Citation: Xiaohong Tian, Rui Xu, Ning Bai, Jiazhe Lin. Bifurcation analysis of an age-structured SIRI epidemic model[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7130-7150. doi: 10.3934/mbe.2020366
[1] | E. Beretta, Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250-260. |
[2] | H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28 (1976), 335-356. |
[3] | A. Kaddar, Stability analysis in a delayed SIR epidemic model with a saturated incidence rate, Nonlinear Anal. Model. Control, 15 (2010), 299-306. |
[4] | Q. Liu, D. Jiang, Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation, Appl. Math. Lett., 73 (2017), 8-15. |
[5] | W. Ma, M. Song, Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145. |
[6] | P. Magal, O. Seydi, G. F. Webb, Final size of an epidemic for a two-group SIR model, SIAM J. Appl. Math., 76 (2016), 2042-2059. |
[7] | C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59. |
[8] | D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev., 32 (1990), 136-139. |
[9] | A. M. Spagnuolo, M. Shillor, L. Kingsland, A. Thatcher, M. Toeniskoetter, B. Wood, A logistic delay differential equation model for chagas disease with interrupted spraying schedules, J. Biol. Dyn., 6 (2012), 377-394. |
[10] | L. Gao, H. W. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol., 30 (1992), 717-731. |
[11] | J. Li, Z. Teng, G. Wang, L. Zhang, C. Hu, Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment, Chaos Soliton. Fract., 99 (2017), 63-71. |
[12] | S. P. Rajasekar, M. Pitchaimani, Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence, Appl. Math. Comput., 377 (2020), 125143. |
[13] | N. Yoshida, T. Hara, Global stability of a delayed SIR epidemic model with density dependent birth and death rates, J. Comput. Appl. Math., 201 (2007), 339-347. |
[14] | J. Zhang, J. Li, Z. Ma, Global analysis of SIR epidemic models with population size dependent contact rate, J. Eng. Math., 21 (2004), 259-267. |
[15] | J. Zhou, H. W. Hethcote, Population size dependent incidence in models for diseases without immunity, J. Math. Biol., 32 (1994), 809-834. |
[16] | L. Zhu, H. Hu, A stochastic SIR epidemic model with density dependent birth rate, Adv. Difference Equ., 330 (2015), 1-12. |
[17] | X. Rui, X. Tian, F. Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, Adv. Difference Equ., 242 (2017), 1-34. |
[18] | J. Yang, Z. Qiu, Z. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng., 11 (2014), 641-665. |
[19] | Z. Feng, W. Huang, C. C. Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Differ. Equations, 218 (2005), 292-324. |
[20] | H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434. |
[21] | P. Magal, C. C. McCluskey, G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140. |
[22] | X. Duan, J. Yin, X. Li, Global Hopf bifurcation of an SIRS epidemic model with age-dependent recovery, Chaos Soliton. Fract., 104 (2017), 613-624. |
[23] | Y. Chen, S. Zou, J. Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, Nonlinear Anal. Real World Appl., 30 (2016), 16-31. |
[24] | P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differ. Equ., 65 (2001), 1-35. |
[25] | P. Magal, S. Ruan, On semilinear Cauchyproblems with non-dense domain, Adv. Differ. Equations, 14 (2009), 1041-1084. |
[26] | Z. Liu, P. Magal, S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222. |
[27] | Z. Wang, Z. Liu, Hopf bifurcation of an age-structured compartmental pest-pathogen model, J. Math. Anal. Appl., 385 (2012), 1134-1150. |
[28] | Y. Song, S. Yuan, Bifurcation analysis in a predator-prey system with time delay, Nonlinear Anal., 7 (2006), 265-284. |
[29] | S. M. Blower, A. R. Mclean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez, et al., The intrinsic transmission dynamics of tuberculosis epidemics, Nat. Med., 1 (1995), 815-821. |
[30] | C. C. Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404. |
[31] | H. Cao, D. Yan, S. Zhang, X. Wang, Analysis of dynamics of recurrent epidemics: periodic or non-periodic, B. Math. Biol., 81 (2019), 4889-4907. |
[32] | P. van den Driessche, L. Wang, X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng., 4(2) (2007), 205-219. |
[33] | A. Hoare, D. G. Regan, D. P. Wilson, Sampling and sensitivity analyses tools (SaSAT) for computational modelling, Theor. Biol. Med. Model., 5 (2008), 4. |
[34] | S. Marino, I. B. Hogue, C. J. Ray, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196. |
[35] | A. Ducrot, Z. Liu, P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518. |