Commentary Topical Sections

A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition

  • Received: 11 May 2018 Accepted: 13 June 2018 Published: 22 June 2018
  • Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer.

    Citation: Jack C. Leo, Dirk Linke. A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition[J]. AIMS Microbiology, 2018, 4(3): 455-468. doi: 10.3934/microbiol.2018.3.455

    Related Papers:

    [1] Chenxi Dai, ZhiWang, Weiming Wang, Yongqin Li, Kaifa Wang . Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease inWenzhou, China. Mathematical Biosciences and Engineering, 2019, 16(4): 2168-2188. doi: 10.3934/mbe.2019106
    [2] Yong Li, Meng Huang, Li Peng . A multi-group model for estimating the transmission rate of hand, foot and mouth disease in mainland China. Mathematical Biosciences and Engineering, 2019, 16(4): 2305-2321. doi: 10.3934/mbe.2019115
    [3] Lei Shi, Hongyong Zhao, Daiyong Wu . Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China. Mathematical Biosciences and Engineering, 2019, 16(1): 474-500. doi: 10.3934/mbe.2019022
    [4] Elamin H. Elbasha . Model for hepatitis C virus transmissions. Mathematical Biosciences and Engineering, 2013, 10(4): 1045-1065. doi: 10.3934/mbe.2013.10.1045
    [5] Rong Yuan, Yangjun Ma, Congcong Shen, Jinqing Zhao, Xiaofeng Luo, Maoxing Liu . Global dynamics of COVID-19 epidemic model with recessive infection and isolation. Mathematical Biosciences and Engineering, 2021, 18(2): 1833-1844. doi: 10.3934/mbe.2021095
    [6] Francesca Verrilli, Hamed Kebriaei, Luigi Glielmo, Martin Corless, Carmen Del Vecchio . Effects of selection and mutation on epidemiology of X-linked genetic diseases. Mathematical Biosciences and Engineering, 2017, 14(3): 755-775. doi: 10.3934/mbe.2017042
    [7] Jia Li . Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences and Engineering, 2010, 7(1): 99-121. doi: 10.3934/mbe.2010.7.99
    [8] Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066
    [9] Mingtao Li, Xin Pei, Juan Zhang, Li Li . Asymptotic analysis of endemic equilibrium to a brucellosis model. Mathematical Biosciences and Engineering, 2019, 16(5): 5836-5850. doi: 10.3934/mbe.2019291
    [10] Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu . Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1407-1424. doi: 10.3934/mbe.2017073
  • Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer.


    [1] Klauser T, Pohlner J, Meyer TF (1993) The secretion pathway of IgA protease-type proteins in Gram-negative bacteria. Bioessays 15: 799–805. doi: 10.1002/bies.950151205
    [2] Pohlner J, Halter R, Beyreuther K, et al. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458–462. doi: 10.1038/325458a0
    [3] Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J 9: 1991–1999.
    [4] Nicolay T, Vanderleyden J, Spaepen S (2015) Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 41: 109–123. doi: 10.3109/1040841X.2013.804032
    [5] Henderson IR, Navarro-Garcia F, Desvaux M, et al. (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68: 692–744. doi: 10.1128/MMBR.68.4.692-744.2004
    [6] Fan E, Chauhan N, Udatha DB, et al. (2016) Type V secretion systems in bacteria. Microbiol Spectr 4.
    [7] Guerin J, Bigot S, Schneider R, et al. (2017) Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front Cell Infect Mi 7: 148. doi: 10.3389/fcimb.2017.00148
    [8] Bassler J, Alvarez BH, Hartmann MD, et al. (2015) A domain dictionary of trimeric autotransporter adhesins. Int J Med Microbiol 305: 265–275. doi: 10.1016/j.ijmm.2014.12.010
    [9] Linke D, Riess T, Autenrieth IB, et al. (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14: 264–270. doi: 10.1016/j.tim.2006.04.005
    [10] Salacha R, Kovacic F, Brochier-Armanet C, et al. (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 12: 1498–1512.
    [11] Casasanta MA, Yoo CC, Smith HB, et al. (2017) A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J Biol Chem 292: 20240–20254. doi: 10.1074/jbc.M117.819144
    [12] Leo JC, Oberhettinger P, Schutz M, et al. (2015) The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 305: 276–282. doi: 10.1016/j.ijmm.2014.12.011
    [13] Wu T, Malinverni J, Ruiz N, et al. (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121: 235–245. doi: 10.1016/j.cell.2005.02.015
    [14] Knowles TJ, Scott-Tucker A, Overduin M, et al. (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7: 206–214. doi: 10.1038/nrmicro2069
    [15] Malinverni JC, Werner J, Kim S, et al. (2006) YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61: 151–164. doi: 10.1111/j.1365-2958.2006.05211.x
    [16] Sklar JG, Wu T, Gronenberg LS, et al. (2007) Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. P Natl Acad Sci USA 104: 6400–6405. doi: 10.1073/pnas.0701579104
    [17] Robert V, Volokhina EB, Senf F, et al. (2006) Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4: e377. doi: 10.1371/journal.pbio.0040377
    [18] Noinaj N, Kuszak AJ, Gumbart JC, et al. (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501: 385–390. doi: 10.1038/nature12521
    [19] Gu Y, Li H, Dong H, et al. (2016) Structural basis of outer membrane protein insertion by the BAM complex. Nature 531: 64–69. doi: 10.1038/nature17199
    [20] Han L, Zheng J, Wang Y, et al. (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23: 192–196. doi: 10.1038/nsmb.3181
    [21] Albrecht R, Schutz M, Oberhettinger P, et al. (2014) Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallogr D Biol Crystallogr 70: 1779–1789. doi: 10.1107/S1399004714007482
    [22] Bakelar J, Buchanan SK, Noinaj N (2016) The structure of the beta-barrel assembly machinery complex. Science 351: 180–186. doi: 10.1126/science.aad3460
    [23] Iadanza MG, Higgins AJ, Schiffrin B, et al. (2016) Lateral opening in the intact beta-barrel assembly machinery captured by cryo-EM. Nat Commun 7: 12865. doi: 10.1038/ncomms12865
    [24] Noinaj N, Kuszak AJ, Balusek C, et al. (2014) Lateral opening and exit pore formation are required for BamA function. Structure 22: 1055–1062. doi: 10.1016/j.str.2014.05.008
    [25] Gatzeva-Topalova PZ, Warner LR, Pardi A, et al. (2010) Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18: 1492–1501. doi: 10.1016/j.str.2010.08.012
    [26] Gatzeva-Topalova PZ, Walton TA, Sousa MC (2008) Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16: 1873–1881. doi: 10.1016/j.str.2008.09.014
    [27] Knowles TJ, Jeeves M, Bobat S, et al. (2008) Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 68: 1216–1227. doi: 10.1111/j.1365-2958.2008.06225.x
    [28] Lee J, Xue M, Wzorek JS, et al. (2016) Characterization of a stalled complex on the beta-barrel assembly machine. P Natl Acad Sci USA 113: 8717–8722. doi: 10.1073/pnas.1604100113
    [29] Schiffrin B, Calabrese AN, Higgins AJ, et al. (2017) Effects of periplasmic chaperones and membrane thickness on BamA-catalyzed outer-membrane protein folding. J Mol Biol 429: 3776–3792. doi: 10.1016/j.jmb.2017.09.008
    [30] Hohr AIC, Lindau C, Wirth C, et al. (2018) Membrane protein insertion through a mitochondrial beta-barrel gate. Science 359.
    [31] Jain S, Goldberg MB (2007) Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189: 5393–5398. doi: 10.1128/JB.00228-07
    [32] Sauri A, Soprova Z, Wickstrom D, et al. (2009) The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155: 3982–3991. doi: 10.1099/mic.0.034991-0
    [33] Lehr U, Schutz M, Oberhettinger P, et al. (2010) C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol Microbiol 78: 932–946. doi: 10.1111/j.1365-2958.2010.07377.x
    [34] Oberhettinger P, Leo JC, Linke D, et al. (2015) The inverse autotransporter intimin exports its passenger domain via a hairpin intermediate. J Biol Chem 290: 1837–1849. doi: 10.1074/jbc.M114.604769
    [35] Albenne C, Ieva R (2017) Job contenders: roles of the beta-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 106: 505–517. doi: 10.1111/mmi.13832
    [36] Pavlova O, Peterson JH, Ieva R, et al. (2013) Mechanistic link between beta barrel assembly and the initiation of autotransporter secretion. P Natl Acad Sci USA 110: E938–E947. doi: 10.1073/pnas.1219076110
    [37] Noinaj N, Gumbart JC, Buchanan SK (2017) The beta-barrel assembly machinery in motion. Nat Rev Microbiol 15: 197–204. doi: 10.1038/nrmicro.2016.191
    [38] Arnold T, Zeth K, Linke D (2010) Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 285: 18003–18015. doi: 10.1074/jbc.M110.112516
    [39] Koenig P, Mirus O, Haarmann R, et al. (2010) Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J Biol Chem 285: 18016–18024. doi: 10.1074/jbc.M110.112649
    [40] Bos MP, Grijpstra J, Tommassen-van Boxtel R, et al. (2014) Involvement of Neisseria meningitidis lipoprotein GNA2091 in the assembly of a subset of outer membrane proteins. J Biol Chem 289: 15602–15610. doi: 10.1074/jbc.M113.539510
    [41] Volokhina EB, Beckers F, Tommassen J, et al. (2009) The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 191: 7074–7085. doi: 10.1128/JB.00737-09
    [42] Anwari K, Webb CT, Poggio S, et al. (2012) The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol Microbiol 84: 832–844. doi: 10.1111/j.1365-2958.2012.08059.x
    [43] Paramasivam N, Habeck M, Linke D (2012) Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not? BMC Genomics 13: 510. doi: 10.1186/1471-2164-13-510
    [44] Volokhina EB, Grijpstra J, Beckers F, et al. (2013) Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery. PLoS One 8: e85799. doi: 10.1371/journal.pone.0085799
    [45] Webb CT, Heinz E, Lithgow T (2012) Evolution of the beta-barrel assembly machinery. Trends Microbiol 20: 612–620. doi: 10.1016/j.tim.2012.08.006
    [46] Iqbal H, Kenedy MR, Lybecker M, et al. (2016) The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 102: 757–774. doi: 10.1111/mmi.13492
    [47] Selkrig J, Mosbahi K, Webb CT, et al. (2012) Discovery of an archetypal protein transport system in bacterial outer membranes. Nat Struct Mol Biol 19: 506–510. doi: 10.1038/nsmb.2261
    [48] Gruss F, Zahringer F, Jakob RP, et al. (2013) The structural basis of autotransporter translocation by TamA. Nat Struct Mol Biol 20: 1318–1320. doi: 10.1038/nsmb.2689
    [49] Josts I, Stubenrauch CJ, Vadlamani G, et al. (2017) The structure of a conserved domain of TamB reveals a hydrophobic beta taco fold. Structure 25: 1898–1906. doi: 10.1016/j.str.2017.10.002
    [50] Shen HH, Leyton DL, Shiota T, et al. (2014) Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat Commun 5: 5078. doi: 10.1038/ncomms6078
    [51] Stubenrauch C, Belousoff MJ, Hay ID, et al. (2016) Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat Microbiol 1: 16064. doi: 10.1038/nmicrobiol.2016.64
    [52] Kang'ethe W, Bernstein HD (2013) Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. P Natl Acad Sci USA 110: E4246–E4255. doi: 10.1073/pnas.1310345110
    [53] Norell D, Heuck A, Tran-Thi TA, et al. (2014) Versatile in vitro system to study translocation and functional integration of bacterial outer membrane proteins. Nat Commun 5: 5396. doi: 10.1038/ncomms6396
    [54] Heinz E, Stubenrauch CJ, Grinter R, et al. (2016) Conserved features in the structure, mechanism, and biogenesis of the inverse autotransporter protein family. Genome Biol Evol 8: 1690–1705. doi: 10.1093/gbe/evw112
    [55] Heinz E, Lithgow T (2014) A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 5: 370.
    [56] Heinz E, Selkrig J, Belousoff MJ, et al. (2015) Evolution of the Translocation and Assembly Module (TAM). Genome Biol Evol 7: 1628–1643. doi: 10.1093/gbe/evv097
    [57] Remmert M, Biegert A, Linke D, et al. (2010) Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin. Mol Biol Evol 27: 1348–1358. doi: 10.1093/molbev/msq017
    [58] Remmert M, Linke D, Lupas AN, et al. (2009) HHomp-prediction and classification of outer membrane proteins. Nucleic Acids Res 37: W446–W451. doi: 10.1093/nar/gkp325
    [59] Kleinschmidt JH (2015) Folding of beta-barrel membrane proteins in lipid bilayers-Unassisted and assisted folding and insertion. BBA-Biomembranes 1848: 1927–1943. doi: 10.1016/j.bbamem.2015.05.004
    [60] Kleinschmidt JH (2003) Membrane protein folding on the example of outer membrane protein A of Escherichia coli. Cell Mol Life Sci 60: 1547–1558. doi: 10.1007/s00018-003-3170-0
    [61] Shahid SA, Bardiaux B, Franks WT, et al. (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9: 1212–1217. doi: 10.1038/nmeth.2248
    [62] Junker M, Besingi RN, Clark PL (2009) Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol 71: 1323–1332. doi: 10.1111/j.1365-2958.2009.06607.x
    [63] Sikdar R, Peterson JH, Anderson DE, et al. (2017) Folding of a bacterial integral outer membrane protein is initiated in the periplasm. Nat Commun 8: 1309. doi: 10.1038/s41467-017-01246-4
    [64] Ieva R, Skillman KM, Bernstein HD (2008) Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol Microbiol 67: 188–201.
    [65] Grin I, Hartmann MD, Sauer G, et al. (2014) A trimeric lipoprotein assists in trimeric autotransporter biogenesis in enterobacteria. J Biol Chem 289: 7388–7398. doi: 10.1074/jbc.M113.513275
    [66] Ishikawa M, Yoshimoto S, Hayashi A, et al. (2016) Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan. Mol Microbiol 101: 394–410. doi: 10.1111/mmi.13398
    [67] Leo JC, Grin I, Linke D (2012) Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 367: 1088–1101. doi: 10.1098/rstb.2011.0208
    [68] Alvarez BH, Gruber M, Ursinus A, et al. (2010) A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J Struct Biol 170: 236–245. doi: 10.1016/j.jsb.2010.02.009
    [69] Leo JC, Lyskowski A, Hattula K, et al. (2011) The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins. Structure 19: 1021–1030.
    [70] Mikula KM, Leo JC, Lyskowski A, et al. (2012) The translocation domain in trimeric autotransporter adhesins is necessary and sufficient for trimerization and autotransportation. J Bacteriol 194: 827–838. doi: 10.1128/JB.05322-11
  • This article has been cited by:

    1. Fan Xia, Feng Deng, Hui Tian, Wei He, Yanni Xiao, Xiaodan Sun, Estimation of the reproduction number and identification of periodicity for HFMD infections in northwest China, 2020, 484, 00225193, 110027, 10.1016/j.jtbi.2019.110027
    2. Lei Zhang, Maoxing Liu, Qiang Hou, Dynamical analysis of a mathematical model of disease spreading on networks with symptomatic and asymptomatic infectors, 2021, 44, 0170-4214, 3771, 10.1002/mma.6981
    3. Lei Shi, Hongyong Zhao, Daiyong Wu, Modeling Periodic HFMD with the Effect of Vaccination in Mainland China, 2020, 2020, 1076-2787, 1, 10.1155/2020/8763126
    4. Jinyan Wang, Yanni Xiao, Robert A. Cheke, Modelling the effects of contaminated environments on HFMD infections in mainland China, 2016, 140, 03032647, 1, 10.1016/j.biosystems.2015.12.001
    5. Zuqin Ding, Yong Li, Yongli Cai, Yueping Dong, Weiming Wang, Optimal Control Strategies of HFMD in Wenzhou, China, 2020, 2020, 1076-2787, 1, 10.1155/2020/5902698
    6. Wang Li, Xinjie Fu, Yongzheng Sun, Maoxing Liu, Dynamical Analysis of a Mathematical Model of COVID-19 Spreading on Networks, 2021, 8, 2296-424X, 10.3389/fphy.2020.601459
    7. Jinyan Wang, Yanni Xiao, Zhihang Peng, Modelling seasonal HFMD infections with the effects of contaminated environments in mainland China, 2016, 274, 00963003, 615, 10.1016/j.amc.2015.11.035
    8. Pengwei Lou, Lei Wang, Xueliang Zhang, Jiabo Xu, Kai Wang, Modelling Seasonal Brucellosis Epidemics in Bayingolin Mongol Autonomous Prefecture of Xinjiang, China, 2010–2014, 2016, 2016, 2314-6133, 1, 10.1155/2016/5103718
    9. Zhiyi Yang, Jiayuan Hao, Shuqiong Huang, Wenwen Yang, Zhongmin Zhu, Liqiao Tian, Yuanan Lu, Hao Xiang, Suyang Liu, Acute effects of air pollution on the incidence of hand, foot, and mouth disease in Wuhan, China, 2020, 225, 13522310, 117358, 10.1016/j.atmosenv.2020.117358
    10. Lei Shi, Hongyong Zhao, Daiyong Wu, A reaction-diffusion HFMD model with nonsmooth treatment function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03294-z
    11. Jia Rui, Kaiwei Luo, Qiuping Chen, Dexing Zhang, Qinglong Zhao, Yanhong Zhang, Xiongjie Zhai, Zeyu Zhao, Siyu Zhang, Yuxue Liao, Shixiong Hu, Lidong Gao, Zhao Lei, Mingzhai Wang, Yao Wang, Xingchun Liu, Shanshan Yu, Fang Xie, Jia Li, Ruoyun Liu, Yi-Chen Chiang, Benhua Zhao, Yanhua Su, Xu-Sheng Zhang, Tianmu Chen, Wen-Ping Guo, Early warning of hand, foot, and mouth disease transmission: A modeling study in mainland, China, 2021, 15, 1935-2735, e0009233, 10.1371/journal.pntd.0009233
    12. Jie Li, Yanjun Fu, Ancha Xu, Zumu Zhou, Weiming Wang, A Spatial-Temporal ARMA Model of the Incidence of Hand, Foot, and Mouth Disease in Wenzhou, China, 2014, 2014, 1085-3375, 1, 10.1155/2014/238724
    13. Yeting Zhu, Boyang Xu, Xinze Lian, Wang Lin, Zumu Zhou, Weiming Wang, A Hand-Foot-and-Mouth Disease Model with Periodic Transmission Rate in Wenzhou, China, 2014, 2014, 1085-3375, 1, 10.1155/2014/234509
    14. Haikun Qian, Da Huo, Xiaoli Wang, Lei Jia, Xitai Li, Jie Li, Zhiyong Gao, Baiwei Liu, Yi Tian, Xiaona Wu, Quanyi Wang, Detecting spatial-temporal cluster of hand foot and mouth disease in Beijing, China, 2009-2014, 2016, 16, 1471-2334, 10.1186/s12879-016-1547-6
    15. Sudarat Chadsuthi, Surapa Wichapeng, The Modelling of Hand, Foot, and Mouth Disease in Contaminated Environments in Bangkok, Thailand, 2018, 2018, 1748-670X, 1, 10.1155/2018/5168931
    16. Junni Wei, Alana Hansen, Qiyong Liu, Yehuan Sun, Phil Weinstein, Peng Bi, Rebekah Crockett Kading, The Effect of Meteorological Variables on the Transmission of Hand, Foot and Mouth Disease in Four Major Cities of Shanxi Province, China: A Time Series Data Analysis (2009-2013), 2015, 9, 1935-2735, e0003572, 10.1371/journal.pntd.0003572
    17. Juliet N. Nakakawa, Joseph Y. T. Mugisha, Michael W. Shaw, Eldad Karamura, Banana Xanthomonas wilt dynamics with mixed cultivars in a periodic environment, 2020, 13, 1793-5245, 2050005, 10.1142/S1793524520500059
    18. Hongyong Zhao, Lei Shi, Jing Wang, Kai Wang, A stage structure HFMD model with temperature-dependent latent period, 2021, 93, 0307904X, 745, 10.1016/j.apm.2021.01.010
    19. Yong Li, Lianwen Wang, Liuyong Pang, Sanhong Liu, The data fitting and optimal control of a hand, foot and mouth disease (HFMD) model with stage structure, 2016, 276, 00963003, 61, 10.1016/j.amc.2015.11.090
    20. Hao Wang, Zhaohui Du, Xianjun Wang, Yunxia Liu, Zhongshang Yuan, Yanxun Liu, Fuzhong Xue, Detecting the association between meteorological factors and hand, foot, and mouth disease using spatial panel data models, 2015, 34, 12019712, 66, 10.1016/j.ijid.2015.03.007
    21. Yong Li, Jinhui Zhang, Xinan Zhang, Modeling and Preventive Measures of Hand, Foot and Mouth Disease (HFMD) in China, 2014, 11, 1660-4601, 3108, 10.3390/ijerph110303108
    22. Zhicheng Zhan, Weihua Dong, Yongmei Lu, Peng Yang, Quanyi Wang, Peng Jia, Real-Time Forecasting of Hand-Foot-and-Mouth Disease Outbreaks using the Integrating Compartment Model and Assimilation Filtering, 2019, 9, 2045-2322, 10.1038/s41598-019-38930-y
    23. Rong Yuan, Yangjun Ma, Congcong Shen, Jinqing Zhao, Xiaofeng Luo, Maoxing Liu, Global dynamics of COVID-19 epidemic model with recessive infection and isolation, 2021, 18, 1551-0018, 1833, 10.3934/mbe.2021095
    24. Lei Shi, Hongyong Zhao, Daiyong Wu, Dynamical analysis for a reaction-diffusion HFMD model with nonsmooth saturation treatment function, 2021, 95, 10075704, 105593, 10.1016/j.cnsns.2020.105593
    25. Ruiqing Shi, Ting Lu, Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth Disease, 2020, 64, 1598-5865, 565, 10.1007/s12190-020-01369-w
    26. I. A. Moneim, G. A. Mosa, A realistic model for the periodic dynamics of the hand-foot-and-mouth disease, 2022, 7, 2473-6988, 2585, 10.3934/math.2022145
    27. Xiaohong Jiang, Yue Ma, Qiang Lv, Yaqiong Liu, Tao Zhang, Fei Yin, Tiejun Shui, Influence of social and meteorological factors on hand, foot, and mouth disease in Sichuan Province, 2023, 23, 1471-2458, 10.1186/s12889-023-15699-4
    28. Changlei Tan, Shuang Li, Yong Li, Zhihang Peng, Dynamic modeling and data fitting of climatic and environmental factors and people's behavior factors on hand, foot, and mouth disease (HFMD) in Shanghai, China, 2023, 24058440, e18212, 10.1016/j.heliyon.2023.e18212
    29. Tongrui Zhang, Zhijie Zhang, Zhiyuan Yu, Qimin Huang, Daozhou Gao, Effects of behaviour change on HFMD transmission, 2023, 17, 1751-3758, 10.1080/17513758.2023.2244968
    30. You Zhou, Beibei Zhang, Zhi Ling, DYNAMICAL BEHAVIOR OF THE FECAL-ORAL TRANSMISSION DISEASES MODEL ON A T-PERIODIC EVOLUTION DOMAIN, 2024, 14, 2156-907X, 717, 10.11948/20230025
    31. Hui Wang, Weihua Li, Lei Shi, Gaofang Chen, Zhengwen Tu, Modeling and analysis of the effect of optimal virus control on the spread of HFMD, 2024, 14, 2045-2322, 10.1038/s41598-024-56839-z
    32. Ling Xue, Yuqing Ren, Wei Sun, Ting Wang, Modelling the dynamics of hand, foot, and mouth disease transmission through fomites and immigration, 2024, 0170-4214, 10.1002/mma.10075
    33. Siti Nurleena Abu Mansor, Majid Khan Majahar Ali, Farah Aini Abdullah, 2024, 3150, 0094-243X, 030019, 10.1063/5.0228542
    34. Aili Wang, Duo Bai, Jingming He, Stacey R. Smith, Optimal control of bi-seasonal hand, foot and mouth disease in mainland China suggests transmission from children and isolating older infected individuals are critical, 2024, 89, 0303-6812, 10.1007/s00285-024-02141-5
    35. Panpan Zhang, Qiang Zhang, Xuerui Wei, Qianqian Cui, Modeling and analysis of a class of epidemic models with asymptomatic infection and transmission heterogeneity, 2025, 1598-5865, 10.1007/s12190-025-02417-z
    36. 永谦 高, Analysis of Hand-Foot-Mouth Disease Models with Limited Medical Resources, 2025, 14, 2324-7991, 269, 10.12677/aam.2025.147363
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7066) PDF downloads(802) Cited by(13)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog