Loading [Contrib]/a11y/accessibility-menu.js
Research article

The Presence of Interleukin 18 Binding Protein Isoforms in Chinese Patients with Rheumatoid Arthritis

  • Received: 06 January 2016 Accepted: 16 February 2016 Published: 25 February 2016
  •  Objective: Human IL-18BP gene encodes at least four distinct isoforms (IL18BPa-d) derived by alternative splicing. Their presence in RA local inflammation is not yet examined. This study aimed to determine the messenger transcript and protein levels of IL-18BP isoforms in patients with Rheumatoid Arthritis (RA). Materials: The study comprises 65 rheumatic patients, 22 Osteoarthritis (OA), and 40 sex and age matched normal controls (NC). Peripheral blood mononuclear cells (PBMCs) and synovial fluids mononuclear cells (SFMCs) were prepared by using Ficoll-Hypaque procedure. The expression and presence of different isoforms were determined by using real-time PCR and ELISA respectively. Results: IL-18BP messenger transcript has been extremely expressed in synovial fluids (SF) and synovial tissues (ST) of RA patients compared to OA patients (p < 0.001). IL-18BP auto-antibodies were noticed in RA plasma and SF (41.7%; 37.9%), in OA-SF (9.0%), and in plasma of NC (4.0%). Comparable to different isoforms, isoform “c” showed significant local expression (p < 0.001) in RA-SFMC and systematic expression (p < 0.001) between RA- and NC-PBMCs, isoform “a” was least expressed. Isoform “c” and “d” proteins were solely detected by western blot in RA. Conclusions: This study emphasizes the local existence of isoform “c” and “d”, and the possible presence of autoantibodies against IL-18BPa in RA patients, which made a pea for further investigation, putting in place their actual role.

    Citation: K.E. Khalid, Hamdi Nouri Nsairat, Jingwu Z. Zhang. The Presence of Interleukin 18 Binding Protein Isoforms in Chinese Patients with Rheumatoid Arthritis[J]. AIMS Medical Science, 2016, 3(1): 103-113. doi: 10.3934/medsci.2016.1.103

    Related Papers:

    [1] Russell Betteridge, Markus R. Owen, H.M. Byrne, Tomás Alarcón, Philip K. Maini . The impact of cell crowding and active cell movement on vascular tumour growth. Networks and Heterogeneous Media, 2006, 1(4): 515-535. doi: 10.3934/nhm.2006.1.515
    [2] M.A.J Chaplain, G. Lolas . Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1(3): 399-439. doi: 10.3934/nhm.2006.1.399
    [3] A. Chauviere, T. Hillen, L. Preziosi . Modeling cell movement in anisotropic and heterogeneous network tissues. Networks and Heterogeneous Media, 2007, 2(2): 333-357. doi: 10.3934/nhm.2007.2.333
    [4] Marco Scianna, Luca Munaron . Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6(4): 597-624. doi: 10.3934/nhm.2011.6.597
    [5] Nicola Bellomo, Raluca Eftimie, Guido Forni . What is the in-host dynamics of the SARS-CoV-2 virus? A challenge within a multiscale vision of living systems. Networks and Heterogeneous Media, 2024, 19(2): 655-681. doi: 10.3934/nhm.2024029
    [6] Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181
    [7] Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65
    [8] Urszula Ledzewicz, Heinz Schättler, Shuo Wang . On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14(1): 131-147. doi: 10.3934/nhm.2019007
    [9] Andrea Tosin . Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3(1): 43-83. doi: 10.3934/nhm.2008.3.43
    [10] Pierre Degond, Sophie Hecht, Nicolas Vauchelet . Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85. doi: 10.3934/nhm.2020003
  •  Objective: Human IL-18BP gene encodes at least four distinct isoforms (IL18BPa-d) derived by alternative splicing. Their presence in RA local inflammation is not yet examined. This study aimed to determine the messenger transcript and protein levels of IL-18BP isoforms in patients with Rheumatoid Arthritis (RA). Materials: The study comprises 65 rheumatic patients, 22 Osteoarthritis (OA), and 40 sex and age matched normal controls (NC). Peripheral blood mononuclear cells (PBMCs) and synovial fluids mononuclear cells (SFMCs) were prepared by using Ficoll-Hypaque procedure. The expression and presence of different isoforms were determined by using real-time PCR and ELISA respectively. Results: IL-18BP messenger transcript has been extremely expressed in synovial fluids (SF) and synovial tissues (ST) of RA patients compared to OA patients (p < 0.001). IL-18BP auto-antibodies were noticed in RA plasma and SF (41.7%; 37.9%), in OA-SF (9.0%), and in plasma of NC (4.0%). Comparable to different isoforms, isoform “c” showed significant local expression (p < 0.001) in RA-SFMC and systematic expression (p < 0.001) between RA- and NC-PBMCs, isoform “a” was least expressed. Isoform “c” and “d” proteins were solely detected by western blot in RA. Conclusions: This study emphasizes the local existence of isoform “c” and “d”, and the possible presence of autoantibodies against IL-18BPa in RA patients, which made a pea for further investigation, putting in place their actual role.


    [1] Buckley CD (1997) Treatment of rheumatoid arthritis. Science, medicine and future. BMJ 315: 236-238.
    [2] Novick D, Kim SH, Fantuzzi G, et al. (1999) Interleukin-18 binding protein: novel modulator of the Th1 cytokine response. Immunity 10: 127-136. doi: 10.1016/S1074-7613(00)80013-8
    [3] Szekanecz Z, Kim J, Koch AE (2003) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 15: 15-21.
    [4] Kim SH, Eisenstein M, Reznikov L, et al. (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 97: 1190-1195. doi: 10.1073/pnas.97.3.1190
    [5] Arend WP, Malyak M, Smith MF, et al. (1994) Binding of IL-1α, IL-1β, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. J Immunol 153: 4766-4774.
    [6] Terlizzese M, Simoni P, Antonetti F (1996) In vitro comparison of inhibiting ability of soluble TNF receptor p75 (TBP II) vs. soluble TNF receptor p55 (TBP I) against TNF-alpha and
    TNF-beta. J Interferon Cytokine Res 16:1047-1053.
    [7] Bresnihan B, Roux-Lombard P, Murphy E, et al. (2002) Serum interleukin 18 and interleukin 18 binding protein in rheumatoid arthritis. Ann Rheum Dis 61: 726-729.
    [8] Yamamura M, Kawashima M, Taniai M, et al. (2001) Interferon-γ inducing activity of interleukin- 18 in the joint with rheumatoid arthritis. Arthritis Rheum 44: 275-285. doi: 10.1002/1529-0131(200102)44:2<275::AID-ANR44>3.0.CO;2-B
    [9] Corbaz A, ten Hove T, Herren S, et al. (2002) IL-18-binding protein expression by endothelial cells and macrophages is up-regulated during active Crohn's disease. J Immunol 168: 3608-3616.
    [10] Kumar S, McDonnell PC, Lehr R, et al. (2000) Identification and initial characterization of four novel members of the interleukin- 1 family. J Biol Chem 275: 10308-10314. doi: 10.1074/jbc.275.14.10308
    [11] Pan GH, Risser P, Mao WG, et al. (2001) IL-1H, an interleukin 1-related protein that binds IL-18 receptor/IL-1Rrp. Cytokine 13: 1-7. doi: 10.1006/cyto.2000.0799
  • This article has been cited by:

    1. Jonathan F. Li, John Lowengrub, The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model, 2014, 343, 00225193, 79, 10.1016/j.jtbi.2013.10.008
    2. Michael Welter, Heiko Rieger, 2016, Chapter 3, 978-3-319-42021-9, 31, 10.1007/978-3-319-42023-3_3
    3. N. BELLOMO, N. K. LI, P. K. MAINI, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, 2008, 18, 0218-2025, 593, 10.1142/S0218202508002796
    4. J S Lowengrub, H B Frieboes, F Jin, Y-L Chuang, X Li, P Macklin, S M Wise, V Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours, 2010, 23, 0951-7715, R1, 10.1088/0951-7715/23/1/R01
    5. Luca Meacci, Mario Primicerio, Gustavo Carlos Buscaglia, Growth of tumours with stem cells: The effect of crowding and ageing of cells, 2021, 570, 03784371, 125841, 10.1016/j.physa.2021.125841
    6. Jie Wu, Quan Long, Shixiong Xu, Anwar R. Padhani, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, 2009, 42, 00219290, 712, 10.1016/j.jbiomech.2009.01.009
    7. Luca Meacci, Mario Primicerio, Mathematical models for tumours with cancer stem cells, 2018, 37, 0101-8205, 6544, 10.1007/s40314-018-0707-2
    8. H. Perfahl, H. V. Jain, T. Joshi, M. Horger, N. Malek, M. Bitzer, M. Reuss, Hybrid Modelling of Transarterial Chemoembolisation Therapies (TACE) for Hepatocellular Carcinoma (HCC), 2020, 10, 2045-2322, 10.1038/s41598-020-65012-1
    9. M. Welter, K. Bartha, H. Rieger, Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor, 2008, 250, 00225193, 257, 10.1016/j.jtbi.2007.09.031
    10. Heiko Rieger, Thierry Fredrich, Michael Welter, Physics of the tumor vasculature: Theory and experiment, 2016, 131, 2190-5444, 10.1140/epjp/i2016-16031-9
    11. H Enderling, L Hlatky, P Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases, 2009, 100, 0007-0920, 1917, 10.1038/sj.bjc.6605071
    12. Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Afshin Beheshti, Lynn Hlatky, Philip Hahnfeldt, Paradoxical Dependencies of Tumor Dormancy and Progression on Basic Cell Kinetics, 2009, 69, 0008-5472, 8814, 10.1158/0008-5472.CAN-09-2115
    13. Behnaz Abdollahi, Neal Dunlap, Hermann B. Frieboes, 2014, Chapter 18, 978-1-4614-8497-4, 463, 10.1007/978-1-4614-8498-1_18
    14. Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou, Toward Understanding the Boundary Propagation Speeds in Tumor Growth Models, 2021, 81, 0036-1399, 1052, 10.1137/19M1296665
    15. Michael Welter, Heiko Rieger, 2012, Chapter 13, 978-1-4614-0051-6, 335, 10.1007/978-1-4614-0052-3_13
    16. Markus R. Owen, Tomás Alarcón, Philip K. Maini, Helen M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, 2009, 58, 0303-6812, 689, 10.1007/s00285-008-0213-z
    17. Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu, From a cell model with active motion to a Hele–Shaw-like system: a numerical approach, 2019, 143, 0029-599X, 107, 10.1007/s00211-019-01053-7
    18. M. Welter, H. Rieger, Physical determinants of vascular network remodeling during tumor growth, 2010, 33, 1292-8941, 149, 10.1140/epje/i2010-10611-6
    19. M. Scianna, C.G. Bell, L. Preziosi, A review of mathematical models for the formation of vascular networks, 2013, 333, 00225193, 174, 10.1016/j.jtbi.2013.04.037
    20. Heiko Rieger, Michael Welter, Integrative models of vascular remodeling during tumor growth, 2015, 7, 1939-5094, 113, 10.1002/wsbm.1295
    21. Tanvi V. Joshi, Daniele Avitabile, Markus R. Owen, Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model, 2018, 80, 0092-8240, 1435, 10.1007/s11538-018-0406-6
    22. M. Welter, K. Bartha, H. Rieger, Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth, 2009, 259, 00225193, 405, 10.1016/j.jtbi.2009.04.005
    23. Luca Meacci, Mario Primicerio, Interaction between crowding and growth in tumours with stem cells: Conceptual mathematical modelling, 2023, 18, 0973-5348, 15, 10.1051/mmnp/2023011
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6151) PDF downloads(1169) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog