Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Intracellular proteins moonlighting as bacterial adhesion factors

  • Received: 28 February 2018 Accepted: 22 May 2018 Published: 31 May 2018
  • Pathogenic and commensal, or probiotic, bacteria employ adhesins on the cell surface to attach to and interact with the host. Dozens of the adhesins that play key roles in binding to host cells or extracellular matrix were originally identified as intracellular chaperones or enzymes in glycolysis or other central metabolic pathways. Proteins that have two very different functions, often in two different subcellular locations, are referred to as moonlighting proteins. The intracellular/surface moonlighting proteins do not contain signal sequences for secretion or known sequence motifs for binding to the cell surface, so in most cases is not known how these proteins are secreted or how they become attached to the cell surface. A secretion system in which a large portion of the pool of each protein remains inside the cell while some of the pool of the protein is partitioned to the cell surface has not been identified. This may involve a novel version of a known secretion system or it may involve a novel secretion system. Understanding the processes by which intracellular/cell surface moonlighting proteins are targeted to the cell surface could provide novel protein targets for the development of small molecules that block secretion and/or association with the cell surface and could serve as lead compounds for the development of novel antibacterial therapeutics.

    Citation: Constance Jeffery. Intracellular proteins moonlighting as bacterial adhesion factors[J]. AIMS Microbiology, 2018, 4(2): 362-376. doi: 10.3934/microbiol.2018.2.362

    Related Papers:

    [1] Wan-Chen Zhao, Xin-Hui Shao . New matrix splitting iteration method for generalized absolute value equations. AIMS Mathematics, 2023, 8(5): 10558-10578. doi: 10.3934/math.2023536
    [2] Li-Tao Zhang, Xian-Yu Zuo, Shi-Liang Wu, Tong-Xiang Gu, Yi-Fan Zhang, Yan-Ping Wang . A two-sweep shift-splitting iterative method for complex symmetric linear systems. AIMS Mathematics, 2020, 5(3): 1913-1925. doi: 10.3934/math.2020127
    [3] Chen-Can Zhou, Qin-Qin Shen, Geng-Chen Yang, Quan Shi . A general modulus-based matrix splitting method for quasi-complementarity problem. AIMS Mathematics, 2022, 7(6): 10994-11014. doi: 10.3934/math.2022614
    [4] Yajun Xie, Changfeng Ma . The hybird methods of projection-splitting for solving tensor split feasibility problem. AIMS Mathematics, 2023, 8(9): 20597-20611. doi: 10.3934/math.20231050
    [5] Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698
    [6] ShiLiang Wu, CuiXia Li . A special shift splitting iteration method for absolute value equation. AIMS Mathematics, 2020, 5(5): 5171-5183. doi: 10.3934/math.2020332
    [7] Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428
    [8] Junxiang Lu, Chengyi Zhang . On the strong P-regular splitting iterative methods for non-Hermitian linear systems. AIMS Mathematics, 2021, 6(11): 11879-11893. doi: 10.3934/math.2021689
    [9] Huiling Wang, Zhaolu Tian, Yufeng Nie . The HSS splitting hierarchical identification algorithms for solving the Sylvester matrix equation. AIMS Mathematics, 2025, 10(6): 13476-13497. doi: 10.3934/math.2025605
    [10] Dongmei Yu, Yiming Zhang, Cairong Chen, Deren Han . A new relaxed acceleration two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. AIMS Mathematics, 2023, 8(6): 13368-13389. doi: 10.3934/math.2023677
  • Pathogenic and commensal, or probiotic, bacteria employ adhesins on the cell surface to attach to and interact with the host. Dozens of the adhesins that play key roles in binding to host cells or extracellular matrix were originally identified as intracellular chaperones or enzymes in glycolysis or other central metabolic pathways. Proteins that have two very different functions, often in two different subcellular locations, are referred to as moonlighting proteins. The intracellular/surface moonlighting proteins do not contain signal sequences for secretion or known sequence motifs for binding to the cell surface, so in most cases is not known how these proteins are secreted or how they become attached to the cell surface. A secretion system in which a large portion of the pool of each protein remains inside the cell while some of the pool of the protein is partitioned to the cell surface has not been identified. This may involve a novel version of a known secretion system or it may involve a novel secretion system. Understanding the processes by which intracellular/cell surface moonlighting proteins are targeted to the cell surface could provide novel protein targets for the development of small molecules that block secretion and/or association with the cell surface and could serve as lead compounds for the development of novel antibacterial therapeutics.


    Consider large sparse linear matrix equation

    $ AXB=C, $ (1.1)

    where $ A\in \mathbb{C}^{m \times m} $ and $ B\in \mathbb{C}^{n \times n} $ are non-Hermitian positive definite matrices, $ C\in \mathbb{C}^{m \times n} $ is a given complex matrix. In many areas of scientific computation and engineering applications, such as signal and image processing [9,20], control theory [11], photogrammetry [19], we need to solve such matrix equations. Therefore, solving such matrix equations by efficient methods is a very important topic.

    We often rewrite the above matrix Eq (1.1) as the following linear system

    $ (BTA)x=c, $ (1.2)

    where the vectors $ \mathbf{x} $ and $ \mathbf{c} $ contain the concatenated columns of the matrices $ X $ and $ C $, respectively, $ \otimes $ being the Kronecker product symbol and $ B^T $ representing the transpose of the matrix $ B $. Although this equivalent linear system can be applied in theoretical analysis, in fact, solving (1.2) is always costly and ill-conditioned.

    So far there are many numerical methods to solve the matrix Eq (1.1). When the coefficient matrices are not large, we can use some direct algorithms, such as the QR-factorization-based algorithms [13,28]. Iterative methods are usually employed for large sparse matrix Eq (1.1), for instance, least-squares-based iteration methods [26] and gradient-based iteration methods [25]. Moreover, the nested splitting conjugate gradient (NSCG) iterative method, which was first proposed by Axelsson, Bai and Qiu in [1] to solve linear systems, was considered for the matrix Eq (1.1) in [14].

    Bai, Golub and Ng originally established the efficient Hermitian and skew-Hermitian splitting (HSS) iterative method [5] for linear systems with non-Hermitian positive definite coefficient matrices. Subsequently, some HSS-based methods were further considered to improve its robustness for linear systems; see [3,4,8,17,24,27] and other literature. For solving the continuous Sylvester equation, Bai recently established the HSS iteration method [2]. Hereafter, some HSS-based methods were discussed for solving this Sylvester equation [12,15,16,18,22,30,31,32,33]. For the matrix Eq (1.1), Wang, Li and Dai recently use an inner-outer iteration strategy and then proposed an HSS iteration method [23]. According to the discussion in [23], if the quasi-optimal parameter is employed, the upper bound of the convergence rate is equal to that of the CG method. After that, Zhang, Yang and Wu considered a more efficient parameterized preconditioned HSS (PPHSS) iteration method [29] to further improve the efficiency for solving the matrix Eq (1.1), and Zhou, Wang and Zhou presented a modified HSS (MHSS) iteration method [34] for solving a class of complex matrix Eq (1.1).

    Moreover, the shift-splitting (SS) iteration method [7] was first presented by Bai, Yin and Su to solve the ill-conditioned linear systems. Then this splitting method was subsequently considered for solving saddle point problems due to its promising performance; see [10,21] and other literature. In this paper, the SS technique is implemented to solve the matrix Eq (1.1). Some related convergence theorems of the SS method are discussed in detail. Numerical examples demonstrate that the SS is superior to the HSS and NSCG methods, especially when the coefficient matrices are ill-conditioned.

    The content of this paper is arranged as follows. In Section 2 we establish the SS method for solving the matrix Eq (1.1), and then some related convergence properties are studied in Section 3. In Section 4, the effectiveness of our method is illustrated by two numerical examples. Finally, our brief conclusions are given in Section 5.

    Based on the shift-splitting proposed by Bai, Yin and Su in [7], we have the shift-splitting of $ A $ and $ B $ as follows:

    $ A=12(αIm+A)12(αImA), $ (2.1)

    and

    $ B=12(βIn+B)12(βInB), $ (2.2)

    where $ \alpha $ and $ \beta $ are given positive constants.

    Therefore, using the splitting of the matrix $ A $ in (2.1), the following splitting iteration method to solve (1.1) can be defined:

    $ (αIm+A)X(k+1)B=(αImA)X(k)B+2C. $ (2.3)

    Then, from the splitting of the matrix $ B $ in (2.2), we can solve each step of (2.3) iteratively by

    $ (αIm+A)X(k+1,j+1)(βIn+B)=(αIm+A)X(k+1,j)(βInB)+2(αImA)X(k)B+4C. $ (2.4)

    Therefore, we can establish the following shift-splitting (SS) iteration method to solve (1.1).

    Algorithm 1 (The SS iteration method). Given an initial guess $ X^{(0)}\in \mathbb{C}^{m \times n} $, for $ k = 0, 1, 2, \ldots $, until $ X^{(k)} $ converges.

    Approximate the solution of

    $ (αIm+A)Z(k)B=2R(k) $ (2.5)

    with $ R^{(k)} = C-AX^{(k)}B $, i.e., let $ Z^{(k)}: = Z^{(k, j+1)} $ and compute $ Z^{(k, j+1)} $ iteratively by

    $ (αIm+A)Z(k,j+1)(βIn+B)=(αIm+A)Z(k,j)(βInB)+4R(k), $ (2.6)

    once the residual $ P^{(k)} = 2R^{(k)}-(\alpha I_m+A)Z^{(k, j+1)}B $ of the outer iteration (2.5) satisfies

    $ \|P^{(k)}\|_F\leq\varepsilon_k\|R^{(k)}\|_F, $

    where $ \|\cdot\|_F $ denotes the Frobenius norm of a matrix. Then compute

    $ X^{(k+1)} = X^{(k)}+Z^{(k)}. $

    Here, $ \{\varepsilon_k\} $ is a given tolerance. In addition, we can choose efficient methods in the process of computing $ Z^{(k, j+1)} $ in (2.6).

    The pseudo-code of this algorithm is shown as following:

    The pseudo-code of the SS algorithm for matrix equation $ AXB = C $
    1. Given an initial guess $ X^{(0)}\in \mathbb{C}^{m \times n} $
    2. $ R^{(0)} = C-AX^{(0)}B $
    3. For $ k = 0, 1, 2, \ldots, k_{\text{max}} $ Do:
    4. Given an initial guess $ Z^{(k, 0)}\in \mathbb{C}^{m \times n} $
    5. $ P^{(k, 0)} = 2R^{(k)}-(\alpha I_m+A)Z^{(k, 0)}B $
    6. For $ j = 0, 1, 2, \ldots, j_{\text{max}} $ Do:
    7. Compute $ Z^{(k, j+1)} $ iteratively by
      $ (\alpha I_m+A)Z^{(k, j+1)}(\beta I_n+B) = (\alpha I_m+A)Z^{(k, j)}(\beta I_n-B)+4R^{(k)} $
    8. $ P^{(k, j+1)} = 2R^{(k)}-(\alpha I_m+A)Z^{(k, j+1)}B $
    9. If $ \|P^{(k, j+1)}\|_F\leq\varepsilon_k\|R^{(k)}\|_F $ Go To 11
    10. End Do
    11. $ X^{(k+1)} = X^{(k)}+Z^{(k)} $
    12. $ R^{(k+1)} = C-AX^{(k+1)}B $
    13. If $ \|R^{(k+1)}\|_F\leq \text{tol}\|R^{(0)}\|_F $ Stop
    14. End Do

     | Show Table
    DownLoad: CSV

    Remark 1. Because the SS iteration scheme is only a single-step method, a considerable advantage is that it costs less computing workloads than the two-step iteration methods such as the HSS iteration [23] and the modified HSS (MHSS) iteration [34].

    In this section, we denote by

    $ H=12(A+A)andS=12(AA) $

    the Hermitian and skew-Hermitian parts of the matrix $ A $, respectively. Moreover, $ \lambda_{\min} $ and $ \lambda_{\max} $ represent the smallest and the largest eigenvalues of $ H $, respectively, and $ \kappa = \lambda_{\max}/\lambda_{\min} $.

    Firstly, the unconditional convergence property of the SS iteration (2.3) is given as follows.

    Theorem 1. Let $ A\in \mathbb{C}^{m \times m} $ be positive definite, and $ \alpha $ be a positive constant. Denote by

    $ M(α)=In((αIm+A)1(αImA)). $ (3.1)

    Then the convergence factor of the SS iteration method (2.3) is given by the spectral radius $ \rho(M(\alpha)) $ of the matrix $ M(\alpha) $, which is bounded by

    $ φ(α):=(αIm+A)1(αImA)2. $ (3.2)

    Consequently, we have

    $ ρ(M(α))φ(α)<1,α>0, $ (3.3)

    i.e., the SS iteration (2.3) is unconditionally convergent to the exact solution $ X^{\star}\in \mathbb{C}^{m \times n} $ of the matrix Eq (1.1).

    Proof. The SS iteration (2.3) can be reformulated as

    $ X(k+1)=(αIm+A)1(αImA)X(k)+2(αIm+A)1CB1. $ (3.4)

    Using the Kronecker product, we can rewrite (3.3) as follows:

    $ \mathbf{x}^{(k+1)} = M(\alpha)\mathbf{x}^{(k)}+N(\alpha)\mathbf{c}, $

    where $ M(\alpha) $ is the iteration matrix defined in (3.1), and $ N(\alpha) = 2B^{-T}\otimes(\alpha I_m+A)^{-1} $.

    We can easily see that $ \rho(M(\alpha))\leq\varphi(\alpha) $ holds for all $ \alpha > 0 $. From Lemma 2.1 in [8], we can obtain that $ \varphi(\alpha) < 1 $, $ \forall \alpha > 0 $. This completes the proof.

    Noting that the matrix $ (\alpha I_m+A)^{-1}(\alpha I_m-A) $ is an extrapolated Cayley transform of $ A $, from [6], we can obtain another upper bound for the convergence factor of $ \rho(M(\alpha)) $, as well as the minimum point and the corresponding minimal value of this upper bound.

    Theorem 2. Let the conditions of Theorem 1 be satisfied. Denote by

    $ σ(α)=maxλ[λmin,λmax]|αλ|α+λ,ζ(α)=S2α+λmin. $

    Then for the convergence factor of $ \rho(M(\alpha)) $ it holds that

    $ ρ(M(α))((σ(α))2+(ζ(α))21+(ζ(α))2)1/2ϕ(α)<1. $ (3.5)

    Moreover, at

    $ α={λminλmax,forS2λminκ1,λ2min+S22,forS2λminκ1, $ (3.6)

    the function $ \phi(\alpha) $ attains its minimum

    $ ϕ(α)={(η2+τ21+τ2)1/2,forS2λminκ1,(1υ1+υ)1/2,forS2λminκ1, $ (3.7)

    where

    $ η=κ1κ+1,τ=S2(κ+1)λminandυ=λminλ2min+S22. $

    Proof. From Theorem 3.1 in [6], we can directly obtain (3.2)–(3.7).

    Remark 2. $ \alpha_\star $ is called the theoretical quasi-optimal parameter of the SS iteration method. Similarly, the theoretical quasi-optimal parameter $ \beta_\star $ of the inner iterations (2.6) can be also obtained, which has the same form as $ \alpha_\star $.

    In the following, we present another convergence theorem for a new form.

    Theorem 3. Let the conditions of Theorem 1 be satisfied. If $ \{X^{(k)}\}_{k = 0}^{\infty}\subseteq \mathbb{C}^{m \times n} $ is an iteration sequence generated by Algorithm 1 and if $ X^{\star}\in \mathbb{C}^{m \times n} $ is the exact solution of the matrix Eq (1.1), then it holds that

    $ X(k+1)XF(φ(α)+μθεk)X(k)XF,k=0,1,2, $

    where the constants $ \mu $ and $ \theta $ are given by

    $ μ=BT(αIm+A)12,θ=BTA2. $

    In particular, when

    $ φ(α)+μθεmax<1, $ (3.8)

    the iteration sequence $ \{X^{(k)}\}_{k = 0}^{\infty} $ converges to $ X^{\star} $, where $ \varepsilon_{\max} = \max_{k}\{\varepsilon_k\} $.

    Proof. We can rewrite the SS iteration in Algorithm 1 as the following form:

    $ (BT(αIm+A))z(k)=2r(k),x(k+1)=x(k)+z(k), $ (3.9)

    with $ \mathbf{r}^{(k)} = \mathbf{c}-(B^{T}\otimes A)\mathbf{x}^{(k)} $, where $ \mathbf{z}^{(k)} $ is such that the residual

    $ p(k)=2r(k)(BT(αIm+A))z(k) $

    satisfies $ \|\mathbf{p}^{(k)}\|_2\leq\varepsilon_k\|\mathbf{r}^{(k)}\|_2 $.

    In fact, the inexact variant of the SS iteration method for solving the linear system (1.2) is just the above iteration scheme (3.9). From (3.9), we obtain

    $ x(k+1)=x(k)+(BT(αIm+A))1(2r(k)p(k))=x(k)+(BT(αIm+A))1(2c2(BTA)x(k)p(k))=(In((αIm+A)1(αImA)))x(k)+2(BT(αIm+A)1)c(BT(αIm+A)1)p(k). $ (3.10)

    Because $ \mathbf{x}^{\star}\in \mathbb{C}^{n} $ is the exact solution of the linear system (1.2), it must satisfy

    $ x=(In((αIm+A)1(αImA)))x+2(BT(αIm+A)1)c. $ (3.11)

    By subtracting (3.11) from (3.10), we have

    $ x(k+1)x=(In((αIm+A)1(αImA)))(x(k)x)(BT(αIm+A)1)p(k). $ (3.12)

    Taking norms on both sides from (3.12), then

    $ x(k+1)x2In((αIm+A)1(αImA))2x(k)x2+BT(αIm+A)12p(k)2φ(α)x(k)x2+μεkr(k)2. $ (3.13)

    Noticing that

    $ r(k)2=c(BTA)x(k)2=(BTA)(xx(k))2θx(k)x2, $

    by (3.13) the estimate

    $ ||x(k+1)x||2(φ(α)+μθεk)||x(k)x||2,k=0,1,2, $ (3.14)

    can be obtained. Note that for a matrix $ Y\in \mathbb{C}^{m \times n} $, $ \|Y\|_F = ||\mathbf{y}||_2 $, where the vector $ \mathbf{y} $ contains the concatenated columns of the matrix $ Y $. Then the estimate (3.14) can be equivalently rewritten as

    $ X(k+1)XF(φ(α)+μθεk)X(k)XF,k=0,1,2,. $

    So we can easily get the above conclusion.

    Remark 3. From Theorem 3 we know that, in order to guarantee the convergence of the SS iteration, it is not necessary for the condition $ \varepsilon_k\rightarrow 0 $. All we need is that the condition (3.8) is satisfied.

    In this section, two different matrix equations are solved by the HSS, SS and NSCG iteration methods. The efficiencies of the above iteration methods are examined by comparing the number of outer iteration steps (denoted by IT-out), the average number of inner iteration steps (denoted by IT-in-1 and IT-in-2 for the HSS, IT-in for the SS), and the elapsed CPU times (denoted by CPU). The notation "–" shows that no solution has been obtained after 1000 outer iteration steps.

    The initial guess is the zero matrix. All iterations are terminated once $ X^{(k)} $ satisfies

    $ \frac{\|C-AX^{(k)}B\|_F}{\|C\|_F}\leq 10^{-6}. $

    We set $ \varepsilon_k = 0.01 $, $ k = 0, 1, 2, \ldots $ to be the tolerances for all the inner iteration schemes.

    Moreover, in practical computation, we choose direct algorithms to solve all sub-equations involved in each step. We use Cholesky and LU factorization for the Hermitian and non-Hermitian coefficient matrices, respectively.

    Example 1 ([2]) We consider the matrix Eq (1.1) with $ m = n $ and

    $ A=M+5qN+100(n+1)2IandB=M+2qN+100(n+1)2I, $

    where $ M, N\in \mathbb{R}^{n \times n} $ are two tridiagonal matrices as follows:

    $ M=tridiag(1,2,1)andN=tridiag(0.5,0,0.5). $

    In Tables 1 and 2, the theoretical quasi-optimal parameters and experimental optimal parameters of HSS and SS are listed, respectively. In Tables 3 and 4, the numerical results of HSS and SS are listed.

    Table 1.  The theoretical quasi-optimal parameters of HSS and SS for Example 1.
    Method HSS SS
    $ n $ $ q $ $ \alpha_{\text{quasi}} $ $ \beta_{\text{quasi}} $ $ \alpha_{\text{quasi}} $ $ \beta_{\text{quasi}} $
    $ n=16 $ $ q=0.1 $ 1.28 1.28 1.28 1.28
    $ q=0.3 $ 1.28 1.28 1.52 1.28
    $ q=1 $ 1.28 1.28 4.93 2.00
    $ n=32 $ $ q=0.1 $ 0.64 0.64 0.64 0.64
    $ q=0.3 $ 0.64 0.64 1.50 0.64
    $ q=1 $ 0.64 0.64 4.98 1.99
    $ n=64 $ $ q=0.1 $ 0.32 0.32 0.50 0.32
    $ q=0.3 $ 0.32 0.32 1.50 0.60
    $ q=1 $ 0.32 0.32 4.99 2.00
    $ n=128 $ $ q=0.1 $ 0.16 0.16 0.50 0.20
    $ q=0.3 $ 0.16 0.16 1.50 0.60
    $ q=1 $ 0.16 0.16 5.00 2.00

     | Show Table
    DownLoad: CSV
    Table 2.  The experimental optimal iteration parameters of HSS and SS for Example 1.
    Method HSS SS
    $ n $ $ q $ $ \alpha_{\exp} $ $ \beta_{\exp} $ $ \alpha_{\exp} $ $ \beta_{\exp} $
    $ n=16 $ $ q=0.1 $ 1.22 1.14 1.14 0.98
    $ q=0.3 $ 1.40 1.12 1.66 1.16
    $ q=1 $ 1.96 1.30 0.36 1.74
    $ n=32 $ $ q=0.1 $ 1.84 0.72 0.70 0.66
    $ q=0.3 $ 1.04 0.72 1.12 0.68
    $ q=1 $ 1.70 0.90 3.02 0.84
    $ n=64 $ $ q=0.1 $ 3.00 0.40 0.20 0.40
    $ q=0.3 $ 1.10 0.40 0.90 0.50
    $ q=1 $ 1.30 0.60 2.30 0.70
    $ n=128 $ $ q=0.1 $ 3.00 0.30 0.30 0.20
    $ q=0.3 $ 1.10 0.30 0.60 0.30
    $ q=1 $ 1.10 0.80 2.90 0.60

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results of HSS and SS with the theoretical quasi-optimal parameters for Example 1.
    Method HSS SS
    $ n $ $ q $ IT-out IT-in-1 IT-in-2 CPU IT-out IT-in CPU
    $ n=16 $ $ q=0.1 $ 22 7.2 7.0 0.0151 11 4.0 0.0036
    $ q=0.3 $ 16 7.0 7.0 0.0104 9 4.0 0.0029
    $ q=1 $ 20 6.0 6.0 0.0117 17 5.0 0.0078
    $ n=32 $ $ q=0.1 $ 36 14.0 14.0 0.1610 19 6.9 0.0295
    $ q=0.3 $ 33 14.0 14.0 0.1216 15 7.0 0.0269
    $ q=1 $ 39 11.0 11.0 0.1168 24 10.0 0.0472
    $ n=64 $ $ q=0.1 $ 68 28.3 28.3 1.6490 30 13.0 0.2677
    $ q=0.3 $ 74 24.7 24.8 1.5486 27 16.0 0.2906
    $ q=1 $ 87 25.0 25.0 1.8381 35 20.0 0.4377
    $ n=128 $ $ q=0.1 $ 144 54.5 54.7 34.394 57 21.2 4.3253
    $ q=0.3 $ 188 45.1 45.9 36.729 48 35.0 6.2253
    $ q=1 $ 465 52.0 52.0 104.331 52 38.0 6.7005

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results of HSS and SS with the experimental optimal iteration parameters for Example 1.
    Method HSS SS
    $ n $ $ q $ IT-out IT-in-1 IT-in-2 CPU IT-out IT-in CPU
    $ n=16 $ $ q=0.1 $ 19 7.0 7.0 0.0096 11 4.0 0.0023
    $ q=0.3 $ 15 8.0 8.0 0.0093 8 4.0 0.0017
    $ q=1 $ 16 6.0 6.0 0.0070 11 4.0 0.0022
    $ n=32 $ $ q=0.1 $ 29 13.0 13.0 0.0853 18 7.0 0.0227
    $ q=0.3 $ 23 13.0 13.0 0.0667 12 7.0 0.0162
    $ q=1 $ 25 11.0 11.0 0.0637 20 7.0 0.0244
    $ n=64 $ $ q=0.1 $ 118 24.0 24.0 2.0849 30 10.5 0.1952
    $ q=0.3 $ 41 23.0 23.0 0.6952 16 11.1 0.1008
    $ q=1 $ 37 18.0 18.0 0.4733 30 10.0 0.1650
    $ n=128 $ $ q=0.1 $ 229 39.7 39.7 32.032 40 20.5 2.4942
    $ q=0.3 $ 70 35.0 35.0 8.6951 22 18.0 1.2280
    $ q=1 $ 53 38.6 38.6 7.9165 45 14.0 1.7385

     | Show Table
    DownLoad: CSV

    From Tables 3 and 4 it can be observed that, the SS outperforms the HSS for various $ n $ and $ q $, especially when $ q $ is small (the coefficient matrices are ill-conditioned).

    Moreover, as two single-step methods, the numerical results of NSCG and SS are compared in Table 5. From Table 5 we see that the SS method has better computing efficiency than the NSCG method.

    Table 5.  Numerical results of NSCG and SS for Example 1.
    Method NSCG SS
    $ n $ $ q $ IT-out IT-in CPU IT-out IT-in CPU
    $ n=16 $ $ q=0.1 $ 15 25.4 0.0230 11 4.0 0.0023
    $ q=0.3 $ 291 30.5 0.2445 8 4.0 0.0017
    $ q=1 $ 90 170.9 0.4020 11 4.0 0.0022
    $ n=32 $ $ q=0.1 $ 18 7.0 0.0227
    $ q=0.3 $ 45 488.6 1.9451 12 7.0 0.0162
    $ q=1 $ 75 493.3467 2.9591 20 7.0 0.0244
    $ n=64 $ $ q=0.1 $ 30 10.5 0.1952
    $ q=0.3 $ 77 497.7 9.5250 16 11.1 0.1008
    $ q=1 $ 62 494.5 7.5782 30 10.0 0.1650
    $ n=128 $ $ q=0.1 $ 74 493.3 48.129 40 20.5 2.4942
    $ q=0.3 $ 69 492.9 44.699 22 18.0 1.2280
    $ q=1 $ 69 492.8 45.885 45 14.0 1.7385

     | Show Table
    DownLoad: CSV

    Example 2 ([2]) We consider the matrix Eq (1.1) with $ m = n $ and

    $ {A=diag(1,2,,n)+rLT,B=2tIn+diag(1,2,,n)+rLT+2tL, $

    where $ L $ is a strictly lower triangular matrix and all the elements in the lower triangle part are ones, and $ t $ is a specified problem parameter. In our tests, we take $ t = 1 $.

    In Tables 6 and 7, for various $ n $ and $ r $, we list the theoretical quasi-optimal parameters and experimental optimal parameters of HSS and SS, respectively. In Tables 8 and 9, the numerical results of HSS and SS are listed. Moreover, the numerical results of NSCG and SS are compared in Table 10.

    Table 6.  The theoretical quasi-optimal parameters of HSS and SS for Example 2.
    Method HSS SS
    $ n $ $ q $ $ \alpha_{\exp} $ $ \beta_{\exp} $ $ \alpha_{\exp} $ $ \beta_{\exp} $
    $ n=32 $ $ r=0.01 $ 5.66 6.75 5.66 6.75
    $ r=0.1 $ 5.63 6.71 5.63 6.71
    $ r=1 $ 4.94 6.36 10.20 6.36
    $ n=64 $ $ r=0.01 $ 8.00 9.47 8.00 10.07
    $ r=0.1 $ 7.96 9.41 7.96 9.41
    $ r=1 $ 6.90 8.89 20.38 10.22
    $ n=128 $ $ r=0.01 $ 11.31 13.31 11.31 20.01
    $ r=0.1 $ 11.25 13.23 11.25 16.35
    $ r=1 $ 9.66 12.46 40.75 20.39
    $ n=256 $ $ r=0.01 $ 16.00 18.75 16.00 39.95
    $ r=0.1 $ 15.91 18.63 15.91 32.62
    $ r=1 $ 13.55 17.50 81.49 40.75

     | Show Table
    DownLoad: CSV
    Table 7.  The experimental optimal iteration parameters of HSS and SS for Example 2.
    Method HSS SS
    $ n $ $ q $ $ \alpha_{\exp} $ $ \beta_{\exp} $ $ \alpha_{\exp} $ $ \beta_{\exp} $
    $ n=32 $ $ r=0.01 $ 7 10 7 13
    $ r=0.1 $ 7 9 7 14
    $ r=1 $ 7 6 30 10
    $ n=64 $ $ r=0.01 $ 10 11 10 25
    $ r=0.1 $ 11 12 10 26
    $ r=1 $ 10 1 60 15
    $ n=128 $ $ r=0.01 $ 16 10 15 49
    $ r=0.1 $ 16 12 15 53
    $ r=1 $ 16 2 120 23
    $ n=256 $ $ r=0.01 $ 24 16 22 98
    $ r=0.1 $ 24 16 24 104
    $ r=1 $ 24 4 239 34

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical results of HSS and SS with the theoretical quasi-optimal parameters for Example 2.
    Method HSS SS
    $ n $ $ q $ IT-out IT-in-1 IT-in-2 CPU IT-out IT-in CPU
    $ n=32 $ $ r=0.01 $ 37 10.3 10.3 0.1743 18 6.0 0.0373
    $ r=0.1 $ 37 10.3 10.3 0.1380 18 7.0 0.0388
    $ r=1 $ 39 10.4 10.5 0.1376 11 9.0 0.0306
    $ n=64 $ $ r=0.01 $ 60 12.9 12.9 0.9061 25 8.0 0.2025
    $ r=0.1 $ 56 12.9 12.9 0.8133 25 9.0 0.2330
    $ r=1 $ 69 18.6 18.7 1.4371 11 12.0 0.1388
    $ n=128 $ $ r=0.01 $ 95 19.7 19.7 9.9527 35 8.0 1.2843
    $ r=0.1 $ 96 20.2 20.3 10.807 35 10.0 1.4921
    $ r=1 $ 100 27.3 27.4 14.947 11 12.0 0.5410
    $ n=256 $ $ r=0.01 $ 100 28.4 28.4 93.739 49 8.0 10.863
    $ r=0.1 $ 100 29.2 29.2 92.406 49 10.0 13.902
    $ r=1 $ 100 39.0 38.8 124.37 11 12.0 3.8920

     | Show Table
    DownLoad: CSV
    Table 9.  Numerical results of HSS and SS with the experimental optimal iteration parameters for Example 2.
    Method HSS SS
    $ n $ $ q $ IT-out IT-in-1 IT-in-2 CPU IT-out IT-in CPU
    $ n=32 $ $ r=0.01 $ 32 7.7 7.7 0.0787 16 3.1 0.0130
    $ r=0.1 $ 31 8.2 8.2 0.0783 16 3.2 0.0127
    $ r=1 $ 30 7.0 7.0 0.0646 2 6.0 0.0028
    $ n=64 $ $ r=0.01 $ 43 12.2 12.2 0.5301 21 3.2 0.0510
    $ r=0.1 $ 42 11.4 11.4 0.4874 21 3.3 0.0647
    $ r=1 $ 39 55.9 55.9 2.1008 2 8.0 0.0117
    $ n=128 $ $ r=0.01 $ 57 24.3 24.3 5.8351 28 3.4 0.3985
    $ r=0.1 $ 54 20.3 20.3 4.8781 27 3.3 0.3821
    $ r=1 $ 53 55.2 55.2 12.885 2 10.8 0.0902
    $ n=256 $ $ r=0.01 $ 75 30.9 30.9 59.116 36 3.1 2.5999
    $ r=0.1 $ 70 30.1 30.1 64.391 34 3.2 3.3392
    $ r=1 $ 66 52.3 52.3 85.011 2 14.0 0.7423

     | Show Table
    DownLoad: CSV
    Table 10.  Numerical results of NSCG and SS for Example 2.
    Method NSCG SS
    $ n $ $ q $ IT-out IT-in CPU IT-out IT-in CPU
    $ n=32 $ $ r=0.01 $ 17 25.4 0.0467 16 3.1 0.0130
    $ r=0.1 $ 18 50.1 0.0717 16 3.2 0.0127
    $ r=1 $ 100 87.3 0.6921 2 6.0 0.0028
    $ n=64 $ $ r=0.01 $ 21 36.2 0.2206 21 3.2 0.0510
    $ r=0.1 $ 23 86.9 0.4631 21 3.3 0.0647
    $ r=1 $ 100 99.5 2.4361 2 8.0 0.0117
    $ n=128 $ $ r=0.01 $ 25 51.0 1.7965 28 3.4 0.3985
    $ r=0.1 $ 29 96.5 3.4998 27 3.3 0.3821
    $ r=1 $ 100 100 12.997 2 10.8 0.0902
    $ n=256 $ $ r=0.01 $ 31 64.0 17.264 36 3.1 2.5999
    $ r=0.1 $ 37 98.1 32.679 34 3.2 3.3392
    $ r=1 $ 100 100 96.801 2 14.0 0.7423

     | Show Table
    DownLoad: CSV

    From Tables 810 we get the same conclusion as example 1.

    Therefore, for large sparse matrix equation $ AXB = C $, the SS method is an effective iterative approach.

    By utilizing an inner-outer iteration strategy, we established a shift-splitting (SS) iteration method for large sparse linear matrix equations $ AXB = C $. Two different convergence theories were analysed in depth. Furthermore, the quasi-optimal parameters of SS iteration matrix are given. Numerical experiments illustrated that, the SS method can always outperform the HSS and NSCG methods both in outer and inner iteration numbers and computing time, especially for the ill-conditioned coefficient matrices.

    The authors are very grateful to the anonymous referees for their helpful comments and suggestions on the manuscript. This research is supported by the Natural Science Foundation of Gansu Province (No. 20JR5RA464), the National Natural Science Foundation of China (No. 11501272), and the China Postdoctoral Science Foundation funded project (No. 2016M592858).

    The authors declare there is no conflict of interest.

    [1] Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24: 8–11. doi: 10.1016/S0968-0004(98)01335-8
    [2] Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79: 347691.
    [3] Henderson B, Martin A (2013) Bacterial moonlighting proteins and bacterial virulence. Curr Top Microbiol 358: 155–213.
    [4] Jeffery CJ (2009) Moonlighting proteins-an update. Mol Biosyst 5: 345–350. doi: 10.1039/b900658n
    [5] Kainulainen V, Korhonen TK (2014) Dancing to another tune-adhesive moonlighting proteins in bacteria. Biology 3: 178–204. doi: 10.3390/biology3010178
    [6] Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176: 415–426. doi: 10.1084/jem.176.2.415
    [7] Mani M, Chen C, Amblee V, et al. (2015) MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res 43: D277–D282. doi: 10.1093/nar/gku954
    [8] Agarwal S, Kulshreshtha P, Bambah MD, et al. (2008) Alpha-enolase binds to human plasminogen on the surface of Bacillus anthracis. BBA-Proteins Proteom 1784: 986–994. doi: 10.1016/j.bbapap.2008.03.017
    [9] Bao S, Guo X, Yu S, et al. (2014) Mycoplasma synoviae enolase is a plasminogen/fibronectin binding protein. BMC Vet Res 10: 223. doi: 10.1186/s12917-014-0223-6
    [10] Boleij A, Laarakkers CM, Gloerich J, et al. (2011) Surface-affinity profiling to identify host-pathogen interactions. Infect Immun 79: 4777–4783. doi: 10.1128/IAI.05572-11
    [11] Candela M, Biagi E, Centanni M, et al. (2009) Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host. Microbiology 155: 3294–3303. doi: 10.1099/mic.0.028795-0
    [12] Jones MN, Holt RG (2007) Cloning and characterization of an alpha-enolase of the oral pathogen Streptococcus mutans that binds human plasminogen. Biochem Bioph Res Co 364: 924–929. doi: 10.1016/j.bbrc.2007.10.098
    [13] Vanegas G, Quiñones W, Carrasco-López C, et al. (2007) Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol Res 101: 1511–1516. doi: 10.1007/s00436-007-0668-7
    [14] Antikainen J, Kuparinen V, Lähteenmäki K, et al. (2007) Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits FEMS Immunol Med Mic 51: 526–534.
    [15] Esgleas M, Li Y, Hancock MA, et al. (2008) Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154: 2668–2679. doi: 10.1099/mic.0.2008/017145-0
    [16] Floden AM, Watt JA, Brissette CA (2011) Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One 6: e27502. doi: 10.1371/journal.pone.0027502
    [17] Fulde M, Rohde M, Polok A, et al. (2013) Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. MBio 4: e00629-12.
    [18] Kesimer M, Kilic N, Mehrotra R, et al. (2009) Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii. BMC Microbiol 9: 163. doi: 10.1186/1471-2180-9-163
    [19] Kinnby B, Booth NA, Svensater G (2008) Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 154: 924–931. doi: 10.1099/mic.0.2007/013235-0
    [20] Knaust A, Weber MV, Hammerschmidt S, et al. (2007) Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189: 3246–3255. doi: 10.1128/JB.01966-06
    [21] Carneiro CR, Postol E, Nomizo R, et al. (2004) Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect 6: 604–608. doi: 10.1016/j.micinf.2004.02.003
    [22] Sha J, Erova TE, Alyea RA, et al. (2009) Surface-expressed enolase contributes to the pathogenesis of clinical isolate SSU of Aeromonas hydrophila. J Bacteriol 191: 3095–3107. doi: 10.1128/JB.00005-09
    [23] Castaldo C, Vastano V, Siciliano RA, et al. (2009) Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 8: 14. doi: 10.1186/1475-2859-8-14
    [24] Yavlovich A, Rechnitzer H, Rottem S (2007) Alpha-enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen. Infect Immun 75: 5716–5719. doi: 10.1128/IAI.01049-07
    [25] Tunio SA, Oldfield NJ, Berry A, et al. (2010) The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol 76: 605–615. doi: 10.1111/j.1365-2958.2010.07098.x
    [26] Blau K, Portnoi M, Shagan M, et al. (2007) Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae. J Infect Dis 195: 1828–1837. doi: 10.1086/518038
    [27] Hennequin C, Porcheray F, Waligora-Dupriet A, et al. (2001) GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147: 87–96. doi: 10.1099/00221287-147-1-87
    [28] Yamaguchi H, Osaki T, Kurihara N, et al. (1997) Heat-shock protein 60 homologue of Helicobacter pylori is associated with adhesion of H. pylori to human gastric epithelial cells. J Med Microbiol 46: 825–831.
    [29] Wuppermann FN, Molleken K, Julien M, et al. (2008) Chlamydia pneumoniae GroEL1 protein is cell surface associated and required for infection of HEp-2 cells. J Bacteriol 190: 3757–3767. doi: 10.1128/JB.01638-07
    [30] Garduno RA, Garduno E, Hoffman PS (1998) Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 66: 4602–4610.
    [31] Jagadeesan B, Koo OK, Kim KP, et al. (2010) LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 156: 2782–2795. doi: 10.1099/mic.0.036509-0
    [32] Wampler JL, Kim KP, Jaradat Z, et al. (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72: 931–936. doi: 10.1128/IAI.72.2.931-936.2004
    [33] Jin H, Song YP, Boel G, et al. (2005) Group A streptococcal surface GAPDH, SDH, recognizes uPAR/CD87 as its receptor on the human pharyngeal cell and mediates bacterial adherence to host cells. J Mol Biol 350: 27–41. doi: 10.1016/j.jmb.2005.04.063
    [34] Frisk AC, Ison CA, Lagergard T (1998) GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66: 1252–1257.
    [35] Pantzar M, Teneberg S, Lagergard T (2006) Binding of Haemophilus ducreyi to carbohydrate receptors is mediated by the 58.5-kDa GroEL heat shock protein. Microbes Infect 8: 2452–2458.
    [36] Dallo SF, Kannan TR, Blaylock MW, et al. (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46: 1041–1051. doi: 10.1046/j.1365-2958.2002.03207.x
    [37] Heilmann C, Hartleib J, Hussain MS, et al. (2005) The multifunctional Staphylococcus aureus autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 73: 4793–4802. doi: 10.1128/IAI.73.8.4793-4802.2005
    [38] Kinhikar AG, Vargas D, Li H, et al. (2006) Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60: 999–1013.
    [39] Jung CJ, Zheng QH, Shieh YH, et al. (2009) Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol 74: 888–902. doi: 10.1111/j.1365-2958.2009.06903.x
    [40] Allignet J, England P, Old I, et al. (2002) Several regions of the repeat domain of the Staphylococcus caprae autolysin, AtlC, are involved in fibronectin binding. FEMS Microbiol Lett 213: 193–197. doi: 10.1111/j.1574-6968.2002.tb11305.x
    [41] Alvarez RA, Blaylock MW, Baseman JB (2003) Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 48: 1417–1425. doi: 10.1046/j.1365-2958.2003.03518.x
    [42] Ensgraber M, Loos M (1992) A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 60: 3072–3078.
    [43] Kunert A, Losse J, Gruszin C, et al. (2007) Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein. J Immunol 179: 2979–2988. doi: 10.4049/jimmunol.179.5.2979
    [44] Raymond BB, Djordjevic S (2015) Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 178: 1–13. doi: 10.1016/j.vetmic.2015.04.008
    [45] Collen D, Verstraete M (1975) Molecular biology of human plasminogen II Metabolism in physiological and some pathological conditions in man. Thromb Diath Haemorrh 34: 403–408.
    [46] Dano K, Andreasen PA, Grondahl-Hansen J, et al. (1985) Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44: 139–266. doi: 10.1016/S0065-230X(08)60028-7
    [47] Robinson MW, Buchtmann KA, Jenkins C, et al. (2013) MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae. Open Biol 3: 130017. doi: 10.1098/rsob.130017
    [48] Jarocki VM, Santos J, Tacchi JL, et al. (2015) MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol 5: 140175. doi: 10.1098/rsob.140175
    [49] Modun B, Williams P (1999) The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67: 1086–1092.
    [50] Kinoshita H, Uchida H, Kawai Y, et al. (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104: 1667–1674. doi: 10.1111/j.1365-2672.2007.03679.x
    [51] Granato D, Bergonzelli GE, Pridmore RD, et al. (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72: 2160–2169. doi: 10.1128/IAI.72.4.2160-2169.2004
    [52] Bergonzelli GE, Granato D, Pridmore RD, et al. (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74: 425–434. doi: 10.1128/IAI.74.1.425-434.2006
    [53] Patel DK, Shah KR, Pappachan A, et al. (2016) Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus. Int J Biol Macromol 91: 338–346. doi: 10.1016/j.ijbiomac.2016.04.041
    [54] Katakura Y, Sano R, Hashimoto T, et al. (2010) Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biot 86: 319–326. doi: 10.1007/s00253-009-2295-y
    [55] Wang W, Jeffery CJ (2016) An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. Mol Biosyst 12: 1420–1431. doi: 10.1039/C5MB00550G
    [56] Ehinger S, Schubert WD, Bergmann S, et al. (2004) Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343: 997–1005. doi: 10.1016/j.jmb.2004.08.088
    [57] Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectrum 4.
    [58] Ebner P, Rinker J, Götz F (2016) Excretion of cytoplasmic proteins in Staphylococcus is most likely not due to cell lysis. Curr Genet 62: 19–23. doi: 10.1007/s00294-015-0504-z
    [59] Ebner P, Prax M, Nega M, et al. (2015) Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus. Mol Microbiol 97: 775–789. doi: 10.1111/mmi.13065
    [60] Yang CK, Ewis HE, Zhang X, et al. (2011) Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J Bacteriol 193: 5607–5615. doi: 10.1128/JB.05897-11
    [61] Yang CK, Zhang XZ, Lu CD, et al. (2014) An internal hydrophobic helical domain of Bacillus subtilis enolase is essential but not sufficient as a non-cleavable signal for its secretion. Biochem Bioph Res Co 446: 901–905. doi: 10.1016/j.bbrc.2014.03.032
    [62] Boël G, Pichereau V, Mijakovic I, et al. (2004) Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J Mol Biol 337: 485–496. doi: 10.1016/j.jmb.2003.12.082
    [63] Amblee V, Jeffery CJ (2015) Physical features of intracellular proteins that moonlight on the cell surface. PLoS One 10: e0130575. doi: 10.1371/journal.pone.0130575
    [64] Widjaja M, Harvey KL, Hagemann L, et al. (2017) Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 7: 11227. doi: 10.1038/s41598-017-10644-z
    [65] Tacchi JL, Raymond BB, Haynes PA, et al. (2016) Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae. Open Biol 6: 150210.
    [66] Navarre WW, Schneewind O (1999) Surface proteins of Gram positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol R 63: 174–229.
    [67] Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos T R Soc B 367: 1123–1139. doi: 10.1098/rstb.2011.0210
    [68] Scott JR, Barnett TC (2006) Surface proteins of Gram-positive bacteria and how they get there. Annu Rev Microbiol 60: 397–423. doi: 10.1146/annurev.micro.60.080805.142256
    [69] Desvaux M, Dumas E, Chafsey I, et al. (2006) Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256: 1–15. doi: 10.1111/j.1574-6968.2006.00122.x
    [70] Antikainen J, Kuparinen V, Lähteenmäki K, et al. (2007) pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189: 4539–4543. doi: 10.1128/JB.00378-07
    [71] Sánchez B, Bressollier P, Urdaci MC (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Mic 54: 1–17. doi: 10.1111/j.1574-695X.2008.00454.x
    [72] Daubenspeck JM, Liu R, Dybvig K (2016) Rhamnose links moonlighting proteins to membrane phospholipid in mycoplasmas. PLoS One 11: e0162505. doi: 10.1371/journal.pone.0162505
    [73] Antikainen J, Kuparinen V, Lähteenmäki K, et al. (2007) pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189: 4539–4543. doi: 10.1128/JB.00378-07
    [74] Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2013. Available from: http://www.cdc.gov/drugresistance/threat-report-2013.
    [75] Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40: 277–283.
    [76] Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37: 47–55. doi: 10.1007/s00281-014-0454-4
    [77] Dahlhamer JM, Zammitti EP, Ward BW, et al. (2016) Prevalence of inflammatory bowel disease among adults aged ≥18 years-United States, 2015. MMWR 65: 1166–1169.
    [78] Kinnby B, Booth NA, Svensater G (2008) Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 154: 924–931. doi: 10.1099/mic.0.2007/013235-0
    [79] Heilmann C, Thumm G, Chhatwal GS, et al. (2003) Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 149: 2769–2778. doi: 10.1099/mic.0.26527-0
    [80] Sjostrom I, Grondahl H, Falk G, et al. (1997) Purification and characterization of a plasminogen-binding protein from Haemophilus influenzae. Sequence determination reveals identity with aspartase. BBA-Biomembranes 1324: 182–190.
    [81] Candela M, Bergmann S, Vici M, et al. (2007) Binding of human plasminogen to Bifidobacterium. J Bacteriol 189: 5929–5936. doi: 10.1128/JB.00159-07
    [82] Beckmann C, Waggoner JD, Harris TO, et al. (2002) Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 70: 2869–2876. doi: 10.1128/IAI.70.6.2869-2876.2002
    [83] Agarwal V, Kuchipudi A, Fulde M, et al. (2013) Streptococcus pneumoniae endopeptidase O (PepO) is a multifunctional plasminogen- and fibronectin-binding protein, facilitating evasion of innate immunity and invasion of host cells. J Biol Chem 288: 6849–6863. doi: 10.1074/jbc.M112.405530
    [84] Schreiner SA, Sokoli A, Felder KM, et al. (2012) The surface-localised α-enolase of Mycoplasma suis is an adhesion protein. Vet Microbiol 156: 88–95. doi: 10.1016/j.vetmic.2011.10.010
    [85] Matta SK, Agarwal S, Bhatnagar R (2010) Surface localized and extracellular Glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. BBA-Proteins Proteom 1804: 2111–2120. doi: 10.1016/j.bbapap.2010.08.004
    [86] Seifert KN, McArthur WP, Bleiweis AS, et al. (2003) Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol 49: 350–356. doi: 10.1139/w03-042
    [87] Bergmann S, Rohde M, Hammerschmidt S (2004) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72: 2416–2419. doi: 10.1128/IAI.72.4.2416-2419.2004
    [88] Winram SB, Lottenberg R (1996) The plasmin-binding protein Plr of group A streptococci is identified as glyceraldehyde-3-phosphate dehydrogenase. Microbiology 142: 2311–2320. doi: 10.1099/13500872-142-8-2311
    [89] Jobin MC, Brassard J, Quessy S, et al. (2004) Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype 2. Infect Immun 72: 606–610. doi: 10.1128/IAI.72.1.606-610.2004
    [90] Kainulainen V, Loimaranta V, Pekkala A, et al. (2012) Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 194: 2509–2519. doi: 10.1128/JB.06704-11
    [91] Xolalpa W, Vallecillo AJ, Lara M, et al. (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7: 3332–3341. doi: 10.1002/pmic.200600876
    [92] Hickey TB, Thorson LM, Speert DP, et al. (2009) Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77: 3389–3401.
    [93] Jarocki VM, Santos J, Tacchi JL, et al. (2015) MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae. Open Biol 5: 140175. doi: 10.1098/rsob.140175
    [94] Hussain M, Peters G, Chhatwal GS, et al. (1999) A lithium chloride-extracted, broad-spectrum-adhesive 42-kilodalton protein of Staphylococcus epidermidis is ornithine carbamoyltransferase. Infect Immun 67: 6688–6690.
    [95] Lechardeur D, Fernandez A, Robert B, et al. (2011) The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae. J Biol Chem 285: 16032–16041.
    [96] Boone TJ, Burnham CA, Tyrrell GJ (2011) Binding of group B streptococcal phosphoglycerate kinase to plasminogen and actin. Microb Pathogenesis 51: 255–261. doi: 10.1016/j.micpath.2011.06.005
    [97] Fulde M, Bernardo-Garcia N, Rohde M, et al. (2014) Pneumococcal phosphoglycerate kinase interacts with plasminogen and its tissue activator. Thromb Haemostasis 111: 401–416. doi: 10.1160/TH13-05-0421
    [98] Reddy VM, Suleman FG (2004) Mycobacterium avium superoxide dismutase binds to epithelial cell aldolase, glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A. Microb Pathogenesis 36: 67–74. doi: 10.1016/j.micpath.2003.09.005
  • This article has been cited by:

    1. Baohua Huang, Xiaofei Peng, A randomized block Douglas–Rachford method for solving linear matrix equation, 2024, 61, 0008-0624, 10.1007/s10092-024-00599-9
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8093) PDF downloads(1149) Cited by(67)

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog