Citation: Marco Ferrone, Anna Franzone, Bruno Trimarco, Giovanni Esposito, Plinio Cirillo. Percutaneous Coronary Intervention in a Patient with Acute Thrombosis of Saphenous Vein Graft and Patent Native Coronary Artery: Which is the Vessel to Approach?[J]. AIMS Medical Science, 2015, 2(4): 310-315. doi: 10.3934/medsci.2015.4.310
[1] | Lukáš Pichl, Taisei Kaizoji . Volatility Analysis of Bitcoin Price Time Series. Quantitative Finance and Economics, 2017, 1(4): 474-485. doi: 10.3934/QFE.2017.4.474 |
[2] | Andres Fernandez, Norman R. Swanson . Further Evidence on the Usefulness of Real-Time Datasets for Economic Forecasting. Quantitative Finance and Economics, 2017, 1(1): 2-25. doi: 10.3934/QFE.2017.1.2 |
[3] | Samuel Asante Gyamerah . Modelling the volatility of Bitcoin returns using GARCH models. Quantitative Finance and Economics, 2019, 3(4): 739-753. doi: 10.3934/QFE.2019.4.739 |
[4] | Guillermo Peña . Interest rates affect public expenditure growth. Quantitative Finance and Economics, 2023, 7(4): 622-645. doi: 10.3934/QFE.2023030 |
[5] | Abdul Haque, Huma Fatima, Ammar Abid, Muhammad Ali Jibran Qamar . Impact of firm-level uncertainty on earnings management and role of accounting conservatism. Quantitative Finance and Economics, 2019, 3(4): 772-794. doi: 10.3934/QFE.2019.4.772 |
[6] | Arifenur Güngör, Hüseyin Taştan . On macroeconomic determinants of co-movements among international stock markets: evidence from DCC-MIDAS approach. Quantitative Finance and Economics, 2021, 5(1): 19-39. doi: 10.3934/QFE.2021002 |
[7] | Cemile Özgür, Vedat Sarıkovanlık . An application of Regular Vine copula in portfolio risk forecasting: evidence from Istanbul stock exchange. Quantitative Finance and Economics, 2021, 5(3): 452-470. doi: 10.3934/QFE.2021020 |
[8] | Md Qamruzzaman, Jianguo Wei . Do financial inclusion, stock market development attract foreign capital flows in developing economy: a panel data investigation. Quantitative Finance and Economics, 2019, 3(1): 88-108. doi: 10.3934/QFE.2019.1.88 |
[9] | David Melkuev, Danqiao Guo, Tony S. Wirjanto . Applications of random-matrix theory and nonparametric change-point analysis to three notable systemic crises. Quantitative Finance and Economics, 2018, 2(2): 413-467. doi: 10.3934/QFE.2018.2.413 |
[10] | Fredrik Hobbelhagen, Ioannis Diamantis . A comparative study of symbolic aggregate approximation and topological data analysis. Quantitative Finance and Economics, 2024, 8(4): 705-732. doi: 10.3934/QFE.2024027 |
The Caginalp phase-field system
$ \frac{\partial u}{\partial t}-\Delta u+f(u) = \theta, $ | (1.1) |
$ \frac{\partial\theta}{\partial t}-\Delta\theta = -\frac{\partial u}{\partial t}, $ | (1.2) |
has been introduced in [1] in order to describe the phase transition phenomena in certain class of material. In this context,
$
ψ=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx,
$
|
(1.3) |
where
$
H=u+θ.
$
|
(1.4) |
Then, the evolution equation for the order parameter
$
∂u∂t=−δuψ,
$
|
(1.5) |
where
$
∂H∂t=−divq,
$
|
(1.6) |
where
$
q=−∇θ,
$
|
(1.7) |
we obtain (1.2). Now, a well-known side effect of the Fourier heat law is the infinite speed of propagation of thermal disturbances, deemed physically unreasonable and thus called paradox of heat conduction (see, for example, [9]). In order to account for more realistic features, several variations of (1.7), based, for example, on the Maxwell-Cattaneo law or recent laws from thermomechanics, have been proposed in the context of the Caginalp phase-field system (see, for example, [19], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [35], [36], [37], [38], [44], [45] and [46]).
A different approach to heat conduction was proposed in the Sixties (see, [47], [48] and [49]), where it was observed that two temperatures are involved in the definition of the entropy: the conductive temperature
$
θ=φ−Δφ.
$
|
(1.8) |
Our aim in this paper is to study a generalization of the Caginalp phase-field system based on this two temperatures theory and the usual Fourier law with a nonlinear coupling.
The purpose of our study is the following initial and boundary value problem
$ \frac{\partial u}{\partial t}-\Delta u+f(u) = g(u)\big(\varphi-\Delta \varphi\big) \label{e9}, $ | (1.9) |
$ \frac{\partial \varphi}{\partial t}-\Delta \frac{\partial \varphi}{\partial t}-\Delta \varphi = -g(u)\frac{\partial u}{\partial t}, \label{e10} $ | (1.10) |
$ u = \varphi = 0 \mbox{on} \partial\Omega, \label{e11} $ | (1.11) |
$ u|_{t = 0} = u_0, ~ \varphi|_{t = 0} = \varphi_0 \label{e12}. $ | (1.12) |
The paper is organized as follows. In Section 2, we give the derivation of the model. The Section 3 states existence, regularity and uniqueness results. In Section 4, we address the question of dissipativity properties of the system. The last section, analyzes the spatial behavior of solutions in a semi-infinite cylinder, assuming their existence.
Thoughout this paper, the same letters
In our case, to obtain equations (1.9) and (1.10), the total free energy reads in terms of the conductive temperature
$
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−G(u)θ−12θ2)dx,
$
|
(2.1) |
where
$
H=G(u)+θ=G(u)+φ−Δφ,
$
|
(2.2) |
which yields thanks to (1.6), the energy equation,
$
∂φ∂t−Δ∂φ∂t+divq=−g(u)∂u∂t.
$
|
(2.3) |
Considering the usual Fourier law (
Remark 2.1. We can note that we still have an infinite speed of propagation here.
Before stating the existence result, we make some assumptions on nonlinearities
$ |G(s)|^2\leq c_1\, F(s)+c_2, \quad c_0, c_1, c_2\geq 0, $ | (3.1) |
$
|g(s)s|≤c3(|G(s)|2+1),c3≥0,
$
|
(3.2) |
$
c4sk+2−c5≤F(s)≤f(s)s+c0≤c6sk+2−c7,c4,c6>0,c5,c7≥0,
$
|
(3.3) |
$
|g(s)|≤c8(|s|+1),|g′(s)|≤c9c8,c9≥0,
$
|
(3.4) |
$
|f′(s)|≤c10(|s|k+1),c10≥0,
$
|
(3.5) |
where
Theorem 3.1. We assume that (3.1)-(3.4) hold true. For all initial data
Proof. The proof is based on the Galerkin scheme. Here, we just make formally computations to get a priori estimates, having in mind that these estimates can be rigourously justified using the Galerkin scheme see, for example, [10], [11] and [40] for details.
Multiplying (1.9) by
$
12ddt(‖∇u‖2+2∫ΩF(u)dx)+‖∂u∂t‖2=∫Ωg(u)∂u∂t(φ−Δφ)dx.
$
|
(3.6) |
Multiplying (1.10) by
$
12ddt(‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+‖∇φ‖2+‖Δφ‖2=−∫Ωg(u)∂u∂t(φ−Δφ)dx.
$
|
(3.7) |
Now, summing (3.6) and (3.7), we are led to,
$
ddt(‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2)+2(‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)=0.
$
|
(3.8) |
Multiplying (1.9) by
$
12ddt‖u‖2+‖∇u‖2+∫Ωf(u)udx=∫Ωg(u)u(φ−Δφ)dx.
$
|
(3.9) |
Using (3.2)-(3.3), (3.9) becomes
$
12ddt‖u‖2+‖∇u‖2+c∫ΩF(u)dx≤c′∫Ω|G(u)|2dx+12(‖φ‖2+‖Δφ‖2)+c″.
$
|
(3.10) |
Adding (3.8) and (3.10), one has
$
dE1dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2)+‖Δφ‖2≤c′∫Ω|G(u)|2dx+‖φ‖2+c″,
$
|
(3.11) |
where
$
E1=‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2
$
|
(3.12) |
enjoys
$
E1≤c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′
$
|
(3.13) |
and
$
E1≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴.
$
|
(3.14) |
Multiplying now (1.10) by
$
12ddt‖∇φ‖2+‖∂φ∂t‖2+‖∇∂φ∂t‖2=−∫Ωg(u)∂u∂t∂φ∂tdx.
$
|
(3.15) |
Taking into account (3.4) and using Hölder's inequality, we get
$
12ddt‖∇φ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2
$
|
(3.16) |
and then, summing (3.11) and (3.16), we have
$
dE2dt+2(‖∇u‖2+c∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+12‖Δφ‖2+12‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c∫Ω|G(u)|2dx+‖φ‖2+c″(‖∇u‖2+1)‖∂u∂t‖2+c‴,
$
|
(3.17) |
where
$
E2=E1+‖∇φ‖2
$
|
(3.18) |
satisfies similar estimates as
We deduce from (3.1) and (3.17)
$
dE2dt+c(‖∂φ∂t‖2+‖∇∂φ∂t‖2)≤c′E2+c″,
$
|
(3.19) |
which achieve the proof.
For more regularity on solutions, we make following additional assumptions:
$
f(0)=0andf′(s)≥−c,c≥0.
$
|
(3.20) |
We have:
Theorem 3.2. Under assumptions of Theorem 3.1 and assuming that (3.20) is satisfied. For every initial data
Proof. As above proof, we focus on a priori estimates.
We multiply (1.10) by
$
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+‖Δ∂φ∂t‖2=∫Ωg(u)∂u∂tΔ∂φ∂tdx.
$
|
(3.21) |
Thanks to (3.4) and Hölder's inequality:
$
∫Ωg(u)∂u∂tΔ∂φ∂tdx≤c∫Ω(|u|+1)|∂u∂t||Δ∂φ∂t|dx≤c(‖∇u‖2+1)‖∂u∂t‖2+12‖Δ∂φ∂t‖2
$
|
(3.22) |
and then,
$
12ddt‖∇φ‖2+‖∇∂φ∂t‖2+12‖Δ∂φ∂t‖2≤c(‖∇u‖2+1)‖∂u∂t‖2.
$
|
(3.23) |
Differentiating (1.9) with respect to time, we get
$
∂2u∂t2−Δ∂u∂t+f′(u)∂u∂t=g′(u)∂u∂t(φ−Δφ)+g(u)(∂φ∂t−Δ∂φ∂t).
$
|
(3.24) |
Multiplying (3.24) by
$
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx.
$
|
(3.25) |
Using (1.10), we write,
$
∫Ωg(u)∂u∂t(∂φ∂t−Δ∂φ∂t)dx=∫Ωg(u)∂u∂t(−g(u)∂u∂t+Δφ)dx=−∫Ω|g(u)∂u∂t|2dx+∫Ωg(u)∂u∂tΔφdx.
$
|
(3.26) |
Owing to (3.26), (3.25) reads
$
12ddt‖∂u∂t‖2+‖∇∂u∂t‖2+∫Ωf′(u)|∂u∂t|2dx=∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx+∫Ωg(u)∂u∂tΔφdx−∫Ω|g(u)∂u∂t|2dx,
$
|
(3.27) |
since
$
∫Ωg′(u)|∂u∂t|2(φ−Δφ)dx≤c∫Ω|∂u∂t|2(|φ|+|Δφ|)dx≤12‖∇∂u∂t‖2+c(‖φ‖2+‖Δφ‖2),
$
|
(3.28) |
$
∫Ωg(u)∂u∂tΔφdx=−∫Ωg′(u)∇u∂u∂t∇φdx−∫Ωg(u)∇∂u∂t∇φdx
$
|
(3.29) |
and then,
$
|∫Ωg′(u)∇u∂u∂t∇φdx|≤c∫Ω|∇u||∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c‖∇u‖2‖Δφ‖2
$
|
(3.30) |
and
$
|∫Ωg(u)∇∂u∂t∇φdx|≤c∫Ω(|u|+1)|∇∂u∂t||∇φ|dx≤16‖∇∂u∂t‖2+c(‖∇u‖2+1)‖∇φ‖2.
$
|
(3.31) |
Furthemore,
$
∫Ω|g(u)∂u∂t|2dx≤c∫Ω(|u|+1)2|∂u∂t|2dx≤c(‖∇u‖2+‖u‖2+1)‖∂u∂t‖2.
$
|
(3.32) |
Now, collecting (3.27)–(3.32) and owing to (3.20), we are led to
$
ddt‖∂u∂t‖2+c‖∇∂u∂t‖2≤c′(‖u‖2H1(Ω)+1)(‖∂u∂t‖2+‖φ‖2H2(Ω)).
$
|
(3.33) |
Adding (3.19),
$
dE3dt+c(‖∂u∂t‖2H1(Ω)+‖∂φ∂t‖2H2(Ω))≤c′E3+c″,
$
|
(3.34) |
where
$
E3=E2+ε1‖∇φ‖2+ε2‖∂u∂t‖2
$
|
(3.35) |
enjoys
$
E3≥c(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′
$
|
(3.36) |
and
$
E3≤c″(‖u‖2H(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴.
$
|
(3.37) |
We complete the proof applying Gronwall's lemma.
We now give a uniqueness result
Theorem 3.3. Under assumptions of Theorem 3.2 and assuming that (3.5) holds true. The problem (1.9)-(1.12) has a unique solution
Proof. We suppose the existence of two solutions
$ \frac{\partial u}{\partial t}-\Delta u+f(u_1)-f(u_2) = g(u_1)\bigg(\varphi-\Delta\varphi\bigg)+\big(g(u_1)-g(u_2)\big)\bigg(\varphi_2-\Delta\varphi_2\bigg), $ | (3.38) |
$ \frac{\partial \varphi}{\partial t}-\Delta\frac{\partial\varphi}{\partial t}-\Delta\varphi = -g(u_1)\frac{\partial u}{\partial t}-\big(g(u_1)-g(u_2)\big)\frac{\partial u_2}{\partial t}, $ | (3.39) |
$ u|_{\partial\Omega} = \varphi|_{\partial\Omega} = 0, $ | (3.40) |
$ u|_{t = 0} = u_{01}-u_{02}, \, \varphi|_{t = 0} = \varphi_{01}-\varphi_{02}, $ | (3.41) |
with
Multiplying (3.38) by
$
12ddt‖∇u‖2+‖∂u∂t‖2+∫Ω(f(u1−f(u2)))∂u∂tdx=∫Ωg(u1)(φ−Δφ)∂u∂tdx+∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx.
$
|
(3.42) |
Multiplying (3.39) by
$
12ddt(‖φ‖2+‖∇φ‖2)+‖∇φ‖2=−∫Ωg(u1)∂u∂tφdx−∫Ω(g(u1)−g(u2))∂u2∂tφdx.
$
|
(3.43) |
Multiplying (3.39) by
$
12ddt(‖∇φ‖2+‖Δφ‖2)+‖Δφ‖2=∫Ωg(u1)∂u∂tΔφdx+∫Ω(g(u1)−g(u2))∂u2∂tΔφdx.
$
|
(3.44) |
Finally, adding (3.42), (3.43) and (3.44), we get
$
dE4dt+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2+∫Ω(f(u1)−f(u2))∂u∂tdx=∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx−∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx,
$
|
(3.45) |
where
$
E4=‖∇u‖2+‖φ‖2+2‖∇φ‖2+‖Δφ‖2.
$
|
(3.46) |
Now, owing to (3.5), and applying Hölder's inequality for
$
∫Ω(f(u1)−f(u2))∂u∂tdx≤c∫Ω(|u2|k+1)|u||∂u∂t|dx≤c(‖∇u2‖2k+1)‖∇u‖2+‖∂u∂t‖2,
$
|
(3.47) |
we also get, thanks to (3.4), and applying Hölder's inequality,
$
∫Ω(g(u1)−g(u2))(φ2−Δφ2)∂u∂tdx≤c∫Ω|u||φ2−Δφ2||∂u∂t|dx≤c‖∇u‖2(‖φ2‖2+‖Δφ2‖2)+‖∂u∂t‖2
$
|
(3.48) |
and
$
∫Ω(g(u1)−g(u2))(φ−Δφ)∂u2∂tdx≤c∫Ω|u||∂u∂t||φ−Δφ|dx≤c‖∂u2∂t‖2(‖φ‖2+‖Δφ‖2)+‖∇u‖2.
$
|
(3.49) |
From (3.45)-(3.49), we deduce a differential inequality of the type
$
dE4dt+c‖∂u∂t‖2≤c(‖∇u2‖2k+‖∂u2∂t‖2+‖φ2‖2+‖Δφ2‖2+1)E4.
$
|
(3.50) |
In particular,
$
dE4dt≤cE4
$
|
(3.51) |
and then applying the Gronwall's lemma to (3.51), we end the proof.
This section is devoted to the existence of bounded absorbing sets for the semigroup
$
∀ϵ>0,|G(u)|2≤ϵF(s)+cϵ,s∈R.
$
|
(4.1) |
We then have
Theorem 4.1. Under the assumptions of the Theorem 3.3 and assuming that (4.1) holds true. Then,
Proof. Going from (3.8) and (3.10), we get, summing (3.8) and
$
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤2c′δ∫Ω|G(u)|2dx+δ(‖φ‖2+‖Δφ‖2)+c″≤2c′δ∫Ω|G(u)|2dx+δ(c‖∇φ‖2+‖Δφ‖2)+c″,
$
|
(4.2) |
where
$
E5=δ‖u‖2+‖∇u‖2+2∫ΩF(u)dx+‖φ‖2+2‖∇φ‖2+‖Δφ‖2
$
|
(4.3) |
satisfies
$
E5≥c(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c′
$
|
(4.4) |
and
$
E5≤c″(‖u‖2H1(Ω)+‖u‖k+2k+2+‖φ‖2H2(Ω))−c‴.
$
|
(4.5) |
From (4.2) and owing to (4.1), we obtain
$
dE5dt+2(c‖∇u‖2+δ∫ΩF(u)dx+‖∂u∂t‖2+‖∇φ‖2+‖Δφ‖2)≤Cϵ∫ΩF(u)dx+δ(c‖∇φ‖2+‖Δφ‖2)+C′ϵ,
$
|
(4.6) |
where
$
2δ≥Cϵand2>cδ,
$
|
(4.7) |
we then deduce from (4.6),
$
dE5dt+c(E5+‖∂u∂t‖2)≤c′,
$
|
(4.8) |
we complete the proof applying the Gronwall's lemma.
Remark 4.2. It follows from theorems 3.1, 3.2 and 4.1 that we can define the family solving operators:
$
S(t):Φ⟶Φ,(u0,φ0)↦(u(t),φ(t)),∀t≥0,
$
|
(4.9) |
where
The aim of this section is to study the spatial behavior of solutions in a semi-infinite cylinder, assuming that such solutions exist. This study is motivated by the possibility of extending results obtained above to the case of unbounded domains like semi-infinite cylinders. To do so, we will study the behavior of solutions in a semi-infinite cylinder denoted
$
u=φ=0on(0,+∞)×∂D×(0,T)
$
|
(5.1) |
and
$
u(0,x2,x3;t)=h(x2,x3;t),φ(0,x2,x3;t)=l(x2,x3;t)on{0}×D×(0,T),
$
|
(5.2) |
where
We also consider following initial data
$
u|t=0=φ|t=0=0onR.
$
|
(5.3) |
Let us suppose that such solutions exist. We consider the function
$
Fw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(φ,1+φ,1s)+φsφ,1)dads,
$
|
(5.4) |
where
$
Fw(z+h,t)−Fw(z,t)=e−wt2∫R(z,z+h)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+∫t0∫R(z,z+h)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds,
$
|
(5.5) |
where
Hence,
$
∂Fw∂t(z,t)=e−wt2∫D(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)da+∫t0∫D(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dads+w2∫t0∫D(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dads.
$
|
(5.6) |
We consider a second function, namely,
$
Gw(z,t)=∫t0∫D(z)e−ws(usu,1+φ(θ,1+φ,1s))dads,
$
|
(5.7) |
where
Similarly, we have
$
Gw(z+h,t)−Gw(z,t)=e−wt2∫R(z,z+h)(|u|2+|∇θ|2)dx+∫t0∫R(z,z+h)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dxds+w2∫t0∫R(z,z+h)e−ws(|u|2+|∇θ|2)dxds+∫t0∫R(z,z+h)e−ws(G(u)−g(u)u)φdxds
$
|
(5.8) |
and then
$
∂Gw∂t(z,t)=e−wt2∫D(z)(|u|2+|∇θ|2)da+∫t0∫D(z)e−ws(|∇u|2+f(u)u+uΔφ+|φ|2+|∇φ|2)dads+w2∫t0∫D(z)e−ws(|u|2+|∇θ|2)dads+∫t0∫D(z)e−ws(G(u)−g(u)u)φdads.
$
|
(5.9) |
We choose
$
2F(u)+τu2≥C1u2,C1>0.
$
|
(5.10) |
Now, we focus on the nonliear part i.e.,
$
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2.
$
|
(5.11) |
We assume that
For
$
w(F(u)+τ2|u|2)+τf(u)u+τ(G(u)−g(u)u)φ+w2|φ|2≥C3(|u|2+|φ|2+|Δφ|2).
$
|
(5.12) |
Taking into account previous choices, it clearly appears that the following function
$
Hw=Fw+τGw
$
|
(5.13) |
satisfies
$
∂Hw∂t(z,t)≥C4∫t0∫D(z)e−ws(|u|2+|∇u|2+|us|2+|φ|2+|∇φ|2+|Δφ|2+|∇θ|2)dads.
$
|
(5.14) |
We give now an estimate of
$
|Fw|≤(∫t0∫D(z)e−wsu2sdads)1/2(e−wsu2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(e−wsφ2,1s)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(e−wsφ2,1)1/2≤C5∫t0∫D(z)e−ws(|∇u|2+|us|2+|φ|2+|∇φ|2+|φs|2+|∇φs|2)dads,C5>0.
$
|
(5.15) |
Similarly,
$
|Gw|≤(∫t0∫D(z)e−wsu2dads)1/2(∫t0∫D(z)e−wsu2,1dads)1/2+(∫t0∫D(z)e−wsφ2dads)1/2(∫t0∫D(z)e−wsθ2,1dads)1/2+(∫t0∫D(z)e−wsφ2sdads)1/2(∫t0∫D(z)e−wsφ2,1dads)1/2≤C6∫t0∫D(z)e−ws(|u|2+|∇u|2+|φ|2+|∇φ|2+|∇θ|2)dads,C6>0.
$
|
(5.16) |
We then deduce the existence of a positive constant
$
|Hw|≤C7∂Hw∂z.
$
|
(5.17) |
Remark 5.1. The inequality (5.17) is well known in the study of spatial estimates and leads to the Phragmén-Lindelöf alternative (see, e.g., [9], [39]).
In particular, if there exist
$
Hw(z,t)≥Hw(z0,t)eC−17(z−z0),z≥z0.
$
|
(5.18) |
The estimate (5.18) gives information in terms of measure defined in the cylinder. Actually, from (5.18), we deduce that
$
e−wt2∫R(0,z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(0,z)(|u|2+|∇θ|2)dx+∫t0∫R(0,z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(0,z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(0,z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(0,z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(0,z)e−ws(G(u)−g(u)u)φdxds
$
|
(5.19) |
tends to infinity exponentially fast. On the other hand, if
$
−Hw(z,t)≤−Hw(0,t)eC−17z,z≥0,
$
|
(5.20) |
where
$
Ew(z,t)=e−wt2∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τe−wt2∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)e−ws(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)e−ws(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)e−ws(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)e−ws(|u|2+|∇θ|2)dx+τ∫t0∫R(z)e−ws(G(u)−g(u)u)φdxds
$
|
(5.21) |
and
Finally, setting
$
Ew(z,t)=12∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dx+τ12∫R(z)(|u|2+|∇θ|2)dx+∫t0∫R(z)(|us|2+|∇φ|2+|Δφ|2)dxds+τ∫t0∫R(z)(|∇u|2+f(u)u+g(u)uΔφ+|φ|2+2|∇φ|2)dxds+w2∫t0∫R(z)(|∇u|2+2F(u)+|φ|2+2|∇φ|2+|Δφ|2)dxds+τw2∫t0∫R(z)(|u|2+|∇θ|2)dx+τ∫t0∫R(z)(G(u)−g(u)u)φdxds.
$
|
(5.22) |
We have the following result
Theorem 5.2. Let
$
Ew(z,t)≤Ew(0,t)ewt−C−17z,z≥0,
$
|
(5.23) |
where the energy
The author would like to thank Alain Miranville for his advices and for his careful reading of this paper.
The author declares no conflicts of interest in this paper.
[1] | Yap CH, Sposato L, Akowuah E, et al. (2009) Contemporary results show repeat coronary artery bypass grafting remains a risk factor for operative mortality. Ann Thorac Surg 87(5): 1386-1391. |
[2] | Sarwar B, Brener SJ (2014) Saphenous vein graft interventions. Curr Treat Options Cardiovasc Med 16(5): 301. |
[3] | Brilakis ES, Lichtenwalter C, Abdel-karim AR, et al. (2011) Continued benefit from paclitaxel-eluting compared with bare-metal stent implantation in saphenous vein graft lesions during long-term follow-up of the SOS (Stenting of Saphenous Vein Grafts) trial. JACC Cardiovasc Interv 4(2): 176-182. |
[4] | Xanthopoulou I, Davlouros P, Tsigkas G, et al. (2011) Long-term clinical outcome after percutaneous coronary intervention in grafts vs native vessels in patients with previous coronary artery bypass grafting. Can J Cardiol 27(6): 716-724. |
[5] | Hoffmann R, Nitendo G, Deserno V, et al. (2010) Follow-up results after interventional treatment of infarct-related saphenous vein graft occlusion. Coron Artery Dis 21(2): 61-64. |
[6] | Yeh RW, Sidney S, Chandra M, et al. (2010) Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med 362(23): 2155-2165. |
[7] | Abdel-Karim AR, Banerjee S, Brilakis ES (2010) Percutaneous intervention of acutely occluded saphenous vein grafts: contemporary techniques and outcomes. J Invasive Cardiol 22(6): 253-257. |
[8] | Gaglia MA, Torguson R, Xue Z, et al. (2011) Outcomes of patients with acute myocardial infarction from a saphenous vein graft culprit undergoing percutaneous coronary intervention. Catheter Cardiovasc Interv 78(1): 23-29. |
[9] | Mehilli J, Pache J, Abdel-Wahab M, et al. (2011) Drug-eluting versus bare-metal stents in saphenous vein graft lesions (ISAR-CABG): a randomised controlled superiority trial. Lancet 378(9796): 1071-1078. |
[10] | Vermeersch P, Agostoni P, Verheye S, et al. (2007) Increased late mortality after sirolimus-eluting stents versus bare-metal stents in diseased saphenous vein grafts: results from the randomized DELAYED RRISC Trial. J Am Coll Cardiol 50(3): 261-267. |
[11] | Costopoulos C, Latib A, Naganuma T, et al. (2013) Comparison of first- and second-generation drug-eluting stents in saphenous vein grafts used as aorto-coronary conduits. Am J Cardiol 112(3): 318-322. |
[12] | Taniwaki M, Räber L, Magro M, et al. (2014) Long-term comparison of everolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for percutaneous coronary intervention of saphenous vein grafts. EuroIntervention 9(12): 1432-1434. |
[13] | Kitabata H, Loh JP, Pendyala LK, et al. (2013) Two-year follow-up of outcomes of second-generation everolimus-eluting stents versus first-generation drug-eluting stents for stenosis of saphenous vein grafts used as aortocoronary conduits. Am J Cardiol 112(1): 61-67. |