.
62. Flach S, Ivanchenko MV, Kanakov OI (2005) qBreathers and the FermiPastaUlam problem. Phys Rev Lett 95: 064102.
63. Flach S, Ivanchenko MV, Kanakov OI, et al. (2008) Periodic orbits, localization in normal mode space, and the FermiPastaUlam problem. Am J Phys 76: 453.
64. Flach S, Ponno A (2008) The FermiPastaUlam problem: periodic orbits, normal forms and resonance overlap criteria. Phys D 237: 908–917.
65. GarciaMata I, Shepelyansky DL (2009) Delocalization induced by nonlinearity in systems with disorder. Phys Rev E 79: 026205.
66. Hairer E, Nørsett SP, Wanner G (1993) Solving Ordinary Differential Equations I: Nonstiff Problems, 2Ed., Berlin: Springer, Vol. 14.
67. Barrio R (2005) Performance of the Taylor series method for ODEs/DAEs. Appl Math Comput 163: 525–545.
68. Abad A, Barrio R, Blesa F, et al. (2012) Algorithm 924: TIDES, a Taylor series integrator for differential equations. ACM Math Software 39: 5.
69. Taylor series Integrator for Differential Equations. Available from: https://sourceforge.net/projects/tidesodes/.
70. Gröbner W (1967) Die LieReihen und ihre Anwendungen. Berlin: Deutscher Verlag der Wissenschaften.
71. Blanes S, Casas F (2016) A Concise Introduction to Geometric Numerical Integration. In series of Monographs and Research Notes in Mathematics, Chapman and Hall/CRC.
72. Hanslmeier A, Dvorak R (1984) Numerical integration with Lie series. Astron Astrophys 132: 203–207.
73. Eggl S, Dvorak R (2010) An introduction to common numerical integration codes used in dynamical astronomy. Lect Notes Phys 790: 431–480.
74. Fortran and Matlab Codes. Available from: http://www.unige.ch/˜hairer/software.html .
75. Boreux J, Carletti T, Hubaux C (2010) High order explicit symplectic integrators for the Discrete Non Linear Schrödinger equation. Report naXys 09, arXiv:1012.3242.
76. Laskar J (2003) Chaos in the solar system. Ann Henri Poincaré 4: 693–705.
77. Leimkuhler B, Reich S (2004) Simulating Hamiltonian Dynamics. UK: Cambridge University Press, Vol. 14.
78. Lasagni FM (1988) Canonical RungeKutta methods. ZAMP 39: 952–953.
79. SanzSerna JM (1988) RungeKutta schemes for Hamiltonian systems. BIT Numer Math 28: 877–883.
80. Yoshida H (1990) Construction of higher order symplectic integrator. Phys Lett A 150: 262–268.
81. Suzuki M (1990) Fractal decomposition of exponential operators with applications to manybody theories and Monte Carlo simulations. Phys Lett A 146: 319–323.
82. Yoshida H (1993) Recent progress in the theory and application of symplectic integrators. Celest Mech Dyn Astr 56: 27–43.
83. Ruth RD (1983) A canonical integration technique. IEEE Trans Nucl Sci 30: 2669–2671.
84. McLachlan RI (1995) Composition methods in the presence of small parameters. BIT Numer Math 35: 258–268.
85. Farrés A, Laskar J, Blanes S, et al. (2013) High precision symplectic integrators for the solar system. Celest Mech Dyn Astr 116: 141–174.
86. Iserles A, Quispel GRW (2018) Why geometric numerical integration? In: EbrahimiFard, K., Barbero Liñán, M. Editors, Discrete Mechanics, Geometric Integration and LieButcher Series, Springer, Cham.
87. Forest E, Ruth RD (1990) Fourthorder symplectic integration. Phys D 43: 105–117.
88. Kahan W, Li RC (1997) Composition constants for raising the orders of unconventional schemes for ordinary differential equations. Math Comput Am Math Soc 66: 1089–1099.
89. Sofroniou M, Spaletta G (2005) Derivation of symmetric composition constants for symmetric integrators. Optim Method Soft 20: 597–613.
90. Blanes S, Moan PC (2001) Practical symplectic partitioned RungeKutta and RungeKuttaNyström methods. J Comput Appl Math 142: 313–330.
91. Hillebrand M, Kalosakas G, Schwellnus A, et al. (2019) Heterogeneity and chaos in the Peyrard BishopDauxois DNA model. Phys Rev E 99: 022213.
92. Laskar J, Vaillant T (2019) Dedicated symplectic integrators for rotation motions. Celest Mech Dyn Astr 131: 15.
93. Koseleff PV (1996) Exhaustive search of symplectic integrators using computer algebra. Integr Algorithms Classical Mech 10: 103–120.
94. Benettin G, Galgani L, Giorgilli A, et al. (1976) Kolmogorov entropy and numerical experiments. Phys Rev A 14: 2338–2345.
95. All simulations were performed on the IBSPCS cluster, which uses Intel(R) Xeon(R) E52620 v3 processors. All codes were written in Fortran90 language and were compiled by using the gfortran compiler ( https://gcc.gnu.org/ ) with O3 optimization flag. No advanced vectorization mode has been implemented.
96. All simulations were performed on a workstation using 3.00 GHz Intel Xeon E52623 processors. All codes were written in Fortran90 language and were compiled by using the gfortran compiler ( https://gcc.gnu.org/ ) with O3 optimization flag. No advanced vectorization mode has been implemented.
97. Rasmussen K, Cretegny T, Kevrekidis PG, et al. (2000) Statistical mechanics of a discrete nonlinear system. Phys Rev Lett 84: 3740–3743.
98. Skokos Ch, Manos T (2016) The Smaller (SALI) and the Generalized (GALI) alignment indices: Efficient methods of chaos detection. Lect Notes Phys 915: 129–181.
99. Achilleos V, Theocharis G, Skokos Ch (2016) Energy transport in onedimensional disordered granular solids. Phys Rev E 93: 022903.
100. Livi R, Pettini M, Ruffo S, et al. (1987) Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics. J Stat Phys 48: 539–559.
101. Binder P, Abraimov D, Ustinov AV, et al. (2000) Observation of breathers in Josephson ladders. Phys Rev Lett 84: 745–748.
102. Blackburn JA, Cirillo M, GrønbechJensen N (2016) A survey of classical and quantum interpretations of experiments on Josephson junctions at very low temperatures. Phys Rep 611: 1–34.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)