
Citation: Charing Ching-Ning Chong, Grace Lai-Hung Wong. Treatments of Hepatocellular Carcinoma Patients with Hepatitis B Virus Infection: Treat HBV-related HCC[J]. AIMS Medical Science, 2016, 3(1): 162-178. doi: 10.3934/medsci.2016.1.162
[1] | Mustafa M. Hasaballah, Oluwafemi Samson Balogun, M. E. Bakr . Frequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data. AIMS Mathematics, 2024, 9(10): 29346-29369. doi: 10.3934/math.20241422 |
[2] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[3] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310 |
[4] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive type-Ⅱ censoring and modelling on light-emitting diodes and pump motors. AIMS Mathematics, 2024, 9(12): 34311-34355. doi: 10.3934/math.20241635 |
[5] | Refah Alotaibi, Mazen Nassar, Ahmed Elshahhat . Reliability analysis of independent Burr-X competing risks model based on improved adaptive progressively Type-Ⅱ censored samples with applications. AIMS Mathematics, 2025, 10(7): 15302-15332. doi: 10.3934/math.2025686 |
[6] | Yahia Abdel-Aty, Mohamed Kayid, Ghadah Alomani . Generalized Bayesian inference study based on type-Ⅱ censored data from the class of exponential models. AIMS Mathematics, 2024, 9(11): 31868-31881. doi: 10.3934/math.20241531 |
[7] | Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny . Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity. AIMS Mathematics, 2024, 9(1): 1046-1087. doi: 10.3934/math.2024052 |
[8] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Maryam Mohiuddin, Omar Meqdadi . Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data. AIMS Mathematics, 2023, 8(10): 22553-22576. doi: 10.3934/math.20231149 |
[9] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[10] | S. M. E. K. Chowdhury, J. T. Chowdhury, Shams Forruque Ahmed, Praveen Agarwal, Irfan Anjum Badruddin, Sarfaraz Kamangar . Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host. AIMS Mathematics, 2022, 7(2): 2618-2633. doi: 10.3934/math.2022147 |
The COVID-19 pandemic has exerted huge and unprecedented pressure on public health resources globally. Cross-sectional surveys to establish disease prevalence are likely to be financially unsustainable in the long term and rely heavily on continued cooperation from the public [1]. Wastewater monitoring to detect and quantify SARS-CoV-2 viral RNA shed by infected individuals in the population, and to indicate infection prevalence, was adopted relatively early in the course of the pandemic across a number of countries [2,3], expanding to 67 countries by mid-2022 [4]. Although the demographic coverage and utility of wastewater monitoring varies across adopters of this approach, the method is generally less intrusive, relatively unbiased in terms of its demographic and epidemiological coverage, and costs significantly less per capita than clinical testing programmes (e.g. fanxiexian_myfh148 per individual PCR test cf. fanxiexian_myfh300 per wastewater sample representing larger populations [5]). Wastewater surveillance is thus, arguably, an alternative, or at least complementary, approach to clinical testing programmes.
Wastewater-based epidemiology has been used in some areas of public health for decades [6], but is a relatively novel tool for emerging pathogens. Applications include tracking viral dynamics to monitoring chemical exposures and prescription drug consumption [7,8]. As wastewater sampling for the detection and monitoring of SARS-CoV-2 has been developed and applied at an unprecedented pace, uncertainty remains when interpreting the measured viral RNA signals and their spatiotemporal variation. Variation in the underlying sample, sampling method, and testing, due in part to lack of standardisation, as well as systematic variability in space and time in the measurement environment (e.g. sewersheds), can result in a large degree of noise in the observed signal [9]. Sampling frequency is typically dependent on cost constraints, resulting in sparse and irregularly sampled data. Furthermore, wastewater measurements are typically left-censored if they fall below certain analytical thresholds, such as the limit of detection (LOD), the lowest concentration at which viral RNA is detectable with a given probability (typically 95%); and the limit of quantification (LOQ), the lowest concentration at which viral RNA can be reliably measured with a predefined accuracy. Methods to handle measurements that fall below these limits (e.g. statistical methods, imputation, and scalar or zero replacement) are not standardised and depend on the interpretation of the data (for example, if low values do not impact interpretation they may be omitted from downstream analysis), and information available to the analysts [10,11].
There are several approaches to infer wastewater concentration from noisy, censored, incomplete time series measurements. One common and straightforward approach for denoising time series is to calculate a moving average (MA). However, MA are sensitive to outliers and missing values. There is ambiguity about the most appropriate window-size, and whether to calculate a weighted or ordinary average. Uncentred MAs also operate with a lag, where larger windows create larger lags, delaying reactivity of surveillance in time-dependent operations. Lastly, an MA estimate can never be smaller than the censoring threshold, which leads to biased estimates.
State-space methods model observed data as functions of latent, unobserved stochastic processes and can better account for missing data, observational noise, and censoring. Recently, others have proposed state-space methods to infer viral concentrations from wastewater time series. The underlying "true" viral concentration at time $ X_t $ is modelled as a first-order auto-regressive (AR1) process [12,13]. To account for measurement noise and outliers in the observations, measurements $ Y_t $ are assumed to be equal to $ X_t $ plus an independent mean-zero Gaussian observation error. To account for outliers, from time to time $ Y_t $ is assumed to be replaced by an independent Uniformly distributed random variable that is unrelated to $ X_t $. Left-censoring is accounted for by capping $ Y_t $ at the (known) limit of quantification. Using a Kalman Filter and numerical approximations, the state variable $ X_t $ is inferred from observation data $ Y_t $ to produce a smoothed estimate of viral concentration, with outliers removed, that can extend below the known limit of quantification [12].
In this paper, we propose and test a simpler, more realistic, and more flexible state-space model. Our latent variable is modelled by a first order random walk (RW1) instead of an AR1 process, which reduces the number of model parameters. Instead of randomly replacing observations by a random number, our model generates outliers by assuming observation errors from a heavy-tailed t-distribution. This has the benefit that observations classified as "outliers" can still be informative about viral concentrations.
Our model is implemented in the Stan modelling language [14], which allows for fast Bayesian inference and straightforward extensions of the model.
Untreated influent samples were collected from sewage treatment plant sites across England at a frequency of four days a week by the Environmental Monitoring for Health Protection (EMHP) programme, led by the UKHSA. The sampling strategy provides coverage of approximately 40 million people across England. Samples were analysed for SARS-CoV-2 RNA by quantifying the number of copies of the nucleocapsid gene (N1) using RT-qPCR. Concentrations under the limit of detection were assigned a value of -4, to be handled during the data processing pipeline depending on the use case. Only sites sampled 30 times or more (around seven weeks' worth of data) were included; median sample count across sites was 145, ranging from 31 to 323.
Extraneous sources of flow, such as heavy rainfall, snow melt, or groundwater ingress into sewers, may dilute wastewater and impact estimates of SARS-CoV-2 RNA concentration. Studies have indicated that the effect of dilution in most cases are minor, but in periods of high dilution events, normalisation is critical [15]. The normalisation approach applied by the English wastewater surveillance programme mitigates this by adjusting measured SARS-CoV-2 concentrations to consider flow. The model is based on the assumption that flow $ F_t $ at time $ t $ is not directly observable. Instead, information about flow is obtained by observing the correlation of concentrations $ \rho_{ti} $ of different markers $ i $ (orthophosphate and ammonia nitrogen). The model assumes:
$ logFt∼Normal(0,λ2) $ | (2.1) |
$ logxti∼Normal(μi,σ2i) $ | (2.2) |
$ ∴logρti=logxti−logFt $ | (2.3) |
where λ2 is the flow variance, xti is the load of marker $ i $ at time $ t $, μi and σ2i are the mean and variance of the load of marker $ i $ (all in log space). ⟨logFt⟩ is fixed at 0 to identify the model. Using multiple markers jointly to estimate flow variability can improve the accuracy of estimates [9,16].
In our model, the (unobserved) viral concentration signal $ X_t $ is modelled as a first-order random walk (RW1) process
$ Xt=Xt−1+σϵt $ | (2.4) |
where $ \epsilon_t \sim N(0, 1) $ is an independent and identically distributed normal random variable for $ t = 2, ..., n $. The measured concentrations $ Y^*_t $ are modelled by adding independent measurement noise to $ X_t $:
$ Y∗t=Xt+τϵ′t $ | (2.5) |
where the independent measurement error $ \epsilon'_{t} \sim t_{\nu} $ has a Student t-distribution with $ \nu $ degrees of freedom. The actually observed, censored data, are modelled by truncating $ Y^*_t $ at the known censoring threshold $ \ell_t $:
$ Yt=max(Y∗t,ℓt) $ | (2.6) |
As samples are taken only four times a week, the vector of measurements $ {\bf{Y}} $ contains data observed at a subset $ \mathcal{T} $ of all $ n $ available time points. We infer the viral concentration $ X_t $ from $ {\bf{Y}} $ by Bayesian inference [17], i.e. by calculating the posterior distributions of the latent state $ X_1, \dots, X_n $ and hyperparameters $ \sigma $, $ \tau $ and $ \nu $, conditional on $ {\bf{Y}} $. The posterior distribution is given by:
$ p(X1,…,Xn,σ,τ,ν|Y)∝[∏t∈Tp(Yt|Xt,τ,ν)]×p(X1,…,Xn|σ)×p(τ)p(σ)p(ν) $ | (2.7) |
The first line on the right hand side of Eq 2.7 is determined by the distribution of independent measurement errors, and left-censoring, of the $ Y_t $. The second term is determined by the RW1 time series model for the $ X_t $. The distributions $ p(\tau) $, $ p(\sigma) $, and $ p(\nu) $ in the last line are prior hyperparameter distributions: we specify uninformative uniform prior distributions for $ \tau > 0 $ and $ \sigma > 0 $, and a left-truncated Normal prior for $ \nu $, with prior expectation 3, prior variance 1, and truncated at 2. The parameters of the truncated Normal prior for $ \nu $ were selected by simulation and based on subjective judgements about the likely magnitude of measurement errors. The (multiplicative) proportionality constant in Eq 2.7 is inferred by Markov-Chain Monte-Carlo (MCMC) using the Stan software [14].
The hyperparameters $ \tau $ and $ \nu $ of the measurement process can be interpreted as measurement error variance (larger $ \tau $'s correspond to noisier measurements), and the tendency to generate outliers (smaller $ \nu $'s generate greater deviations from measured viral concentrations). Posterior estimates of these parameters are thus interesting for diagnostic purposes, e.g. to identify anomalous sites.
The DLM was implemented in the open-source programming language Stan [14], which provides efficient sampling of probabilistic models via MCMC and other inference algorithms. Code specifying the model is provided in Supplementary Information Figure S17. MCMC convergence statistics for the fit examples shown in Figure 1 can also be found in the SI (Figure S4–S8, Tables S1–S4).
10-fold cross-validation was performed on the data across the 286 sites that had at least 30 samples. For each iteration:
● Raw SARS-CoV-2 N1 gc/L (with no normalisation for flow) was used with a $ \log_{10} $ transformation.
● Data were randomly split (90%/10%) into training and test sets
● Pre-existing missing values (days when samples were expected but were not collected) were included in the training set but not in the test set.
● The censoring threshold was set to a single value $ \log_{10} {\rm{(133.0 \ gc/L)}} $ for simplicity. In reality the limit of quantification will vary across samples.
● Fit DLM, KS and MA models to training data (details below)
● generate estimates (MA) and posterior samples (DLM, KS) of $ Y_{\text{pred, }}{t} $ at times $ t $ that were left out during training
$ Y_{\text{test, }}{t} $ (the left-out observation data) are then compared to $ Y_{\text{pred, }}{t} $ inferred with the three methods, via mean squared error (MSE) and interval coverage.
$ Y_{\text{pred, }}{t} $ for the DLM were generated by using Stan to sample from the joint posterior distribution of $ X_1, \dots, X_n $ and hyperparameters $ \sigma $, $ \nu $, $ \tau $, inferred from the training data. We then inferred posterior predictive samples $ Y_{\text{pred, }}{t} $ at times $ t $ left out during training by adding t-distributed measurement errors to posterior samples of $ X_t $, and applying censoring if the sampled observation was below the censoring threshold.
$ Y_{\text{pred, }}{t} $ for KS was generated by taking the fitted parameters $ \tau $, $ p_{\text{outlier}} $, $ \mu_{\text{X-test}} $, $ \sigma_{\text{X-test}} $. To get a posterior distribution on $ X_t $ 4000 samples were generated from a normal distribution with
$ Xt∼Normal(μX-test,σX-test) $ | (2.8) |
To get $ O_t $ 4000 samples were generated from a binomial with
$ Ot∼Binomial(1,poutlier) $ | (2.9) |
To get uncensored observations $ Y_{\text{outliers}} $ 4000 samples were taken from a uniform distribution
$ a=min(Ytrain)−2SDY $ | (2.10) |
$ b=max(Ytrain)+2SDY $ | (2.11) |
$ Youtliers, t∼Unif(a,b) $ | (2.12) |
To get $ Y_{\text{pred, }}{t} $ $ X_t $ is passed to a Normal distribution with scale $ \tau $
$ Ypred, t∼Normal(Xt,τ) $ | (2.13) |
Simulating outliers in $ Y_{\text{pred}} $ was done by
$ Ypred, t={Yout, t,if Ot=1.Ypred, t,otherwise. $ | (2.14) |
Finally, $ Y_{\text{pred, }}{t} $ is censored at some limit $ l $
$ Ypred, t=max(Ypred, t,l) $ | (2.15) |
We then further validated model performance by testing how well it is able to predict 10 samples (2.5 weeks) ahead. We refit the model on all samples for all sites minus the final 10 samples, and then predict the left-out samples.
Analyses were performed using ${\textsf{R}}$ statistical software (Version 4.1.3) to establish whether the DLM is more likely to observe data variability - characterised by $ \nu $ and $ \tau $ outputs - at sites that show greater concentrations of SARS-CoV-2 RNA in wastewater. For this purpose we regressed the median gene copies per litre (gc/L) obtained over all time ($ \log_{10} $ transformed) against mean $ \nu $ or $ \tau $, controlling for the standard deviation of $ \nu $ and $ \tau $, respectively. We obtained the residuals from these linear regression models to identify sites where the $ \nu $ and $ \tau $ outputs from the model vary in excess of what is accountable to median gc/L and the posterior standard deviation of $ \nu $ or $ \tau $. Residuals for both models were then mapped to the Lower Layer Super Output Area (LSOA) for a given site using the Simple Features (sf) package in ${\textsf{R}}$ [18] (Figure 4).
To test the output of the DLM, we first simulated data by generating a random walk with variance parameter $ \sigma^2 $ to model the underlying state, which was then sampled with measurement error parameters $ \tau $ and $ \nu $. Exact values are provided in the code. Any values below a predefined limit $ l $ are set to the value of $ l $. These synthetic data were then fit with the DLM. Supplementary Figure S1 shows that the underlying state $ X $-true is tracked rather well by the $ X $-smoothed estimate and lies within the inferred credible intervals, demonstrating that the model can reliably recover the underlying state from noisy observations in a synthetic dataset.
We fit the DLM to data from 286 sewage treatment works across England, restricted to sites with greater than 30 samples present. Each site is sampled four times a week. Figure 1 shows a range of fitted sites selected, based upon their estimated parameters $ \tau $ and $ \nu $, to illustrate model behaviour at the extreme ends of the spectrum, i.e. low $ \nu $ and low $ \tau $ (Figures 1b and 1d) or high $ \nu $ and high $ \tau $ (Figures 1a and 1c). Sites with high parameter values typically show low levels of SARS-CoV-2 (N1 gene gc/L, the target used to approximate viral concentration in the sample) recovery and more frequent censoring. More censoring leads to more estimation uncertainty (wider credible intervals) as less information is available to constrain viral concentration estimates. Conversely, sites with low parameter values generally correspond to high levels of SARS-CoV-2 recovery and less censoring, therefore providing more information and tighter credible intervals. Supplementary Figure S2 shows a strong positive correlation between $ \nu $ and $ \tau $, and Figures 4b and 4b show a strong negative correlation between $ \nu $ and $ \tau $ in relation to the site's median viral RNA concentration $ (\log_{10} {\rm{(N1 \ gc/L)}}) $, respectively. We note that our model seems to produce realistic estimates of viral concentration during long periods of censoring, and on days where observations are missing entirely.
Model performance was assessed by comparing the MSE produced by the DLM, KS and a seven-day centered MA over 10 folds of cross-validation (see Methods). The MA represents a simple way to remove noise from data, and is used here as a benchmark for comparison. All three models generated comparable MSE per site (Figure 2). However, the DLM and KS can estimate viral concentrations below the censoring threshold and, therefore, provide additional information on value for applications, such as case prevalence estimation (see Applications section). In addition both the DLM and KS provide useful parameters for quantifying uncertainty and outliers within the data (DLM: $ \sigma $/$ \tau $/$ \nu $, KS: $ \sigma $/$ \tau $/$ p_{\text{outlier}} $). This is particularly useful to identify sites generating unexpected data. So, while an MA scores equally well in terms of the MSE, the smoothing methods still confer additional advantages. A boxplot of the pairwise MSE differences, shown in Supplementary Figure S6, shows that the differences are not consistently better or worse for the DLM when compared to the KS or MA models.
As MSE assesses the accuracy of a single point estimate of the predictive distribution, it cannot inform on the reliability of the whole model distribution. In Figure 2, the coverage frequency of prediction intervals was used to characterise the reliability of the predictive distribution. Coverage frequency assesses how well the fitted model represents the variability of the data by analysing to what extent the observations could pass as a random sample from the predictive distribution. If observations and samples from the predictive distribution are statistically indistinguishable, we should expect a 90$ % $ chance that the observation is included in a 90% prediction interval derived from the predictive distribution. See Methods for information on calculating coverage. Figure 2b shows mean coverage frequencies across all sites. For nominal interval widths between 0.8 and 0.95, the KS coverage frequencies lie above the dashed line indicating that the model intervals are slightly wider than the true interval and are thus slightly under-confident. For the DLM, the coverage is too wide below nominal values of 90% and appears more reliable between 0.90 and 0.95 than KS. Both models appear over-confident at nominal values above 95%. For additional information on the distributions coverage values see Figures S4 and S5.
Cross-validation was also performed for forward prediction by removing the last 10 samples and predicting them with either the DLM or KS. Figures S9 and S10 show that both the DLM and KS perform equally well at forecasting up to 10 days of samples.
The DLM performed equally as well as the KS in cross-validation, but with greater parsimony: we removed the Bernoulli outlier functionality, and autoregressive and offset parameters ($ \eta $ and $ \delta $), to specify a simpler model. By providing full Bayesian posterior information, the DLM offers more information on the distributions of all the parameters in the model, thereby facilitating greater quantification of model uncertainty. Furthermore, the Stan framework offers flexibility for modification of the underlying state model (e.g. AR(2) random walk) or the addition of autoregressive parameters, if desired. The MCMC inference algorithm provided in Stan also allowed the model to be estimated more than 10x faster than the Kalman Smoother: the mean runtime of the DLM for each fold in 10-fold cross-validation of 10 sites was 14 seconds compared to 155 seconds with the KS, although with known parameters the prediction speed by the KS is much improved. Results of the test are provided in Supplementary Table S5, however in both cases the run times are small enough that we believe the difference is of little practical significance. The speed difference that is of more practical relevance (although difficult to quantify) is that our model was written in a general purpose modelling framework and so is easier to maintain, modify and adapt than the handcrafted R code of the Kalman Smoother. On the other hand, only the Kalman Smoother is able to quantify the probability of a given sample being an outlier and, therefore, this model will be more desirable for specific use cases. The DLM can only inform on whether a given sample lies outside of a predefined interval of the estimated underlying state, as shown in Figure 1.
Work by multiple groups has shown that SARS-CoV-2 gc/l concentrations in wastewater measurements can track case prevalence ('positivity rate', the percentage of people who have tested positive for COVID-19 on a polymerase chain reaction (PCR) test at a point in time) [19,20,21]. In England, the latter has been measured by the Office for National Statistics' Coronavirus (COVID-19) Infection Survey (CIS), a randomised household survey that provides an estimate of disease prevalence at sub-regional, regional and national levels [22]. Therefore, smoothed estimates of $ \log_{10} {\rm{(N1\; gc/L)}} $ from a DLM or KS can be compared with flow-normalised raw estimates to establish which correlates more strongly with $ \log_{10} {\rm{(CIS\; prevalence}} %) $ over time. Figure 3 compares correlations of CIS with (i) flow-normalised $ \log_{10} {\rm{(N1 \ gc/L)}} $, (ii) flow-normalised $ \log_{10} {\rm{(N1 \ gc/L)}} $ with a 7-day centered MA, and (iii) flow normalised $ \log_{10} {\rm{(N1 \ gc/L)}} $ smoothed estimate of $ X $ for all nine English regions between 1st September 2020 and 1st March 2022. This time range includes a period in which wastewater RNA concentration rates decoupled from clinical measures of disease prevalence, of which the cause is unknown [23]. It is worth noting that this relationship is likely not deterministic, i.e. they are not equivalent and are subject to their own spatiotemporal variation and uncertainty that would manifest in significant changes in the ratio of the measures. Such observations have not been limited to England, and the cause is likely to have multiple factors, both epidemiological (i.e., changes in viral shedding distribution as circulating virus variants emerge and evolve) and metrological (e.g., degree of clinical testing coverage can be demographically biased; laboratory sensitivity can vary significantly with virus concentration method employed for wastewater analysis) [24,25,26].
Smoothed wastewater concentration rates using a DLM or KS correlate more strongly with CIS positivity rate than raw or averaged rates (Figure 3). The enhanced correlation performance of the DLM and KS is likely due to both models' ability to generate data from below the censoring limit. This assertion is supported by the comparison between the smoothed estimates improvement in correlations verses the averaged $ \log_{10} {\rm{(N1 \ gc/L)}} $, which according to the MSE cross-validation should perform equally well. The key difference being that the DLM and KS infer values below the censored limit, thus we attribute at least part of the increase in correlation to this aspect of the models. Figure S9 provides a time series comparison of $ \log_{10} {\rm{(CIS\; prevalence}} %) $, $ \log_{10} {\rm{(N1 \ gc/L)}} $, and smoothed estimates. Smoothed estimates show a specific advantage over raw $ \log_{10} {\rm{(N1 \ gc/L)}} $ during times of low case prevalence. Using a simple sensitivity analysis to exclude the period in which wastewater concentration rates diverged from case rates to train the models, we find the same results (Figures S10–S11). DLM-smoothed rates therefore better complement CIS data, providing additional useful information for public health decision makers.
The DLM provides two useful parameters for a given site: the extent to which outliers are observed ($ \nu $), with smaller values indicating greater frequency and size of outlier values, and the amount of measurement noise at a given site ($ \tau $), with larger values indicating noisier measurements. Figure 4a shows the geographical distribution of $ \nu $ values for fitted sites mapped to each Lower Layer Super Output Area (LSOA) in England. There is some evidence of localised behaviour, with areas of large $ \nu $ in the North and East, and low values found in the West and London regions. However, interpretation of this map is challenging as $ \nu $ is strongly related to $ {\mathrm{median}}(\log_{10} {\rm{(N1 \ gc/L)}}) $ and the quality of fit, quantified here as the posterior standard deviation of $ \nu $ ($ SD_{\nu} $ (Figure 4b). To account for these relationships and draw more insight from the $ \nu $ parameter we performed a multivariable linear regression analysis where $ {\mathrm{median}}(\log_{10} {\rm{(N1 \ gc/L)}}) $ was regressed onto the mean of the posterior of $ \nu $, controlling for the standard deviation of the posterior of $ \nu $ (see Methods). Figure 4c plots the absolute values of the regression model residuals (see Figure S12 for distribution of residuals); sites with the highest absolute residuals (i.e., the most variance not explained by either $ {\mathrm{median}}(\log_{10} {\rm{(N1 \ gc/L)}}) $ or quality of fit) are clustered in the North West. We repeat this analysis for $ \tau $ in Figure S3; again sites with the largest absolute residuals are concentrated in the North West, with additional large residuals seen in the South and East of England. Observed non-linearity is potentially attributable to high levels of censorship at low levels of $ {\mathrm{median}}(\log_{10} {\rm{(N1 \ gc/L)}}) $. Future analyses should explore this suggestion, potentially with a censored regression model.
Further examples of sites with high and low parameter values are provided in Figures S13–S16.
We show that use of a Bayesian Dynamic Linear Model is a viable method for smoothing left-censored wastewater SARS-CoV-2 measurement data. Handling outliers through a t-distribution, rather than through an independent Bernoulli distribution, as applied in a previously published Kalman Smoother [12], is likely to more directly relate to the underlying state to be recovered. While the DLM and KS perform equivalently with mean squared error under cross-validation, the proposed DLM is more parsimonious (fewer model parameters), has a faster computational time, and is implemented in a more flexible modelling framework, allowing for easier modifications. Additionally, the DLM produces two site-specific parameters, $ \nu $ and $ \tau $, which are able to highlight sites with variable performance. This can be useful when assessing sampling strategies applied at scale (e.g. national or regional surveillance). Sites identified as providing inconsistent, noisy, or low information data may be removed from multi-site monitoring campaigns, for example.
The smoothed data, using our method, more closely correlate with regional infection survey data (CIS) than untransformed raw measurements. Wastewater data, smoothed in this fashion, are therefore more robust, capable of better complementing traditional surveillance, and providing additional confidence and utility for public health decision making.
Nevertheless, our approach has some limitations. The limit of censorship was set to a single value during cross-validation $ \log_{10}({\rm{133.0 \ gc/L)}} $, for simplicity. In reality this limit can vary across samples. From September 2021 SARS-CoV-2 RNA measurements from English wastewater diverged from reported clinical data where it had been previously tracking it. The reason why has still not been established but is potentially attributable to differential shedding rates between variants. Our sensitivity analyses reported in the Supplementary material found this does not impact the performance of our model.
The United Kingdom Government (Department of Health and Social Care) funded the sampling, testing, and data analysis of wastewater in England. Obépine funded the work of Marie Courbariaux and provided the R code of the modified Kalman Smoother and support to use it.
The authors declare no conflicting interests in this paper.
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | $ \hat{r} $ | |
$ \sigma $ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
$ \tau $ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
$ \nu $ | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
[1] | Trepo C, Chan HL, Lok A (2014) Hepatitis B virus infection. Lancet 384: 2053-2063. |
[2] |
Parkin DM, Bray F, Ferlay J, et al. (2005) Global cancer statistics, 2002. CA Cancer J Clin 55: 74-108. doi: 10.3322/canjclin.55.2.74
![]() |
[3] |
El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142: 1264-1273 e1. doi: 10.1053/j.gastro.2011.12.061
![]() |
[4] | Lim KC, Chow PK, Allen JC, et al. (2012) Systematic review of outcomes of liver resection for early hepatocellular carcinoma within the Milan criteria. Br J Surg 99: 1622-1629. |
[5] |
Yamazaki S, Takayama T (2008) Surgical treatment of hepatocellular carcinoma: evidence-based outcomes. World J Gastroenterol 14: 685-692. doi: 10.3748/wjg.14.685
![]() |
[6] | Cescon M, Colecchia A, Cucchetti A, et al. (2012) Value of transient elastography measured with FibroScan in predicting the outcome of hepatic resection for hepatocellular carcinoma. Ann Surg 256: 706-712 |
[7] | Child CG, Turcotte JG (1964) Surgery and portal hypertension. Major Probl Clin Surg 1: 1-85. |
[8] |
Pugh RN, Murray-Lyon IM, Dawson JL, et al. (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60: 646-649. doi: 10.1002/bjs.1800600817
![]() |
[9] |
Fung J, Poon RT, Yu WC, et al. (2013) Use of liver stiffness measurement for liver resection surgery: correlation with indocyanine green clearance testing and post-operative outcome. PLoS One 8: e72306. doi: 10.1371/journal.pone.0072306
![]() |
[10] | Wong JS, Wong GL, Chan AW, et al. (2012) Liver stiffness measurement by transient elastography as a predictor on post-hepatectomy outcomes. Ann Surg. |
[11] |
Ribero D, Chun YS, Vauthey JN (2008) Standardized liver volumetry for portal vein embolization. Semin Intervent Radiol 25:104-109. doi: 10.1055/s-2008-1076681
![]() |
[12] | van Lienden KP, van den Esschert JW, de Graaf W, et al. (2013) Portal vein embolization before liver resection: a systematic review. Cardiovasc Intervent Radiol 36: 25-34. |
[13] | Abulkhir A, Limongelli P, Healey AJ, et al. (2008) Preoperative portal vein embolization for major liver resection: a meta-analysis. Ann Surg 247: 49-57. |
[14] |
Cheung TT, Poon RT, Yuen WK, et al. (2013) Long-term survival analysis of pure laparoscopic versus open hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a single-center experience. Ann Surg 257: 506-511. doi: 10.1097/SLA.0b013e31827b947a
![]() |
[15] |
Lee KF, Chong CN, Wong J, et al. (2011) Long-term results of laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma: a case-matched analysis. World J Surg 35: 2268-2274. doi: 10.1007/s00268-011-1212-6
![]() |
[16] | Wakabayashi G, Cherqui D, Geller DA, et al. (2015) Recommendations for laparoscopic liver resection: a report from the second international consensus conference held in Morioka. Ann Surg 261: 619-629. |
[17] | Mazzaferro V, Regalia E, Doci R, et al. (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334: 693-699. |
[18] | Mazzaferro V, Bhoori S, Sposito C, et al. (2011) Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl 17 Suppl 2: S44-57. |
[19] | Figueras J, Ibanez L, Ramos E, et al. (2001) Selection criteria for liver transplantation in early-stage hepatocellular carcinoma with cirrhosis: results of a multicenter study. Liver Transpl 7: 877-883. |
[20] | Llovet JM, Fuster J, Bruix J, et al. (2004) The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver Transpl 10: S115-120. |
[21] | de Villa V, Lo CM (2007) Liver transplantation for hepatocellular carcinoma in Asia. Oncologist 12: 1321-1231. |
[22] |
Akamatsu N, Sugawara Y, Kokudo N (2014) Living donor liver transplantation for patients with hepatocellular carcinoma. Liver Cancer 3: 108-118. doi: 10.1159/000343866
![]() |
[23] | Akamatsu N, Sugawara Y, Kokudo N (2014) Living-donor vs deceased-donor liver transplantation for patients with hepatocellular carcinoma. World J Hepatol 6: 626-631. |
[24] | Sarasin FP, Majno PE, Llovet JM, et al. (2001) Living donor liver transplantation for early hepatocellular carcinoma: A life-expectancy and cost-effectiveness perspective. Hepatology 33: 1073-1079. |
[25] |
Di Sandro S, Slim AO, Giacomoni A, et al. (2009) Living donor liver transplantation for hepatocellular carcinoma: long-term results compared with deceased donor liver transplantation. Transplant Proc 41: 1283-1285. doi: 10.1016/j.transproceed.2009.03.022
![]() |
[26] |
Hwang S, Lee SG, Joh JW, et al. (2005) Liver transplantation for adult patients with hepatocellular carcinoma in Korea: comparison between cadaveric donor and living donor liver transplantations. Liver Transpl 11: 1265-1272. doi: 10.1002/lt.20549
![]() |
[27] |
Lo CM, Fan ST, Liu CL, et al. (2007) Living donor versus deceased donor liver transplantation for early irresectable hepatocellular carcinoma. Br J Surg 94: 78-86. doi: 10.1002/bjs.5528
![]() |
[28] |
Curley SA, Izzo F, Ellis LM, et al. (2000) Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg 232: 381-391. doi: 10.1097/00000658-200009000-00010
![]() |
[29] | Ng KK, Poon RT (2005) Radiofrequency ablation for malignant liver tumor. Surg Oncol 14: 41-52. |
[30] |
Wong J, Lee KF, Lee PS, et al. (2009) Radiofrequency ablation for 110 malignant liver tumours: preliminary results on percutaneous and surgical approaches. Asian J Surg 32: 13-20. doi: 10.1016/S1015-9584(09)60003-8
![]() |
[31] |
Yokoyama T, Egami K, Miyamoto M, et al. (2003) Percutaneous and laparoscopic approaches of radiofrequency ablation treatment for liver cancer. J Hepatobiliary Pancreat Surg 10: 425-427. doi: 10.1007/s00534-002-0830-7
![]() |
[32] | Brunello F, Veltri A, Carucci P, et al. (2008) Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: A randomized controlled trial. Scand J Gastroenterol 43: 727-735. |
[33] | Livraghi T, Meloni F, Di Stasi M, et al. (2008) Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: Is resection still the treatment of choice? Hepatology 47: 82-89. |
[34] |
Lencioni R, Cioni D, Crocetti L, et al. (2005) Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 234: 961-967. doi: 10.1148/radiol.2343040350
![]() |
[35] | Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48 Suppl 1: S20-37. |
[36] | Liang P, Wang Y (2007) Microwave ablation of hepatocellular carcinoma. Oncology 72 Suppl 1: 124-131. |
[37] | Ong SL, Gravante G, Metcalfe MS, et al. (2009) Efficacy and safety of microwave ablation for primary and secondary liver malignancies: a systematic review. Eur J Gastroenterol Hepatol 21: 599-605. |
[38] | Chinnaratha MA, Chuang MA, Fraser RJ, et al. (2015) Percutaneous thermal ablation for primary hepatocellular carcinoma: A systematic review and meta-analysis. J Gastroenterol Hepatol. |
[39] |
Lloyd DM, Lau KN, Welsh F, et al. (2011) International multicentre prospective study on microwave ablation of liver tumours: preliminary results. HPB (Oxford) 13: 579-585. doi: 10.1111/j.1477-2574.2011.00338.x
![]() |
[40] | Lee KF, Hui JW, Cheung YS, et al. (2012) Surgical ablation of hepatocellular carcinoma with 2.45-GHz microwave: a critical appraisal of treatment outcomes. Hong Kong Med J 18: 85-91. |
[41] | Martin RC, Scoggins CR, McMasters KM (2010) Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol 17: 171-178. |
[42] |
Lu MD, Xu HX, Xie XY, et al. (2005) Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 40: 1054-1060. doi: 10.1007/s00535-005-1671-3
![]() |
[43] | Simo KA, Sereika SE, Newton KN, et al. (2011) Laparoscopic-assisted microwave ablation for hepatocellular carcinoma: safety and efficacy in comparison with radiofrequency ablation. J Surg Oncol 104: 822-829. |
[44] |
Padma S, Martinie JB, Iannitti DA (2009) Liver tumor ablation: percutaneous and open approaches. J Surg Oncol 100: 619-634. doi: 10.1002/jso.21364
![]() |
[45] |
Poon RT, Fan ST, Tsang FH, et al. (2002) Locoregional therapies for hepatocellular carcinoma: a critical review from the surgeon's perspective. Ann Surg 235: 466-486. doi: 10.1097/00000658-200204000-00004
![]() |
[46] | Ebara M, Ohto M, Sugiura N, et al. (1990) Percutaneous ethanol injection for the treatment of small hepatocellular carcinoma. Study of 95 patients. J Gastroenterol Hepatol 5: 616-626. |
[47] | Ng KK, Poon RT, Chan SC, et al. (2011) High-intensity focused ultrasound for hepatocellular carcinoma: a single-center experience. Ann Surg 253: 981-987. |
[48] | Cheung TT, Fan ST, Chan SC, et al. (2013) High-intensity focused ultrasound ablation: an effective bridging therapy for hepatocellular carcinoma patients. World J Gastroenterol 19: 3083-3089. |
[49] | Zhang T, Zhang J, Cui M, et al. (2013) Hepatitis B virus X protein inhibits tumor suppressor miR-205 through inducing hypermethylation of miR-205 promoter to enhance carcinogenesis. Neoplasia 15: 1282-1291. |
[50] | Sabel MS (2009) Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 58: 1-11. |
[51] | Schell SR, Wessels FJ, Abouhamze A, et al. (2002) Pro- and antiinflammatory cytokine production after radiofrequency ablation of unresectable hepatic tumors. J Am Coll Surg 195: 774-781. |
[52] |
Sabel MS, Nehs MA, Su G, et al. (2005) Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat 90: 97-104. doi: 10.1007/s10549-004-3289-1
![]() |
[53] |
Chen HW, Lai EC, Zhen ZJ, et al. (2011) Ultrasound-guided percutaneous cryotherapy of hepatocellular carcinoma. Int J Surg 9: 188-191. doi: 10.1016/j.ijsu.2010.11.008
![]() |
[54] | Wang C, Lu Y, Wang H, et al. (2012) Transarterial chemoembolization with/without cryotherapy is associated with improved clinical outcomes of sorafenib for the treatment of advanced hepatocellular carcinoma. Exp Ther Med 4: 188-196. |
[55] |
Rong G, Bai W, Dong Z, et al. (2015) Cryotherapy for cirrhosis-based hepatocellular carcinoma: a single center experience from 1595 treated cases. Front Med 9: 63-71. doi: 10.1007/s11684-014-0342-2
![]() |
[56] |
Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology 37: 429-442. doi: 10.1053/jhep.2003.50047
![]() |
[57] |
Llovet JM, Real MI, Montana X, et al. (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359: 1734-1739. doi: 10.1016/S0140-6736(02)08649-X
![]() |
[58] |
Lo CM, Ngan H, Tso WK, et al. (2002) Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35: 1164-1171. doi: 10.1053/jhep.2002.33156
![]() |
[59] | Marelli L, Stigliano R, Triantos C, et al. (2007) Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol 30: 6-25. |
[60] | Liu Z, Gao F, Yang G, et al. (2014) Combination of radiofrequency ablation with transarterial chemoembolization for hepatocellular carcinoma: an up-to-date meta-analysis. Tumour Biol 35: 7407-7413. |
[61] | Ni JY, Liu SS, Xu LF, et al. (2013) Meta-analysis of radiofrequency ablation in combination with transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 19: 3872-3882. |
[62] |
Lewis AL, Dreher MR (2012) Locoregional drug delivery using image-guided intra-arterial drug eluting bead therapy. J Control Release 161: 338-350. doi: 10.1016/j.jconrel.2012.01.018
![]() |
[63] | Lammer J, Malagari K, Vogl T, et al. (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33: 41-52. |
[64] |
Xie ZB, Wang XB, Peng YC, et al. (2015) Systematic review comparing the safety and efficacy of conventional and drug-eluting bead transarterial chemoembolization for inoperable hepatocellular carcinoma. Hepatol Res 45: 190-200. doi: 10.1111/hepr.12450
![]() |
[65] | Inarrairaegui M, Thurston KG, Bilbao JI, et al. (2010) Radioembolization with use of yttrium-90 resin microspheres in patients with hepatocellular carcinoma and portal vein thrombosis. J Vasc Interv Radiol 21: 1205-1212. |
[66] |
Salem R, Lewandowski RJ, Mulcahy MF, et al. (2010) Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 138: 52-64. doi: 10.1053/j.gastro.2009.09.006
![]() |
[67] |
Meza-Junco J, Montano-Loza AJ, Liu DM, et al. (2012) Locoregional radiological treatment for hepatocellular carcinoma; Which, when and how? Cancer Treat Rev 38: 54-62. doi: 10.1016/j.ctrv.2011.05.002
![]() |
[68] | Carr BI, Kondragunta V, Buch SC, et al. (2010) Therapeutic equivalence in survival for hepatic arterial chemoembolization and yttrium 90 microsphere treatments in unresectable hepatocellular carcinoma: a two-cohort study. Cancer 116: 1305-1314. |
[69] |
Bibault JE, Dewas S, Vautravers-Dewas C, et al. (2013) Stereotactic body radiation therapy for hepatocellular carcinoma: prognostic factors of local control, overall survival, and toxicity. PLoS One 8: e77472. doi: 10.1371/journal.pone.0077472
![]() |
[70] | Goyal K, Einstein D, Yao M, et al. (2010) Cyberknife stereotactic body radiation therapy for nonresectable tumors of the liver: preliminary results. HPB Surg. |
[71] | Huang WY, Jen YM, Lee MS, et al. (2012) Stereotactic body radiation therapy in recurrent hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 84: 355-361. |
[72] |
O'Connor JK, Trotter J, Davis GL, et al. (2012) Long-term outcomes of stereotactic body radiation therapy in the treatment of hepatocellular cancer as a bridge to transplantation. Liver Transpl 18: 949-954. doi: 10.1002/lt.23439
![]() |
[73] |
Tanguturi SK, Wo JY, Zhu AX, et al. (2014) Radiation therapy for liver tumors: ready for inclusion in guidelines? Oncologist 19: 868-879. doi: 10.1634/theoncologist.2014-0097
![]() |
[74] |
Lo CH, Huang WY, Lee MS, et al. (2014) Stereotactic ablative radiotherapy for unresectable hepatocellular carcinoma patients who failed or were unsuitable for transarterial chemoembolization. Eur J Gastroenterol Hepatol 26: 345-352. doi: 10.1097/MEG.0000000000000032
![]() |
[75] | Que JY, Lin LC, Lin KL, et al. (2014) The efficacy of stereotactic body radiation therapy on huge hepatocellular carcinoma unsuitable for other local modalities. Radiat Oncol 9: 120. |
[76] | Feng M, Ben-Josef E (2011) Radiation therapy for hepatocellular carcinoma. Semin Radiat Oncol 21: 271-277. |
[77] |
Gomaa AI, Waked I (2015) Recent advances in multidisciplinary management of hepatocellular carcinoma. World J Hepatol 7: 673-687. doi: 10.4254/wjh.v7.i4.673
![]() |
[78] | Cheng AL, Kang YK, Chen Z, et al. (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: 25-34. |
[79] | Llovet JM, Ricci S, Mazzaferro V, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359: 378-390. |
[80] | Cainap C, Qin S, Huang WT, et al. (2015) Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 33: 172-179. |
[81] |
Cheng AL, Kang YK, Lin DY, et al. (2013) Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol 31: 4067-475. doi: 10.1200/JCO.2012.45.8372
![]() |
[82] | Johnson PJ, Qin S, Park JW, et al. (2013) Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 31: 3517-3524. |
[83] |
Zhu AX, Rosmorduc O, Evans TR, et al. (2015) SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 33: 559-566. doi: 10.1200/JCO.2013.53.7746
![]() |
[84] |
Llovet JM, Di Bisceglie AM, Bruix J, et al. (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100: 698-711. doi: 10.1093/jnci/djn134
![]() |
[85] |
Chen MS, Li JQ, Zheng Y, et al. (2006) A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 243: 321-328. doi: 10.1097/01.sla.0000201480.65519.b8
![]() |
[86] | Huang GT, Lee PH, Tsang YM, et al. (2005) Percutaneous ethanol injection versus surgical resection for the treatment of small hepatocellular carcinoma: a prospective study. Ann Surg 242: 36-42. |
[87] | Lu MD, Kuang M, Liang LJ, et al. (2006) Surgical resection versus percutaneous thermal ablation for early-stage hepatocellular carcinoma: a randomized clinical trial. Zhonghua Yi Xue Za Zhi 86: 801-805. |
[88] | Lin SM, Lin CJ, Lin CC, et al. (2004) Radiofrequency ablation improves prognosis compared with ethanol injection for hepatocellular carcinoma < or = 4 cm. Gastroenterology 127: 1714-1723. |
[89] |
Lin SM, Lin CJ, Lin CC, et al. (2005) Randomised controlled trial comparing percutaneous radiofrequency thermal ablation, percutaneous ethanol injection, and percutaneous acetic acid injection to treat hepatocellular carcinoma of 3 cm or less. Gut 54: 1151-1156. doi: 10.1136/gut.2004.045203
![]() |
[90] |
Shiina S, Teratani T, Obi S, et al. (2005) A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 129: 122-130. doi: 10.1053/j.gastro.2005.04.009
![]() |
[91] | European Association For The Study Of The L, European Organisation For R, Treatment Of C. (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56: 908-943. |
[92] | Chong CC, Wong GL, Wong VW, et al. (2015) Antiviral therapy improves post-hepatectomy survival in patients with hepatitis B virus-related hepatocellular carcinoma: a prospective-retrospective study. Aliment Pharmacol Ther 41: 199-208. |
[93] |
Wong JS, Wong GL, Tsoi KK, et al. (2011) Meta-analysis: the efficacy of anti-viral therapy in prevention of recurrence after curative treatment of chronic hepatitis B-related hepatocellular carcinoma. Aliment Pharmacol Ther 33: 1104-1112. doi: 10.1111/j.1365-2036.2011.04634.x
![]() |
[94] | Miao RY, Zhao HT, Yang HY, et al. (2010) Postoperative adjuvant antiviral therapy for hepatitis B/C virus-related hepatocellular carcinoma: a meta-analysis. World J Gastroenterol 16: 2931-2342. |
[95] | Zhou Y, Zhang Z, Zhao Y, et al. (2014) Antiviral therapy decreases recurrence of hepatitis B virus-related hepatocellular carcinoma after curative resection: a meta-analysis. World J Surg 38: 2395-2402. |
[96] |
Li N, Lai EC, Shi J, et al. (2010) A comparative study of antiviral therapy after resection of hepatocellular carcinoma in the immune-active phase of hepatitis B virus infection. Ann Surg Oncol 17: 179-185. doi: 10.1245/s10434-009-0694-z
![]() |
[97] | Wong GL, Tse YK, Chan HL, et al. (2016) Oral nucleos(t)ide analogues reduce recurrence and death in chronic hepatitis B-related hepatocellular carcinoma. Aliment Pharmacol Ther. |
[98] |
Lo AO, Wong GL (2014) Current developments in nucleoside/nucleotide analogues for hepatitis B. Expert Rev Gastroenterol Hepatol 8: 607-622. doi: 10.1586/17474124.2014.909724
![]() |
1. | Natalia R. Jones, Richard Elson, Matthew J. Wade, Shannon McIntyre-Nolan, Andrew Woods, James Lewis, Diane Hatziioanou, Roberto Vivancos, Paul R. Hunter, Iain R. Lake, Localised wastewater SARS-CoV-2 levels linked to COVID-19 cases: A long-term multisite study in England, 2025, 962, 00489697, 178455, 10.1016/j.scitotenv.2025.178455 | |
2. | KM O’Reilly, MJ Wade, K. Farkas, F. Amman, A. Lison, JD Munday, J. Bingham, ZE Mthombothi, Z. Fang, CS Brown, RR Kao, L. Danon, Analysis insights to support the use of wastewater and environmental surveillance data for infectious diseases and pandemic preparedness, 2025, 51, 17554365, 100825, 10.1016/j.epidem.2025.100825 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | $ \hat{r} $ | |
$ \sigma $ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
$ \tau $ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
$ \nu $ | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | $ \hat{r} $ | |
$ \sigma $ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
$ \tau $ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
$ \nu $ | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |